Skip to main content

Secondary Characteristic Classes of Lie Algebroids

  • Chapter
  • First Online:
Quantum Field Theory and Noncommutative Geometry

Part of the book series: Lecture Notes in Physics ((LNP,volume 662))

Abstract

We show how the intrinsic characteristic classes of Lie algebroids can be seen as characteristic classes of representations. We present two alternative ways: The first one consists of thinking of the adjoint representation as a connection up to homotopy. The second one is by viewing the adjoint representation as a honest representation on the first jet bundle of a Lie algebroid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Almeida and A. Kumpera, Structure produit dans la catégorie des algèbroïdes de Lie, An. Acad. Bra. Ciênc. 53 (1981), 247–250.

    Google Scholar 

  2. J.M. Bismut and J. Lott, Flat vector bundles, direct images and higher real analytic torsion, J. Amer. Math. Soc. 8 (1995), 291–363.

    Google Scholar 

  3. R. Bott, Lectures on Characteristic Classes and Foliations, in Lectures on Algebraic and Differential Topology, Lec. Notes in Mathematics, vol. 279, Springer-Verlag, Berlin, 1972.

    Google Scholar 

  4. A. Cannas da Silva and A. Weinstein, Geometric Models for Noncommutative Algebras, Berkeley Mathematics Lectures, vol. 10, American Math. Soc., Providence, 1999.

    Google Scholar 

  5. M. Crainic, Differentiable and algebroid cohomology, Van Est isomorphisms, and characteristic classes, to appear in Comment. Math. Helv. (preprint math.DG/0008064).

    Google Scholar 

  6. M. Crainic, Chern characters via connections up to homotopy, Preprint math.DG/0008064.

    Google Scholar 

  7. S. Evens, J.-H. Lu and A. Weinstein, Transverse measures, the modular class and a cohomology pairing for Lie algebroids, Quart. J. Math. Oxford (2) 50 (1999), 417–436.

    Article  Google Scholar 

  8. R.L. Fernandes, Lie algebroids, holonomy and characteristic class, Adv. in Math. 170 (2002), 119–179.

    Article  Google Scholar 

  9. J. Huebschmann, Duality for Lie-Rinehart algebras and the modular class, J. reine angew. Math. 510 (1999), 103–159.

    Google Scholar 

  10. F. Kamber and P. Tondeur, Foliated Bundles and Characteristic Classes, Springer Lecture Notes in Mathematics 493, Springer-Verlag, Berlin, 1975.

    Google Scholar 

  11. S. Morita, Geometry of characteristic classes, Translations of Mathematical Monographs, 199, American Math. Soc., Providence, 2001.

    Google Scholar 

  12. D.J. Saunders, The Geometry of Jet Bundles, Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  13. D. Quillen, Superconnections and the Chern character, Topology 24 (1985), 89–95.

    Google Scholar 

  14. A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23 (1997), 379–394.

    Article  Google Scholar 

  15. P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math. Phys. 200 (1999), 545–560.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ursula Carow-Watamura Yoshiaki Maeda Satoshi Watamura

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Crainic, M., Fernandes, R. Secondary Characteristic Classes of Lie Algebroids. In: Carow-Watamura, U., Maeda, Y., Watamura, S. (eds) Quantum Field Theory and Noncommutative Geometry. Lecture Notes in Physics, vol 662. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11342786_9

Download citation

Publish with us

Policies and ethics