Skip to main content

Autocrine, Paracrine, and Endocrine Signals That Can Alter Alveolar Macrophages Function

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 186))

  • 636 Accesses

Abstract

Alveolar macrophages (AMs) are extremely versatile cells with complex functions involved in health or diseases such as pneumonia, asthma, and pulmonary alveolar proteinosis. In recent years, it has been widely identified that the different functions and states of macrophages are the results from the complex interplay between microenvironmental signals and macrophage lineage. Diverse and complicated signals to which AMs respond are mentioned when they are described individually or in a particular state of AMs. In this review, the microenvironmental signals are divided into autocrine, paracrine, and endocrine signals based on their secreting characteristics. This new perspective on classification provides a more comprehensive and systematic introduction to the complex signals around AMs and is helpful for understanding the roles of AMs affected by physiological environment. The existing possible treatments of AMs are also mentioned in it. The thorough understanding of AMs signals modulation may be contributed to the development of more effective therapies for AMs-related lung diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdala Valencia H, Loffredo LF, Misharin AV, Berdnikovs S (2016) Phenotypic plasticity and targeting of Siglec-F(high) CD11c(low) eosinophils to the airway in a murine model of asthma. Allergy 71(2):267–271. https://doi.org/10.1111/all.12776

    Article  CAS  Google Scholar 

  • Aegerter H, Kulikauskaite J, Crotta S, Patel H, Kelly G, Hessel EM, Mack M, Beinke S, Wack A (2020) Influenza-induced monocyte-derived alveolar macrophages confer prolonged antibacterial protection. Nat Immunol 21(2):145–157. https://doi.org/10.1038/s41590-019-0568-x

    Article  CAS  Google Scholar 

  • Arumugam P, Suzuki T, Shima K, McCarthy C, Sallese A, Wessendarp M, Ma Y, Meyer J, Black D, Chalk C, Carey B, Lachmann N, Moritz T, Trapnell BC (2019) Long-term safety and efficacy of gene-pulmonary macrophage transplantation therapy of PAP in Csf2ra mice. Mol Ther 27(9):1597–1611. https://doi.org/10.1016/j.ymthe.2019.06.010

    Article  CAS  Google Scholar 

  • Banks WA (2019) The blood-brain barrier as an endocrine tissue. Nat Rev Endocrinol 15(8):444–455. https://doi.org/10.1038/s41574-019-0213-7

    Article  CAS  Google Scholar 

  • Bansal S, Yajjala VK, Bauer C, Sun K (2018) IL-1 signaling prevents alveolar macrophage depletion during influenza and coinfection. J Immunol 200(4):1425–1433. https://doi.org/10.4049/jimmunol.1700210

    Article  CAS  Google Scholar 

  • Bao L, Deng W, Huang B, Gao H, Liu J, Ren L, Wei Q, Yu P, Xu Y, Qi F, Qu Y, Li F, Lv Q, Wang W, Xue J, Gong S, Liu M, Wang G, Wang S, Song Z, Zhao L, Liu P, Zhao L, Ye F, Wang H, Zhou W, Zhu N, Zhen W, Yu H, Zhang X, Guo L, Chen L, Wang C, Wang Y, Wang X, Xiao Y, Sun Q, Liu H, Zhu F, Ma C, Yan L, Yang M, Han J, Xu W, Tan W, Peng X, Jin Q, Wu G, Qin C (2020) The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583(7818):830–833. https://doi.org/10.1038/s41586-020-2312-y

    Article  CAS  Google Scholar 

  • Becerra-Díaz M, Strickland AB, Keselman A, Heller NM (2018) Androgen and androgen receptor as enhancers of M2 macrophage polarization in allergic lung inflammation. J Immunol 201(10):2923–2933. https://doi.org/10.4049/jimmunol.1800352

    Article  CAS  Google Scholar 

  • Beckmann A, Grissmer A, Meier C, Tschernig T (2020a) Intercellular communication between alveolar epithelial cells and macrophages. Ann Anat 227:151417. https://doi.org/10.1016/j.aanat.2019.151417

    Article  Google Scholar 

  • Beckmann N, Sutton JM, Hoehn RS, Jernigan PL, Friend LA, Johanningman TA, Schuster RM, Lentsch AB, Caldwell CC, Pritts TA (2020b) IFNγ and TNFα mediate CCL22/MDC production in alveolar macrophages after hemorrhage and resuscitation. Am J Physiol Lung Cell Mol Physiol 318(5):L864–L872. https://doi.org/10.1152/ajplung.00455.2019

    Article  CAS  Google Scholar 

  • Bellamri N, Viel R, Morzadec C, Lecureur V, Joannes A, de Latour B, Llamas-Gutierrez F, Wollin L, Jouneau S, Vernhet L (2020) TNF-α and IL-10 control CXCL13 expression in human macrophages. J Immunol 204(9):2492–2502. https://doi.org/10.4049/jimmunol.1900790

    Article  CAS  Google Scholar 

  • Bhattacharya J, Westphalen K (2016) Macrophage-epithelial interactions in pulmonary alveoli. Semin Immunopathol 38(4):461–469. https://doi.org/10.1007/s00281-016-0569-x

    Article  CAS  Google Scholar 

  • Bogdan C, Schleicher U (2006) Production of interferon-gamma by myeloid cells – fact or fancy? Trends Immunol 27(6):282–290

    Google Scholar 

  • Bonfield TL, Konstan MW, Burfeind P, Panuska JR, Hilliard JB, Berger M (1995) Normal bronchial epithelial cells constitutively produce the anti-inflammatory cytokine interleukin-10, which is downregulated in cystic fibrosis. Am J Respir Cell Mol Biol 13(3):257–261

    Article  CAS  Google Scholar 

  • Brunet K, Arrivé F, Martellosio J-P, Lamarche I, Marchand S, Rammaert B (2021) Corticosteroids alter alveolar macrophage control of Lichtheimia corymbifera spores in an ex vivo mouse model. Med Mycol 59(7):694–700. https://doi.org/10.1093/mmy/myaa104

    Article  CAS  Google Scholar 

  • Byrne AJ, Powell JE, O'Sullivan BJ, Ogger PP, Hoffland A, Cook J, Bonner KL, Hewitt RJ, Wolf S, Ghai P, Walker SA, Lukowski SW, Molyneaux PL, Saglani S, Chambers DC, Maher TM, Lloyd CM (2020) Dynamics of human monocytes and airway macrophages during healthy aging and after transplant. J Exp Med 217(3). https://doi.org/10.1084/jem.20191236

  • Carvalho-Sousa CE, Pereira EP, Kinker GS, Veras M, Ferreira ZS, Barbosa-Nunes FP, Martins JO, Saldiva PHN, Reiter RJ, Fernandes PA, da Silveira C-MS, Markus RP (2020) Immune-pineal axis protects rat lungs exposed to polluted air. J Pineal Res 68(3):e12636. https://doi.org/10.1111/jpi.12636

    Article  CAS  Google Scholar 

  • Chanteux H, Guisset AC, Pilette C, Sibille Y (2007) LPS induces IL-10 production by human alveolar macrophages via MAPKinases- and Sp1-dependent mechanisms. Respir Res 8:71

    Article  Google Scholar 

  • Cheng P, Li S, Chen H (2021) Macrophages in lung injury, repair, and fibrosis. Cell 10(2). https://doi.org/10.3390/cells10020436

  • Cohen M, Giladi A, Gorki A-D, Solodkin DG, Zada M, Hladik A, Miklosi A, Salame T-M, Halpern KB, David E, Itzkovitz S, Harkany T, Knapp S, Amit I (2018) Lung single-cell signaling interaction map reveals basophil role in macrophage imprinting. Cell 175(4). https://doi.org/10.1016/j.cell.2018.09.009

  • Cooper AM (2009) Cell-mediated immune responses in tuberculosis. Annu Rev Immunol 27:393–422. https://doi.org/10.1146/annurev.immunol.021908.132703

    Article  CAS  Google Scholar 

  • Cui H, Xie N, Banerjee S, Ge J, Jiang D, Dey T, Matthews QL, Liu R-M, Liu G (2021) Lung myofibroblasts promote macrophage profibrotic activity through lactate-induced histone lactylation. Am J Respir Cell Mol Biol 64(1):115–125. https://doi.org/10.1165/rcmb.2020-0360OC

    Article  CAS  Google Scholar 

  • Doyle AD, Mukherjee M, LeSuer WE, Bittner TB, Pasha SM, Frere JJ, Neely JL, Kloeber JA, Shim KP, Ochkur SI, Ho T, Svenningsen S, Wright BL, Rank MA, Lee JJ, Nair P, Jacobsen EA (2019) Eosinophil-derived IL-13 promotes emphysema. Eur Respir J 53(5). https://doi.org/10.1183/13993003.01291-2018

  • Du S, Li C, Lu Y, Lei X, Zhang Y, Li S, Liu F, Chen Y, Weng D, Chen J (2019) Dioscin alleviates crystalline silica-induced pulmonary inflammation and fibrosis through promoting alveolar macrophage autophagy. Theranostics 9(7):1878–1892. https://doi.org/10.7150/thno.29682

    Article  CAS  Google Scholar 

  • Epelman S, Lavine KJ, Randolph GJ (2014) Origin and functions of tissue macrophages. Immunity 41(1):21–35. https://doi.org/10.1016/j.immuni.2014.06.013

    Article  CAS  Google Scholar 

  • Feng Z, Zhou J, Liu Y, Xia R, Li Q, Yan L, Chen Q, Chen X, Jiang Y, Chao G, Wang M, Zhou G, Zhang Y, Wang Y, Xia H (2021) Epithelium- and endothelium-derived exosomes regulate the alveolar macrophages by targeting RGS1 mediated calcium signaling-dependent immune response. Cell Death Differ 28(7):2238–2256. https://doi.org/10.1038/s41418-021-00750-x

    Article  CAS  Google Scholar 

  • Fenton MJ, Vermeulen MW, Kim S, Burdick M, Strieter RM, Kornfeld H (1997) Induction of gamma interferon production in human alveolar macrophages by Mycobacterium tuberculosis. Infect Immun 65(12):5149–5156

    Article  CAS  Google Scholar 

  • Gao DK, Salomonis N, Henderlight M, Woods C, Thakkar K, Grom AA, Thornton S, Jordan MB, Wikenheiser-Brokamp KA, Schulert GS (2021) IFN-γ is essential for alveolar macrophage-driven pulmonary inflammation in macrophage activation syndrome. JCI Insight 6(17). https://doi.org/10.1172/jci.insight.147593

  • Garcia-Reyero N (2018) The clandestine organs of the endocrine system. Gen Comp Endocrinol 257:264–271. https://doi.org/10.1016/j.ygcen.2017.08.017

    Article  CAS  Google Scholar 

  • Glass CK, Natoli G (2016) Molecular control of activation and priming in macrophages. Nat Immunol 17(1):26–33. https://doi.org/10.1038/ni.3306

    Article  CAS  Google Scholar 

  • Grant RA, Morales-Nebreda L, Markov NS, Swaminathan S, Querrey M, Guzman ER, Abbott DA, Donnelly HK, Donayre A, Goldberg IA, Klug ZM, Borkowski N, Lu Z, Kihshen H, Politanska Y, Sichizya L, Kang M, Shilatifard A, Qi C, Lomasney JW, Argento AC, Kruser JM, Malsin ES, Pickens CO, Smith SB, Walter JM, Pawlowski AE, Schneider D, Nannapaneni P, Abdala-Valencia H, Bharat A, Gottardi CJ, Budinger GRS, Misharin AV, Singer BD, Wunderink RG (2021) Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia. Nature 590(7847):635–641. https://doi.org/10.1038/s41586-020-03148-w

    Article  CAS  Google Scholar 

  • Gschwend J, Sherman SPM, Ridder F, Feng X, Liang H-E, Locksley RM, Becher B, Schneider C (2021) Alveolar macrophages rely on GM-CSF from alveolar epithelial type 2 cells before and after birth. J Exp Med 218(10). https://doi.org/10.1084/jem.20210745

  • Guilliams M, De Kleer I, Henri S, Post S, Vanhoutte L, De Prijck S, Deswarte K, Malissen B, Hammad H, Lambrecht BN (2013) Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J Exp Med 210(10):1977–1992. https://doi.org/10.1084/jem.20131199

    Article  CAS  Google Scholar 

  • Hamidzadeh K, Christensen SM, Dalby E, Chandrasekaran P, Mosser DM (2017) Macrophages and the recovery from acute and chronic inflammation. Annu Rev Physiol 79:567–592. https://doi.org/10.1146/annurev-physiol-022516-034348

    Article  CAS  Google Scholar 

  • Hamilton JA (2002) GM-CSF in inflammation and autoimmunity. Trends Immunol 23(8):403–408

    Article  CAS  Google Scholar 

  • Happle C, Lachmann N, Škuljec J, Wetzke M, Ackermann M, Brennig S, Mucci A, Jirmo AC, Groos S, Mirenska A, Hennig C, Rodt T, Bankstahl JP, Schwerk N, Moritz T, Hansen G (2014) Pulmonary transplantation of macrophage progenitors as effective and long-lasting therapy for hereditary pulmonary alveolar proteinosis. Sci Transl Med 6(250):250ra113. https://doi.org/10.1126/scitranslmed.3009750

    Article  CAS  Google Scholar 

  • Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P, Price J, Lucas D, Greter M, Mortha A, Boyer SW, Forsberg EC, Tanaka M, van Rooijen N, García-Sastre A, Stanley ER, Ginhoux F, Frenette PS, Merad M (2013) Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38(4):792–804. https://doi.org/10.1016/j.immuni.2013.04.004

    Article  CAS  Google Scholar 

  • Helft J, Manicassamy B, Guermonprez P, Hashimoto D, Silvin A, Agudo J, Brown BD, Schmolke M, Miller JC, Leboeuf M, Murphy KM, García-Sastre A, Merad M (2012) Cross-presenting CD103+ dendritic cells are protected from influenza virus infection. J Clin Invest 122(11):4037–4047. https://doi.org/10.1172/JCI60659

    Article  CAS  Google Scholar 

  • Hou F, Xiao K, Tang L, Xie L (2021) Diversity of macrophages in lung homeostasis and diseases. Front Immunol 12:753940. https://doi.org/10.3389/fimmu.2021.753940

    Article  CAS  Google Scholar 

  • Hoyer FF, Naxerova K, Schloss MJ, Hulsmans M, Nair AV, Dutta P, Calcagno DM, Herisson F, Anzai A, Sun Y, Wojtkiewicz G, Rohde D, Frodermann V, Vandoorne K, Courties G, Iwamoto Y, Garris CS, Williams DL, Breton S, Brown D, Whalen M, Libby P, Pittet MJ, King KR, Weissleder R, Swirski FK, Nahrendorf M (2019) Tissue-specific macrophage responses to remote injury impact the outcome of subsequent local immune challenge. Immunity 51(5). https://doi.org/10.1016/j.immuni.2019.10.010

  • Huaux F, Lo Re S, Giordano G, Uwambayinema F, Devosse R, Yakoub Y, Panin N, Palmai-Pallag M, Rabolli V, Delos M, Marbaix E, Dauguet N, Couillin I, Ryffel B, Renauld J-C, Lison D (2015) IL-1α induces CD11b(low) alveolar macrophage proliferation and maturation during granuloma formation. J Pathol 235(5):698–709. https://doi.org/10.1002/path.4487

    Article  CAS  Google Scholar 

  • Hussell T, Bell TJ (2014) Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol 14(2):81–93. https://doi.org/10.1038/nri3600

    Article  CAS  Google Scholar 

  • Isler P, de Rochemonteix BG, Songeon F, Boehringer N, Nicod LP (1999) Interleukin-12 production by human alveolar macrophages is controlled by the autocrine production of interleukin-10. Am J Respir Cell Mol Biol 20(2):270–278

    Article  CAS  Google Scholar 

  • Ji J-J, Sun Q-M, Nie D-Y, Wang Q, Zhang H, Qin F-F, Wang Q-S, Lu S-F, Pang G-M, Lu Z-G (2021) Probiotics protect against RSV infection by modulating the microbiota-alveolar-macrophage axis. Acta Pharmacol Sin 42(10):1630–1641. https://doi.org/10.1038/s41401-020-00573-5

    Article  CAS  Google Scholar 

  • Kaur M, Smyth LJ, Cadden P, Grundy S, Ray D, Plumb J, Singh D (2012) T lymphocyte insensitivity to corticosteroids in chronic obstructive pulmonary disease. Respir Res 13:20. https://doi.org/10.1186/1465-9921-13-20

    Article  CAS  Google Scholar 

  • Khalaj K, Figueira RL, Antounians L, Lauriti G, Zani A (2020) Systematic review of extracellular vesicle-based treatments for lung injury: are EVs a potential therapy for COVID-19? J Extracell Vesicles 9(1):1795365. https://doi.org/10.1080/20013078.2020.1795365

    Article  CAS  Google Scholar 

  • Khan N, Mendonca L, Dhariwal A, Fontes G, Menzies D, Xia J, Divangahi M, King IL (2019) Intestinal dysbiosis compromises alveolar macrophage immunity to Mycobacterium tuberculosis. Mucosal Immunol 12(3):772–783. https://doi.org/10.1038/s41385-019-0147-3

    Article  CAS  Google Scholar 

  • Kim Y-G, Udayanga KGS, Totsuka N, Weinberg JB, Núñez G, Shibuya A (2014) Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE2. Cell Host Microbe 15(1). https://doi.org/10.1016/j.chom.2013.12.010

  • Kumagai Y, Takeuchi O, Kato H, Kumar H, Matsui K, Morii E, Aozasa K, Kawai T, Akira S (2007) Alveolar macrophages are the primary interferon-alpha producer in pulmonary infection with RNA viruses. Immunity 27(2):240–252

    Article  CAS  Google Scholar 

  • Kurihara C, Lecuona E, Wu Q, Yang W, Núñez-Santana FL, Akbarpour M, Liu X, Ren Z, Li W, Querrey M, Ravi S, Anderson ML, Cerier E, Sun H, Kelly ME, Abdala-Valencia H, Shilatifard A, Mohanakumar T, Budinger GRS, Kreisel D, Bharat A (2021) Crosstalk between nonclassical monocytes and alveolar macrophages mediates transplant ischemia-reperfusion injury through classical monocyte recruitment. JCI Insight 6(6). https://doi.org/10.1172/jci.insight.147282

  • Lambrecht BN (2006) Alveolar macrophage in the driver's seat. Immunity 24(4):366–368

    Article  CAS  Google Scholar 

  • Lang FM, Lee KMC, Teijaro JR, Becher B, Hamilton JA (2020) GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches. Nat Rev Immunol 20(8):507–514. https://doi.org/10.1038/s41577-020-0357-7

    Article  CAS  Google Scholar 

  • Laubreton D, Drajac C, Eléouët J-F, Rameix-Welti M-A, Lo-Man R, Riffault S, Descamps D (2020) Regulatory B lymphocytes colonize the respiratory tract of neonatal mice and modulate immune responses of alveolar macrophages to RSV infection in IL-10-dependant manner. Viruses 12(8). https://doi.org/10.3390/v12080822

  • Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11(11):750–761. https://doi.org/10.1038/nri3088

    Article  CAS  Google Scholar 

  • Lee H, Zhang D, Zhu Z, Dela Cruz CS, Jin Y (2016) Epithelial cell-derived microvesicles activate macrophages and promote inflammation via microvesicle-containing microRNAs. Sci Rep 6:35250. https://doi.org/10.1038/srep35250

    Article  CAS  Google Scholar 

  • Li Y, Li C, Xue P, Zhong B, Mao A-P, Ran Y, Chen H, Wang Y-Y, Yang F, Shu H-B (2009) ISG56 is a negative-feedback regulator of virus-triggered signaling and cellular antiviral response. Proc Natl Acad Sci U S A 106(19):7945–7950. https://doi.org/10.1073/pnas.0900818106

    Article  Google Scholar 

  • Li D, Guabiraba R, Besnard A-G, Komai-Koma M, Jabir MS, Zhang L, Graham GJ, Kurowska-Stolarska M, Liew FY, McSharry C, Xu D (2014) IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. J Allergy Clin Immunol 134(6). https://doi.org/10.1016/j.jaci.2014.05.011

  • Liang Y, Yang N, Pan G, Jin B, Wang S, Ji W (2018) Elevated IL-33 promotes expression of MMP2 and MMP9 via activating STAT3 in alveolar macrophages during LPS-induced acute lung injury. Cell Mol Biol Lett 23:52. https://doi.org/10.1186/s11658-018-0117-x

    Article  CAS  Google Scholar 

  • Lim S, Caramori G, Tomita K, Jazrawi E, Oates T, Chung KF, Barnes PJ, Adcock IM (2004) Differential expression of IL-10 receptor by epithelial cells and alveolar macrophages. Allergy 59(5):505–514

    Article  CAS  Google Scholar 

  • Liu F, Peng W, Chen J, Xu Z, Jiang R, Shao Q, Zhao N, Qian K (2021) Exosomes derived from alveolar epithelial cells promote alveolar macrophage activation mediated by miR-92a-3p in sepsis-induced acute lung injury. Front Cell Infect Microbiol 11:646546. https://doi.org/10.3389/fcimb.2021.646546

    Article  CAS  Google Scholar 

  • Losa D, Chanson M (2015) The lung communication network. Cell Mol Life Sci 72(15):2793–2808. https://doi.org/10.1007/s00018-015-1960-9

    Article  CAS  Google Scholar 

  • Lugg ST, Scott A, Parekh D, Naidu B, Thickett DR (2022) Cigarette smoke exposure and alveolar macrophages: mechanisms for lung disease. Thorax 77(1). https://doi.org/10.1136/thoraxjnl-2020-216296

  • Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13. https://doi.org/10.12703/P6-13

    Article  Google Scholar 

  • Mayer AK, Bartz H, Fey F, Schmidt LM, Dalpke AH (2008) Airway epithelial cells modify immune responses by inducing an anti-inflammatory microenvironment. Eur J Immunol 38(6):1689–1699. https://doi.org/10.1002/eji.200737936

    Article  CAS  Google Scholar 

  • Medoff BD, Thomas SY, Banerji A, Wain JC, Zhang H, Lilly CM, Ginns LC, Luster AD (2005) Pathogenic T-cell recruitment into the airway in human disease. Ann N Y Acad Sci 1062:220–241

    Article  Google Scholar 

  • Mogues T, Goodrich ME, Ryan L, LaCourse R, North RJ (2001) The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J Exp Med 193(3):271–280

    Article  CAS  Google Scholar 

  • Moon HG, Cao Y, Yang J, Lee JH, Choi HS, Jin Y (2015) Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway. Cell Death Dis 6:e2016. https://doi.org/10.1038/cddis.2015.282

    Article  CAS  Google Scholar 

  • Moore KW, de Waal MR, Coffman RL, O'Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    Article  CAS  Google Scholar 

  • Morrison TJ, Jackson MV, Cunningham EK, Kissenpfennig A, McAuley DF, O'Kane CM, Krasnodembskaya AD (2017) Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med 196(10):1275–1286. https://doi.org/10.1164/rccm.201701-0170OC

    Article  CAS  Google Scholar 

  • Morse C, Tabib T, Sembrat J, Buschur KL, Bittar HT, Valenzi E, Jiang Y, Kass DJ, Gibson K, Chen W, Mora A, Benos PV, Rojas M, Lafyatis R (2019) Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur Respir J 54(2). https://doi.org/10.1183/13993003.02441-2018

  • Mu M, Gao P, Yang Q, He J, Wu F, Han X, Guo S, Qian Z, Song C (2020) Alveolar epithelial cells promote IGF-1 production by alveolar macrophages through TGF-β to suppress endogenous inflammatory signals. Front Immunol 11:1585. https://doi.org/10.3389/fimmu.2020.01585

    Article  CAS  Google Scholar 

  • Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, Pittet JF, Kaminski N, Garat C, Matthay MA, Rifkin DB, Sheppard D (1999) The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96(3):319–328

    Article  CAS  Google Scholar 

  • Murray PJ (2017) Macrophage polarization. Annu Rev Physiol 79:541–566. https://doi.org/10.1146/annurev-physiol-022516-034339

    Article  CAS  Google Scholar 

  • Murray PJ, Wynn TA (2011) Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol 89(4):557–563. https://doi.org/10.1189/jlb.0710409

    Article  CAS  Google Scholar 

  • Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege J-L, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20. https://doi.org/10.1016/j.immuni.2014.06.008

    Article  CAS  Google Scholar 

  • Muthusami S, Vidya B, Shankar EM, Vadivelu J, Ramachandran I, Stanley JA, Selvamurugan N (2020) The functional significance of endocrine-immune interactions in health and disease. Curr Protein Pept Sci 21(1):52–65. https://doi.org/10.2174/1389203720666191106113435

    Article  CAS  Google Scholar 

  • Negishi H, Taniguchi T, Yanai H (2018) The interferon (IFN) class of cytokines and the IFN regulatory factor (IRF) transcription factor family. Cold Spring Harb Perspect Biol 10(11). https://doi.org/10.1101/cshperspect.a028423

  • Orecchioni M, Ghosheh Y, Pramod AB, Ley K (2019) Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front Immunol 10:1084. https://doi.org/10.3389/fimmu.2019.01084

    Article  CAS  Google Scholar 

  • Pattison MJ, MacKenzie KF, Elcombe SE, Arthur JSC (2013) IFNβ autocrine feedback is required to sustain TLR induced production of MCP-1 in macrophages. FEBS Lett 587(10):1496–1503. https://doi.org/10.1016/j.febslet.2013.03.025

    Article  CAS  Google Scholar 

  • Perez E, Baker JR, Di Giandomenico S, Kermani P, Parker J, Kim K, Yang J, Barnes PJ, Vaulont S, Scandura JM, Donnelly LE, Stout-Delgado H, Cloonan SM (2020) Hepcidin is essential for alveolar macrophage function and is disrupted by smoke in a murine chronic obstructive pulmonary disease model. J Immunol 205(9):2489–2498. https://doi.org/10.4049/jimmunol.1901284

    Article  CAS  Google Scholar 

  • Raychaudhuri B, Fisher CJ, Farver CF, Malur A, Drazba J, Kavuru MS, Thomassen MJ (2000) Interleukin 10 (IL-10)-mediated inhibition of inflammatory cytokine production by human alveolar macrophages. Cytokine 12(9):1348–1355

    Article  CAS  Google Scholar 

  • Santos LD, Antunes KH, Muraro SP, de Souza GF, da Silva AG, Felipe JS, Zanetti LC, Czepielewski RS, Magnus K, Scotta M, Mattiello R, Maito F, de Souza APD, Weinlich R, Vinolo MAR, Porto BN (2021) TNF-mediated alveolar macrophage necroptosis drives disease pathogenesis during respiratory syncytial virus infection. Eur Respir J 57(6). https://doi.org/10.1183/13993003.03764-2020

  • Schneider C, Nobs SP, Kurrer M, Rehrauer H, Thiele C, Kopf M (2014) Induction of the nuclear receptor PPAR-γ by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nat Immunol 15(11):1026–1037. https://doi.org/10.1038/ni.3005

    Article  CAS  Google Scholar 

  • Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75(2):163–189

    Article  CAS  Google Scholar 

  • Schuijt TJ, Lankelma JM, Scicluna BP, de Sousa e Melo F, Roelofs JJTH, de Boer JD, Hoogendijk AJ, de Beer R, de Vos A, Belzer C, de Vos WM, van der Poll T, Wiersinga WJ (2016) The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 65(4):575–583. https://doi.org/10.1136/gutjnl-2015-309728

    Article  CAS  Google Scholar 

  • Schyns J, Bureau F, Marichal T (2018) Lung interstitial macrophages: past, present, and future. J Immunol Res 2018:5160794. https://doi.org/10.1155/2018/5160794

    Article  CAS  Google Scholar 

  • Sencio V, Barthelemy A, Tavares LP, Machado MG, Soulard D, Cuinat C, Queiroz-Junior CM, Noordine M-L, Salomé-Desnoulez S, Deryuter L, Foligné B, Wahl C, Frisch B, Vieira AT, Paget C, Milligan G, Ulven T, Wolowczuk I, Faveeuw C, Le Goffic R, Thomas M, Ferreira S, Teixeira MM, Trottein F (2020) Gut dysbiosis during influenza contributes to pulmonary pneumococcal superinfection through altered short-chain fatty acid production. Cell Rep 30(9). https://doi.org/10.1016/j.celrep.2020.02.013

  • Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili S-A, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233(9):6425–6440. https://doi.org/10.1002/jcp.26429

    Article  CAS  Google Scholar 

  • Snelgrove RJ, Goulding J, Didierlaurent AM, Lyonga D, Vekaria S, Edwards L, Gwyer E, Sedgwick JD, Barclay AN, Hussell T (2008) A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat Immunol 9(9):1074–1083. https://doi.org/10.1038/ni.1637

    Article  CAS  Google Scholar 

  • Snyder ME, Sembrat J, Noda K, Myerburg MM, Craig A, Mitash N, Harano T, Furukawa M, Pilewski J, McDyer J, Rojas M, Sanchez P (2021) Human lung-resident macrophages colocalize with and provide costimulation to PD1 tissue-resident memory T cells. Am J Respir Crit Care Med 203(10):1230–1244. https://doi.org/10.1164/rccm.202006-2403OC

    Article  CAS  Google Scholar 

  • Song X, Xie S, Lu K, Wang C (2015) Mesenchymal stem cells alleviate experimental asthma by inducing polarization of alveolar macrophages. Inflammation 38(2):485–492. https://doi.org/10.1007/s10753-014-9954-6

    Article  CAS  Google Scholar 

  • Suzuki T, Arumugam P, Sakagami T, Lachmann N, Chalk C, Sallese A, Abe S, Trapnell C, Carey B, Moritz T, Malik P, Lutzko C, Wood RE, Trapnell BC (2014) Pulmonary macrophage transplantation therapy. Nature 514(7523):450–454. https://doi.org/10.1038/nature13807

    Article  CAS  Google Scholar 

  • Svedberg FR, Brown SL, Krauss MZ, Campbell L, Sharpe C, Clausen M, Howell GJ, Clark H, Madsen J, Evans CM, Sutherland TE, Ivens AC, Thornton DJ, Grencis RK, Hussell T, Cunoosamy DM, Cook PC, MacDonald AS (2019) The lung environment controls alveolar macrophage metabolism and responsiveness in type 2 inflammation. Nat Immunol 20(5):571–580. https://doi.org/10.1038/s41590-019-0352-y

    Article  CAS  Google Scholar 

  • Tazawa R, Ueda T, Abe M, Tatsumi K, Eda R, Kondoh S, Morimoto K, Tanaka T, Yamaguchi E, Takahashi A, Oda M, Ishii H, Izumi S, Sugiyama H, Nakagawa A, Tomii K, Suzuki M, Konno S, Ohkouchi S, Tode N, Handa T, Hirai T, Inoue Y, Arai T, Asakawa K, Sakagami T, Hashimoto A, Tanaka T, Takada T, Mikami A, Kitamura N, Nakata K (2019) Inhaled GM-CSF for pulmonary alveolar proteinosis. N Engl J Med 381(10):923–932. https://doi.org/10.1056/NEJMoa1816216

    Article  CAS  Google Scholar 

  • Trapnell BC, Carey BC, Uchida K, Suzuki T (2009) Pulmonary alveolar proteinosis, a primary immunodeficiency of impaired GM-CSF stimulation of macrophages. Curr Opin Immunol 21(5):514–521. https://doi.org/10.1016/j.coi.2009.09.004

    Article  CAS  Google Scholar 

  • Tschumperlin DJ, Drazen JM (2006) Chronic effects of mechanical force on airways. Annu Rev Physiol 68:563–583

    Article  CAS  Google Scholar 

  • van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL (1972) The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ 46(6):845–852

    Google Scholar 

  • Wang Y, Liang H, Jin F, Yan X, Xu G, Hu H, Liang G, Zhan S, Hu X, Zhao Q, Liu Y, Jiang Z-Y, Zhang C-Y, Chen X, Zen K (2019) Injured liver-released miRNA-122 elicits acute pulmonary inflammation via activating alveolar macrophage TLR7 signaling pathway. Proc Natl Acad Sci U S A 116(13):6162–6171. https://doi.org/10.1073/pnas.1814139116

    Article  CAS  Google Scholar 

  • Wang C, Xie J, Zhao L, Fei X, Zhang H, Tan Y, Nie X, Zhou L, Liu Z, Ren Y, Yuan L, Zhang Y, Zhang J, Liang L, Chen X, Liu X, Wang P, Han X, Weng X, Chen Y, Yu T, Zhang X, Cai J, Chen R, Shi Z-L, Bian X-W (2020) Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients. EBioMedicine 57:102833. https://doi.org/10.1016/j.ebiom.2020.102833

    Article  Google Scholar 

  • Wang J, Wang Y, Chu Y, Li Z, Yu X, Huang Z, Xu J, Zheng L (2021) Tumor-derived adenosine promotes macrophage proliferation in human hepatocellular carcinoma. J Hepatol 74(3):627–637. https://doi.org/10.1016/j.jhep.2020.10.021

    Article  CAS  Google Scholar 

  • Westphalen K, Gusarova GA, Islam MN, Subramanian M, Cohen TS, Prince AS, Bhattacharya J (2014) Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 506(7489):503–506. https://doi.org/10.1038/nature12902

    Article  CAS  Google Scholar 

  • Willis GR, Fernandez-Gonzalez A, Anastas J, Vitali SH, Liu X, Ericsson M, Kwong A, Mitsialis SA, Kourembanas S (2018) Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med 197(1):104–116. https://doi.org/10.1164/rccm.201705-0925OC

    Article  CAS  Google Scholar 

  • Wolf-Dennen K, Gordon N, Kleinerman ES (2020) Exosomal communication by metastatic osteosarcoma cells modulates alveolar macrophages to an M2 tumor-promoting phenotype and inhibits tumoricidal functions. Onco Targets Ther 9(1):1747677. https://doi.org/10.1080/2162402X.2020.1747677

    Article  Google Scholar 

  • Wu X-B, Sun H-Y, Luo Z-L, Cheng L, Duan X-M, Ren J-D (2020) Plasma-derived exosomes contribute to pancreatitis-associated lung injury by triggering NLRP3-dependent pyroptosis in alveolar macrophages. Biochim Biophys Acta Mol Basis Dis 1866(5):165685. https://doi.org/10.1016/j.bbadis.2020.165685

    Article  CAS  Google Scholar 

  • Xaus J, Comalada M, Valledor AF, Lloberas J, López-Soriano F, Argilés JM, Bogdan C, Celada A (2000) LPS induces apoptosis in macrophages mostly through the autocrine production of TNF-alpha. Blood 95(12):3823–3831

    Article  CAS  Google Scholar 

  • Xia Y, Chen S, Zeng S, Zhao Y, Zhu C, Deng B, Zhu G, Yin Y, Wang W, Hardeland R, Ren W (2019) Melatonin in macrophage biology: current understanding and future perspectives. J Pineal Res 66(2):e12547. https://doi.org/10.1111/jpi.12547

    Article  CAS  Google Scholar 

  • Yao Y, Jeyanathan M, Haddadi S, Barra NG, Vaseghi-Shanjani M, Damjanovic D, Lai R, Afkhami S, Chen Y, Dvorkin-Gheva A, Robbins CS, Schertzer JD, Xing Z (2018) Induction of autonomous memory alveolar macrophages requires T cell help and is critical to trained immunity. Cell 175(6). https://doi.org/10.1016/j.cell.2018.09.042

  • Yehualaeshet T, O'Connor R, Green-Johnson J, Mai S, Silverstein R, Murphy-Ullrich JE, Khalil N (1999) Activation of rat alveolar macrophage-derived latent transforming growth factor beta-1 by plasmin requires interaction with thrombospondin-1 and its cell surface receptor, CD36. Am J Pathol 155(3):841–851

    Article  CAS  Google Scholar 

  • Yu X, Buttgereit A, Lelios I, Utz SG, Cansever D, Becher B, Greter M (2017) The cytokine TGF-β promotes the development and homeostasis of alveolar macrophages. Immunity 47(5). https://doi.org/10.1016/j.immuni.2017.10.007

  • Zhang X, Mosser DM (2008) Macrophage activation by endogenous danger signals. J Pathol 214(2):161–178

    Article  CAS  Google Scholar 

  • Zhang L, Xia Y, Li W, Sun Y, Kong L, Xu P, Xia P, Yue J (2020) Activation of Fc gamma receptor IIb up-regulates the production of interferon-alpha and interferon-gamma in porcine alveolar macrophages during PRRSV infection. Dev Comp Immunol 109:103696. https://doi.org/10.1016/j.dci.2020.103696

    Article  CAS  Google Scholar 

  • Zhang H, Wei R, Yang X, Xu L, Jiang H, Li M, Jiang H, Zhang H, Chen Z, Qian F, Sun L (2022) AMFR drives allergic asthma development by promoting alveolar macrophage-derived GM-CSF production. J Exp Med 219(5). https://doi.org/10.1084/jem.20211828

  • Zheng L, Su J, Zhang Z, Jiang L, Wei J, Xu X, Lv S (2020) Salidroside regulates inflammatory pathway of alveolar macrophages by influencing the secretion of miRNA-146a exosomes by lung epithelial cells. Sci Rep 10(1):20750. https://doi.org/10.1038/s41598-020-77448-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 81973404) and Natural Science Foundation of Liaoning Province (2022-MS-224).

Declaration of Competing Interest

The authors declare that there are no competing interests.

Author Contributions

Conception and design: Yue Yang and Yun Wang; Writing – original draft: Yue Yang; Writing – review & editing: Yun Wang. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, Y., Wang, Y. (2022). Autocrine, Paracrine, and Endocrine Signals That Can Alter Alveolar Macrophages Function. In: Pedersen, S.H.F. (eds) Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 186. Springer, Cham. https://doi.org/10.1007/112_2022_76

Download citation

Publish with us

Policies and ethics