Abstract
We show how the intrinsic characteristic classes of Lie algebroids can be seen as characteristic classes of representations. We present two alternative ways: The first one consists of thinking of the adjoint representation as a connection up to homotopy. The second one is by viewing the adjoint representation as a honest representation on the first jet bundle of a Lie algebroid.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. Almeida and A. Kumpera, Structure produit dans la catégorie des algèbroïdes de Lie, An. Acad. Bra. Ciênc. 53 (1981), 247–250.
J.M. Bismut and J. Lott, Flat vector bundles, direct images and higher real analytic torsion, J. Amer. Math. Soc. 8 (1995), 291–363.
R. Bott, Lectures on Characteristic Classes and Foliations, in Lectures on Algebraic and Differential Topology, Lec. Notes in Mathematics, vol. 279, Springer-Verlag, Berlin, 1972.
A. Cannas da Silva and A. Weinstein, Geometric Models for Noncommutative Algebras, Berkeley Mathematics Lectures, vol. 10, American Math. Soc., Providence, 1999.
M. Crainic, Differentiable and algebroid cohomology, Van Est isomorphisms, and characteristic classes, to appear in Comment. Math. Helv. (preprint math.DG/0008064).
M. Crainic, Chern characters via connections up to homotopy, Preprint math.DG/0008064.
S. Evens, J.-H. Lu and A. Weinstein, Transverse measures, the modular class and a cohomology pairing for Lie algebroids, Quart. J. Math. Oxford (2) 50 (1999), 417–436.
R.L. Fernandes, Lie algebroids, holonomy and characteristic class, Adv. in Math. 170 (2002), 119–179.
J. Huebschmann, Duality for Lie-Rinehart algebras and the modular class, J. reine angew. Math. 510 (1999), 103–159.
F. Kamber and P. Tondeur, Foliated Bundles and Characteristic Classes, Springer Lecture Notes in Mathematics 493, Springer-Verlag, Berlin, 1975.
S. Morita, Geometry of characteristic classes, Translations of Mathematical Monographs, 199, American Math. Soc., Providence, 2001.
D.J. Saunders, The Geometry of Jet Bundles, Cambridge University Press, Cambridge, 1989.
D. Quillen, Superconnections and the Chern character, Topology 24 (1985), 89–95.
A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23 (1997), 379–394.
P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math. Phys. 200 (1999), 545–560.
Author information
Authors and Affiliations
Editor information
Rights and permissions
About this chapter
Cite this chapter
Crainic, M., Fernandes, R. Secondary Characteristic Classes of Lie Algebroids. In: Carow-Watamura, U., Maeda, Y., Watamura, S. (eds) Quantum Field Theory and Noncommutative Geometry. Lecture Notes in Physics, vol 662. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11342786_9
Download citation
DOI: https://doi.org/10.1007/11342786_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23900-0
Online ISBN: 978-3-540-31526-1
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)