Skip to main content

Role of Oxytocin in Different Neuropsychiatric, Neurodegenerative, and Neurodevelopmental Disorders

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Abstract

Oxytocin has recently gained significant attention because of its role in the pathophysiology and management of dominant neuropsychiatric disorders. Oxytocin, a peptide hormone synthesized in the hypothalamus, is released into different brain regions, acting as a neurotransmitter. Receptors for oxytocin are present in many areas of the brain, including the hypothalamus, amygdala, and nucleus accumbens, which have been involved in the pathophysiology of depression, anxiety, schizophrenia, autism, Alzheimer’s disease, Parkinson’s disease, and attention deficit hyperactivity disorder. Animal studies have spotlighted the role of oxytocin in social, behavioral, pair bonding, and mother–infant bonding. Furthermore, oxytocin protects fetal neurons against injury during childbirth and affects various behaviors, assuming its possible neuroprotective characteristics. In this review, we discuss some of the concepts and mechanisms related to the role of oxytocin in the pathophysiology and management of some neuropsychiatric, neurodegenerative, and neurodevelopmental disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADHD:

Attention deficit and hyperactivity disorder

ASD:

Autism spectrum disorder

BBB:

Blood-brain barrier

CGRP:

Calcitonin gene-related peptide

CREB:

The cAMP-responsive element-binding protein

CSF:

Cerebrospinal fluid

EEG:

Electroencephalogram

eEF2:

Eukaryotic elongation factor 2

eNOS:

Endothelial NO synthase

GPCR:

G-protein-coupled receptor

IN:

Intranasal

iNOS:

Inducible nitric oxide synthase

MAPK:

Mitogen-activated protein kinase

NMDA:

N-methyl-D-aspartate

NO:

Nitric oxide

OT:

Oxytocin

OTR:

Oxytocin receptor

PANSS:

Positive and negative symptoms scale

PD:

Parkinson’s disease

PPD:

Postpartum depression

PTZ:

Pentylenetetrazole

PVN:

Paraventricular nuclei

SCZ:

Schizophrenia

SON:

Supraoptic nuclei

References

  • Alaerts K, Steyaert J et al (2021) Changes in endogenous oxytocin levels after intranasal oxytocin treatment in adult men with autism: an exploratory study with long-term follow-up. Eur Neuropsychopharmacol 43:147–152

    Article  CAS  Google Scholar 

  • Alpern L, Lyons R (1993) Chronicity and timing of maternal depressive symptoms and child behavior problems at school and at home. Dev Psychopathol 5(3):371–387

    Article  Google Scholar 

  • Anagnostou E, Soorya L et al (2014) Intranasal oxytocin in the treatment of autism spectrum disorders: a review of literature and early safety and efficacy data in youth. Brain Res 1580:188–198

    Article  CAS  Google Scholar 

  • Andari E, Duhamel JR et al (2010) Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc Natl Acad Sci U S A 107(9):4389–4394

    Article  CAS  Google Scholar 

  • Apter-Levy Y, Feldman M et al (2013) Impact of maternal depression across the first 6 years of life on the child’s mental health, social engagement, and empathy: the moderating role of oxytocin. Am J Psychiatr 170(10):1161–1168

    Article  Google Scholar 

  • Arletti R, Bertolini A (1987) Oxytocin acts as an antidepressant in two animal models of depression. Life Sci 41(14):1725–1730

    Article  CAS  Google Scholar 

  • Armstrong WE (2015) Hypothalamic supraoptic and paraventricular nuclei. The rat nervous system. Academic Press, pp 295–314

    Book  Google Scholar 

  • Averbeck B, Bobin T et al (2012) Emotion recognition and oxytocin in patients with schizophrenia. Psychol Med 42(2):259–266

    Article  CAS  Google Scholar 

  • Bachmann CG, Trenkwalder C (2006) Body weight in patients with Parkinson’s disease. Mov Disord 21(11):1824–1830

    Article  Google Scholar 

  • Bakos J, Strbak V et al (2013) Oxytocin receptor ligands induce changes in cytoskeleton in neuroblastoma cells. J Mol Neurosci 50(3):462–468

    Article  CAS  Google Scholar 

  • Bales KL, Perkeybile AM et al (2013) Chronic intranasal oxytocin causes long-term impairments in partner preference formation in male prairie voles. Biol Psychiatry 74(3):180–188

    Article  CAS  Google Scholar 

  • Banks WA (2019) The blood–brain barrier as an endocrine tissue. Nat Rev Endocrinol 15(8):444–455

    Article  CAS  Google Scholar 

  • Bartholomeusz CF, Ganella EP et al (2015) Effects of oxytocin and genetic variants on brain and behaviour: implications for treatment in schizophrenia. Schizophr Res 168(3):614–627

    Article  Google Scholar 

  • Becker S, Wojtowicz JM (2007) A model of hippocampal neurogenesis in memory and mood disorders. Trends Cogn Sci 11(2):70–76

    Article  Google Scholar 

  • Bernaerts S, Berra E et al (2016) Influence of oxytocin on emotion recognition from body language: a randomized placebo-controlled trial. Psychoneuroendocrinology 72:182–189

    Article  CAS  Google Scholar 

  • Berry A, Bellisario V et al (2012) Social deprivation stress is a triggering factor for the emergence of anxiety-and depression-like behaviours and leads to reduced brain BDNF levels in C57BL/6J mice. Psychoneuroendocrinology 37(6):762–772

    Article  CAS  Google Scholar 

  • Blume A, Bosch OJ et al (2008) Oxytocin reduces anxiety via ERK1/2 activation: local effect within the rat hypothalamic paraventricular nucleus. Eur J Neurosci 27(8):1947–1956

    Article  Google Scholar 

  • Boccia M, Petrusz P et al (2013) Immunohistochemical localization of oxytocin receptors in human brain. Neuroscience 253:155–164

    Article  CAS  Google Scholar 

  • Bolay H, Reuter U et al (2002) Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 8(2):136–142

    Article  CAS  Google Scholar 

  • Bosch OJ, Dabrowska J et al (2016) Oxytocin in the nucleus accumbens shell reverses CRFR2-evoked passive stress-coping after partner loss in monogamous male prairie voles. Psychoneuroendocrinology 64:66–78

    Article  CAS  Google Scholar 

  • Buchheim A, Heinrichs M et al (2009) Oxytocin enhances the experience of attachment security. Psychoneuroendocrinology 34(9):1417–1422

    Article  CAS  Google Scholar 

  • Busnelli M, Saulière A et al (2012) Functional selective oxytocin-derived agonists discriminate between individual G protein family subtypes. J Biol Chem 287(6):3617–3629

    Article  CAS  Google Scholar 

  • Cacciotti-Saija C, Langdon R et al (2015) A double-blind randomized controlled trial of oxytocin nasal spray and social cognition training for young people with early psychosis. Schizophr Bull 41(2):483–493

    Article  Google Scholar 

  • Calcagnoli F, Stubbendorff C et al (2015) Oxytocin microinjected into the central amygdaloid nuclei exerts anti-aggressive effects in male rats. Neuropharmacology 90:74–81

    Article  CAS  Google Scholar 

  • Caldwell H, Stephens S et al (2009) Oxytocin as a natural antipsychotic: a study using oxytocin knockout mice. Mol Psychiatry 14(2):190–196

    Article  CAS  Google Scholar 

  • Catena-Dell'Osso M, Fagiolini A et al (2013) Non-monoaminergic targets for the development of antidepressants: focus on neuropeptides. Mini-Rev Med Chem 13(1):2–10

    Article  CAS  Google Scholar 

  • Cattaneo M, Chini B et al (2008) Oxytocin stimulates migration and invasion in human endothelial cells. Br J Pharmacol 153(4):728–736

    Article  CAS  Google Scholar 

  • Chini B, Verhage M et al (2017) The action radius of oxytocin release in the mammalian CNS: from single vesicles to behavior. Trends Pharmacol Sci 38(11):982–991

    Article  CAS  Google Scholar 

  • Cho K-O, Lybrand ZR et al (2015) Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat Commun 6(1):1–13

    Article  CAS  Google Scholar 

  • Cipriani A, Geddes JR et al (2007) Metareview on short-term effectiveness and safety of antidepressants for depression: an evidence-based approach to inform clinical practice. Can J Psychiatr 52(9):553–562

    Article  Google Scholar 

  • Clarici A, Pellizzoni S et al (2015) Intranasal adminsitration of oxytocin in postnatal depression: implications for psychodynamic psychotherapy from a randomized double-blind pilot study. Front Psychol 6:426

    Article  Google Scholar 

  • Davis MC, Lee J et al (2013) Effects of single dose intranasal oxytocin on social cognition in schizophrenia. Schizophr Res 147(2-3):393–397

    Article  Google Scholar 

  • De Bartolomeis A, Fiore G et al (2005) Dopamine-glutamate interaction and antipsychotics mechanism of action: implication for new pharmacological strategies in psychosis. Curr Pharm Des 11(27):3561–3594

    Article  Google Scholar 

  • De Cagna F, Fusar-Poli L et al (2019) The role of intranasal oxytocin in anxiety and depressive disorders: a systematic review of randomized controlled trials. Clin Psychopharmacol Neurosci 17(1):1

    Article  Google Scholar 

  • De Coster L, Lin L et al (2019) Neural and behavioral effects of oxytocin administration during theory of mind in schizophrenia and controls: a randomized control trial. Neuropsychopharmacology 44(11):1925–1931

    Article  Google Scholar 

  • Del Razo RA, Berger T et al (2020) Effects of chronic intranasal oxytocin on behavior and cerebral glucose uptake in juvenile titi monkeys. Psychoneuroendocrinology 113:104494

    Article  Google Scholar 

  • Demirci E, Ozmen S et al (2016) The relationship between aggression, empathy skills and serum oxytocin levels in male children and adolescents with attention deficit and hyperactivity disorder. Behav Pharmacol 27(8):681–688

    Article  CAS  Google Scholar 

  • Devost D, Girotti M et al (2005) Oxytocin induces dephosphorylation of eukaryotic elongation factor 2 in human myometrial cells. Endocrinology 146(5):2265–2270

    Article  CAS  Google Scholar 

  • Domes G, Kumbier E et al (2014) Oxytocin promotes facial emotion recognition and amygdala reactivity in adults with Asperger syndrome. Neuropsychopharmacology 39(3):698–706

    Article  CAS  Google Scholar 

  • D'Sa C, Duman RS (2002) Antidepressants and neuroplasticity. Bipolar Disord 4(3):183–194

    Article  CAS  Google Scholar 

  • Durham PL (2004) CGRP-receptor antagonists—a fresh approach to migraine therapy? N Engl J Med 350(11):1073–1075

    Article  CAS  Google Scholar 

  • Duric V, Banasr M et al (2010) A negative regulator of MAP kinase causes depressive behavior. Nat Med 16(11):1328–1332

    Article  CAS  Google Scholar 

  • Edition F (2013) Diagnostic and statistical manual of mental disorders. Am Psychiatric Assoc 21:591–643

    Google Scholar 

  • Eliava M, Melchior M et al (2016) A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron 89(6):1291–1304

    Article  CAS  Google Scholar 

  • Erbaş O, Oltulu F et al (2012) Amelioration of rotenone-induced dopaminergic cell death in the striatum by oxytocin treatment. Peptides 38(2):312–317

    Article  Google Scholar 

  • Erbas O, Oltulu F et al (2013a) Suppression of exaggerated neuronal oscillations by oxytocin in a rat model of Parkinson’s disease. Gen Physiol Biophys 32(4):517–525

    Article  CAS  Google Scholar 

  • Erbas O, Yılmaz M et al (2013b) Oxytocin inhibits pentylentetrazol-induced seizures in the rat. Peptides 40:141–144

    Article  CAS  Google Scholar 

  • Erfanparast A, Tamaddonfard E et al (2017) Intra-hippocampal microinjection of oxytocin produced antiepileptic effect on the pentylenetetrazol-induced epilepsy in rats. Pharmacol Rep 69(4):757–763

    Article  CAS  Google Scholar 

  • Ernst C, Olson AK et al (2006) Antidepressant effects of exercise: evidence for an adult-neurogenesis hypothesis? J Psychiatry Neurosci 31(2):84–92

    Google Scholar 

  • Feeser M, Fan Y et al (2015) Oxytocin improves mentalizing–pronounced effects for individuals with attenuated ability to empathize. Psychoneuroendocrinology 53:223–232

    Article  CAS  Google Scholar 

  • Feifel D, MacDonald K et al (2010) Adjunctive intranasal oxytocin reduces symptoms in schizophrenia patients. Biol Psychiatry 68(7):678–680

    Article  CAS  Google Scholar 

  • Feifel D, Shilling PD et al (2012) The effects of oxytocin and its analog, carbetocin, on genetic deficits in sensorimotor gating. Eur Neuropsychopharmacol 22(5):374–378

    Article  CAS  Google Scholar 

  • Feifel D, Shilling PD et al (2016) A review of oxytocin’s effects on the positive, negative, and cognitive domains of schizophrenia. Biol Psychiatry 79(3):222–233

    Article  CAS  Google Scholar 

  • Ferretti V, Maltese F et al (2019) Oxytocin signaling in the central amygdala modulates emotion discrimination in mice. Curr Biol 29(12):1938-1953. e1936

    Article  Google Scholar 

  • Ford CL, Young LJ (2020) Translational opportunities for circuit-based social neuroscience: advancing 21st century psychiatry. Curr Opin Neurobiol 68:1–8

    Article  Google Scholar 

  • Fuxe K, Borroto-Escuela DO et al (2012) On the role of volume transmission and receptor–receptor interactions in social behaviour: focus on central catecholamine and oxytocin neurons. Brain Res 1476:119–131

    Article  CAS  Google Scholar 

  • Gamal-Eltrabily M, Manzano-García A (2018) Role of central oxytocin and dopamine systems in nociception and their possible interactions: suggested hypotheses. Rev Neurosci 29(4):377–386

    Article  CAS  Google Scholar 

  • Gibson CM, Penn DL et al (2014) A pilot six-week randomized controlled trial of oxytocin on social cognition and social skills in schizophrenia. Schizophr Res 156(2-3):261–265

    Article  Google Scholar 

  • Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure, function, and regulation. Physiol Rev 81(2):629–683

    Article  CAS  Google Scholar 

  • Gordon I, Jack A et al (2016) Intranasal oxytocin enhances connectivity in the neural circuitry supporting social motivation and social perception in children with autism. Sci Rep 6(1):35054

    Article  CAS  Google Scholar 

  • Graustella AJ, MacLeod C (2012) A critical review of the influence of oxytocin nasal spray on social cognition in humans: evidence and future directions. Horm Behav 61(3):410–418

    Article  CAS  Google Scholar 

  • Green L, Fein D et al (2001) Oxytocin and autistic disorder: alterations in peptide forms. Biol Psychiatry 50(8):609–613

    Article  CAS  Google Scholar 

  • Griffin GD, Ferri-Kolwicz SL et al (2010) Ovarian hormone-induced reorganization of oxytocin-labeled dendrites and synapses lateral to the hypothalamic ventromedial nucleus in female rats. J Comp Neurol 518(22):4531–4545

    Article  CAS  Google Scholar 

  • Grinevich V, Neumann ID (2020) Brain oxytocin: how puzzle stones from animal studies translate into psychiatry. Mol Psychiatry:1–15

    Google Scholar 

  • Guastella AJ, Einfeld SL et al (2010) Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol Psychiatry 67(7):692–694

    Article  CAS  Google Scholar 

  • Guoynes C, Simmons T et al (2018) Chronic intranasal oxytocin has dose-dependent effects on central oxytocin and vasopressin systems in prairie voles (Microtus ochrogaster). Neuroscience 369:292–302

    Article  CAS  Google Scholar 

  • Guze SB (1995) Diagnostic and statistical manual of mental disorders, (DSM-IV). Am J Psychiatr 152(8):1228–1228

    Article  Google Scholar 

  • Hargreaves R, Shepheard S (1999) Pathophysiology of migraine—new insights. Can J Neurol Sci 26(3):12–19

    Article  Google Scholar 

  • Hay DF, Pawlby S et al (2001) Intellectual problems shown by 11-year-old children whose mothers had postnatal depression. J Child Psychol Psychiatry Allied Discip 42(7):871–889

    Article  CAS  Google Scholar 

  • Heck AL, Sheng JA et al (2020) Social isolation alters hypothalamic pituitary adrenal axis activity after chronic variable stress in male C57BL/6 mice. Stress 23(4):457–465

    Article  CAS  Google Scholar 

  • Heise C, Taha E et al (2017) eEF2K/eEF2 pathway controls the excitation/inhibition balance and susceptibility to epileptic seizures. Cereb Cortex 27(3):2226–2248

    Google Scholar 

  • Hollander E, Novotny S et al (2003) Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger’s disorders. Neuropsychopharmacology 28(1):193–198

    Article  CAS  Google Scholar 

  • Hollander E, Bartz J et al (2007) Oxytocin increases retention of social cognition in autism. Biol Psychiatry 61(4):498–503

    Article  CAS  Google Scholar 

  • Huang H, Michetti C et al (2014) Chronic and acute intranasal oxytocin produce divergent social effects in mice. Neuropsychopharmacology 39(5):1102–1114

    Article  CAS  Google Scholar 

  • Hurlemann R, Grinevich V (2018) Behavioral pharmacology of neuropeptides: oxytocin. Springer

    Book  Google Scholar 

  • Husarova VM, Lakatosova S et al (2016) Plasma oxytocin in children with autism and its correlations with behavioral parameters in children and parents. Psychiatry Investig 13(2):174–183

    Article  CAS  Google Scholar 

  • Insel TR, Winslow JT (1991) Central administration of oxytocin modulates the infant rats response to social isolation. Eur J Pharmacol 203(1):149–152

    Article  CAS  Google Scholar 

  • Işık Ü, Bilgiç A et al (2018) Serum levels of cortisol, dehydroepiandrosterone, and oxytocin in children with attention-deficit/hyperactivity disorder combined presentation with and without comorbid conduct disorder. Psychiatry Res 261:212–219

    Article  Google Scholar 

  • Jakubovski E, Johnson JA et al (2019) Systematic review and meta-analysis: dose-response curve of SSRIs and SNRIs in anxiety disorders. Depression Anxiety 36(3):198–212

    Article  Google Scholar 

  • Jansen LM, Gispen-de Wied CC et al (2006) Autonomic and neuroendocrine responses to a psychosocial stressor in adults with autistic spectrum disorder. J Autism Dev Disord 36(7):891–899

    Article  Google Scholar 

  • Ji H, Su W et al (2016) Intranasal oxytocin administration improves depression-like behaviors in adult rats that experienced neonatal maternal deprivation. Behav Pharmacol 27(8):689–696

    Article  CAS  Google Scholar 

  • Jones P, Robinson I (1982) Differential clearance of neurophysin and neurohypophysial peptides from the cerebrospinal fluid in conscious guinea pigs. Neuroendocrinology 34(4):297–302

    Article  CAS  Google Scholar 

  • Jurek B, Slattery DA et al (2012) Differential contribution of hypothalamic MAPK activity to anxiety-like behaviour in virgin and lactating rats. PLoS One 7(5):e37060

    Article  CAS  Google Scholar 

  • Jusiak K, Brudkowska Ż et al (2017) The role of oxytocin in the pathogenesis and treatment of schizophrenia. Curr Probl Psychiatry 18(4):300–312

    Article  Google Scholar 

  • Kabilan A (2014) Pharmacological role of oxytocin-a short review. J Pharm Sci Res 6(4):220

    Google Scholar 

  • Kagerbauer SM, Martin J et al (2013) Plasma oxytocin and vasopressin do not predict neuropeptide concentrations in human cerebrospinal fluid. J Neuroendocrinol 25(7):668–673

    Article  CAS  Google Scholar 

  • Kanat M, Heinrichs M et al (2015) Oxytocin attenuates neural reactivity to masked threat cues from the eyes. Neuropsychopharmacology 40(2):287–295

    Article  CAS  Google Scholar 

  • Keverne EB, Kendrick KM (1992) Oxytocin facilitation of maternal behavior in sheep. Ann N Y Acad Sci 652(1):83–101

    Article  CAS  Google Scholar 

  • Khoshneviszadeh M, Rahimian R et al (2016) Oxytocin is involved in the proconvulsant effects of Sildenafil: possible role of CREB. Toxicol Lett 256:44–52

    Article  CAS  Google Scholar 

  • Kikusui T, Winslow JT et al (2006) Social buffering: relief from stress and anxiety. Philosophical Transact R Soc Biol Sci 361(1476):2215–2228

    Article  CAS  Google Scholar 

  • Kim S, Soeken TA et al (2014) Oxytocin and postpartum depression: delivering on what’s known and what's not. Brain Res 1580:219–232

    Article  CAS  Google Scholar 

  • King LB, Walum H et al (2016) Variation in the oxytocin receptor gene predicts brain region-specific expression and social attachment. Biol Psychiatry 80(2):160–169

    Article  CAS  Google Scholar 

  • Kiss A, Mikkelsen JD (2005) Oxytocin-anatomy and functional assignments: a minireview. Endocr Regul 39(3):97

    CAS  Google Scholar 

  • Kistner A, Lhommée E et al (2014) Mechanisms of body weight fluctuations in Parkinson’s disease. Front Neurol 5:84

    Article  Google Scholar 

  • Koch SB, van Zuiden M et al (2019) Effects of intranasal oxytocin on distraction as emotion regulation strategy in patients with post-traumatic stress disorder. Eur Neuropsychopharmacol 29(2):266–277

    Article  CAS  Google Scholar 

  • Kojić Z, Stojanović D (2013) Pathophysiology of migraine: from molecular to personalized medicine. Med Pregl 66(1-2):53–57

    Article  Google Scholar 

  • Kowa H, Nakashima K (2012) Cortical spreading depression and molecular genetics in migraine. Rinsho shinkeigaku=. Clin Neurol 52(11):1006–1008

    Google Scholar 

  • Krendl AC, Perry BL (2021) The impact of sheltering in place during the COVID-19 pandemic on older adults’ social and mental well-being. J Gerontol Series B 76(2):e53–e58

    Article  Google Scholar 

  • Labuschagne I, Phan KL et al (2010) Oxytocin attenuates amygdala reactivity to fear in generalized social anxiety disorder. Neuropsychopharmacology 35(12):2403–2413

    Article  CAS  Google Scholar 

  • Landgraf R, Neumann ID (2004) Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol 25(3-4):150–176

    Article  CAS  Google Scholar 

  • László K, Kovács A et al (2016) Positive reinforcing effect of oxytocin microinjection in the rat central nucleus of amygdala. Behav Brain Res 296:279–285

    Article  Google Scholar 

  • Lee M, Scheidweiler K et al (2018) Oxytocin by intranasal and intravenous routes reaches the cerebrospinal fluid in rhesus macaques: determination using a novel oxytocin assay. Mol Psychiatry 23(1):115–122

    Article  CAS  Google Scholar 

  • Lee PR, Brady DL et al (2005) Social interaction deficits caused by chronic phencyclidine administration are reversed by oxytocin. Neuropsychopharmacology 30(10):1883–1894

    Article  CAS  Google Scholar 

  • Leonzino M, Busnelli M et al (2016) The timing of the excitatory-to-inhibitory GABA switch is regulated by the oxytocin receptor via KCC2. Cell Rep 15(1):96–103

    Article  CAS  Google Scholar 

  • Liu W, Pappas GD et al (2005) Oxytocin receptors in brain cortical regions are reduced in haploinsufficient (+/−) reeler mice. Neurol Res 27(4):339–345

    Article  CAS  Google Scholar 

  • Liu Y, Wang Z (2003) Nucleus accumbens oxytocin and dopamine interact to regulate pair bond formation in female prairie voles. Neuroscience 121(3):537–544

    Article  CAS  Google Scholar 

  • Loup F, Tribollet E et al (1991) Localization of high-affinity binding sites for oxytocin and vasopressin in the human brain. An autoradiographic study. Brain Res 555(2):220–232

    Article  CAS  Google Scholar 

  • Ma Y, Shamay-Tsoory S et al (2016) Oxytocin and social adaptation: insights from neuroimaging studies of healthy and clinical populations. Trends Cogn Sci 20(2):133–145

    Article  Google Scholar 

  • Ma Z, Wang S-J et al (2008) Increased metabolite concentration in migraine rat model by proton MR spectroscopy in vivo and ex vivo. Neurol Sci 29(5):337–342

    Article  Google Scholar 

  • MacDonald K, Feifel D (2013) Helping oxytocin deliver: considerations in the development of oxytocin-based therapeutics for brain disorders. Front Neurosci 7:35

    Article  CAS  Google Scholar 

  • MacDonald K, MacDonald TM (2010) The peptide that binds: a systematic review of oxytocin and its prosocial effects in humans. Harv Rev Psychiatry 18(1):1–21

    Article  Google Scholar 

  • Maejima Y, Sakuma K et al (2014) Oxytocinergic circuit from paraventricular and supraoptic nuclei to arcuate POMC neurons in hypothalamus. FEBS Lett 588(23):4404–4412

    Article  CAS  Google Scholar 

  • Magon N, Kalra S (2011) The orgasmic history of oxytocin: love, lust, and labor. Indian J Endocrinol Metabol 15(Suppl3):S156

    Article  Google Scholar 

  • Malberg JE, Eisch AJ et al (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20(24):9104–9110

    Article  CAS  Google Scholar 

  • Martins D, Davies C et al (2020) Intranasal oxytocin increases heart-rate variability in men at clinical high risk for psychosis: a proof-of-concept study. Transl Psychiatry 10(1):1–12

    Article  Google Scholar 

  • Martins D, Paduraru M et al (2021) Heterogeneity in response to repeated intranasal oxytocin in schizophrenia and autism spectrum disorders: a meta-analysis of variance. Br J Pharmacol:1–19

    Google Scholar 

  • Marxreiter F, Regensburger M et al (2013) Adult neurogenesis in Parkinson’s disease. Cell Mol Life Sci 70(3):459–473

    Article  CAS  Google Scholar 

  • Matsushita H, Matsuzaki M et al (2012) Antidepressant-like effect of sildenafil through oxytocin-dependent cyclic AMP response element-binding protein phosphorylation. Neuroscience 200:13–18

    Article  CAS  Google Scholar 

  • Mayer AV, Wermter A-K et al (2021) Randomized clinical trial shows no substantial modulation of empathy-related neural activation by intranasal oxytocin in autism. Sci Rep 11(1):1–13

    Article  Google Scholar 

  • McCarthy MM (1990) Oxytocin inhibits infanticide in female house mice (Mus domesticus). Horm Behav 24(3):365–375

    Article  CAS  Google Scholar 

  • McQuaid RJ, McInnis OA et al (2014) Making room for oxytocin in understanding depression. Neurosci Biobehav Rev 45:305–322

    Article  CAS  Google Scholar 

  • Meisenberg G (1982) Short-term behavioural effects of neurohypophyseal hormones: pharmacological characteristics. Neuropharmacology 21(4):309–316

    Article  CAS  Google Scholar 

  • Melby K, Gråwe RW et al (2019) Effect of intranasal oxytocin on alcohol withdrawal syndrome: a randomized placebo-controlled double-blind clinical trial. Drug Alcohol Depend 197:95–101

    Article  CAS  Google Scholar 

  • Melby KGR, Aamo TO, Skovlund E, Spigset O (2021) Efficacy of self-administered intranasal oxytocin on alcohol use and craving after detoxification in patients with alcohol dependence. A double-blind placebo-controlled trial. Alcohol Alcohol 56(5):565–572

    Article  CAS  Google Scholar 

  • Mens WB, Witter A et al (1983) Penetration of neurohypophyseal hormones from plasma into cerebrospinal fluid (CSF): half-times of disappearance of these neuropeptides from CSF. Brain Res 262(1):143–149

    Article  CAS  Google Scholar 

  • Meyer-Lindenberg A, Domes G et al (2011) Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci 12(9):524–538

    Article  CAS  Google Scholar 

  • Modabbernia A, Rezaei F et al (2013) Intranasal oxytocin as an adjunct to risperidone in patients with schizophrenia. CNS Drugs 27(1):57–65

    Article  CAS  Google Scholar 

  • Modahl C, Green LA et al (1998) Plasma oxytocin levels in autistic children. Biol Psychiatry 43(4):270–277

    Article  CAS  Google Scholar 

  • Modi ME, Inoue K et al (2015) Melanocortin receptor agonists facilitate oxytocin-dependent partner preference formation in the prairie vole. Neuropsychopharmacology 40(8):1856–1865

    Article  CAS  Google Scholar 

  • Moore K, Hussey E et al (1997) Safety, tolerability, and pharmacokinetics of sumatriptan in healthy subjects following ascending single intranasal doses and multiple intranasal doses. Cephalalgia 17(4):541–550

    Article  CAS  Google Scholar 

  • Mottolese R, Redouté J et al (2014) Switching brain serotonin with oxytocin. Proc Natl Acad Sci 111(23):8637–8642

    Article  CAS  Google Scholar 

  • Murray L, Arteche A et al (2011) Maternal postnatal depression and the development of depression in offspring up to 16 years of age. J Am Acad Child Adolesc Psychiatry 50(5):460–470

    Article  Google Scholar 

  • O'Connor RC, Wetherall K et al (2021) Mental health and well-being during the COVID-19 pandemic: longitudinal analyses of adults in the UK COVID-19 Mental Health & Wellbeing study. Br J Psychiatry 218(6):326–333

    Article  Google Scholar 

  • Pagani M, De Felice A et al (2020) Acute and repeated intranasal oxytocin differentially modulate brain-wide functional connectivity. Neuroscience 445:83–94

    Article  CAS  Google Scholar 

  • Passoni I, Leonzino M et al (2016) Carbetocin is a functional selective Gq agonist that does not promote oxytocin receptor recycling after inducing β-Arrestin-independent internalisation. J Neuroendocrinol 28(4)

    Google Scholar 

  • Pedersen CA, Prange AJ (1979) Induction of maternal behavior in virgin rats after intracerebroventricular administration of oxytocin. Proc Natl Acad Sci 76(12):6661–6665

    Article  CAS  Google Scholar 

  • Pedersen CA, Ascher JA et al (1982) Oxytocin induces maternal behavior in virgin female rats. Science 216(4546):648–650

    Article  CAS  Google Scholar 

  • Pedersen CA, Caldwell JD et al (1994) Oxytocin activates the postpartum onset of rat maternal behavior in the ventral tegmental and medial preoptic areas. Behav Neurosci 108(6):1163

    Article  CAS  Google Scholar 

  • Peters JH, McDougall SJ et al (2008) Oxytocin enhances cranial visceral afferent synaptic transmission to the solitary tract nucleus. J Neurosci 28(45):11731–11740

    Article  CAS  Google Scholar 

  • Pincus D, Kose S et al (2010) Inverse effects of oxytocin on attributing mental activity to others in depressed and healthy subjects: a double-blind placebo controlled FMRI study. Front Psychiatry 1:134

    Article  CAS  Google Scholar 

  • Pollak TA, Drndarski S et al (2018) The blood–brain barrier in psychosis. Lancet Psychiatry 5(1):79–92

    Article  Google Scholar 

  • Quintana D, Westlye LT et al (2015) Low-dose oxytocin delivered intranasally with Breath Powered device affects social-cognitive behavior: a randomized four-way crossover trial with nasal cavity dimension assessment. Transl Psychiatry 5(7):e602–e602

    Article  CAS  Google Scholar 

  • Quintana DS, Westlye LT et al (2016) Low dose intranasal oxytocin delivered with Breath Powered device dampens amygdala response to emotional stimuli: a peripheral effect-controlled within-subjects randomized dose-response fMRI trial. Psychoneuroendocrinology 69:180–188

    Article  CAS  Google Scholar 

  • Quintana DS, Lischke A et al (2021) Advances in the field of intranasal oxytocin research: lessons learned and future directions for clinical research. Mol Psychiatry 26(1):80–91

    Article  CAS  Google Scholar 

  • Rahimian R, Khoshneviszadeh M et al (2020) Oxytocinergic system mediates the proconvulsant effects of sildenafil: the role of calcineurin. Horm Behav 122:104753

    Article  CAS  Google Scholar 

  • Reversi A, Rimoldi V et al (2005) The oxytocin receptor antagonist atosiban inhibits cell growth via a “biased agonist” mechanism. J Biol Chem 280(16):16311–16318

    Article  CAS  Google Scholar 

  • Riem MM, Van Ijzendoorn MH et al (2012) No laughing matter: intranasal oxytocin administration changes functional brain connectivity during exposure to infant laughter. Neuropsychopharmacology 37(5):1257–1266

    Article  CAS  Google Scholar 

  • Riem MM, Kunst LE et al (2020) Intranasal oxytocin enhances stress-protective effects of social support in women with negative childhood experiences during a virtual Trier social stress test. Psychoneuroendocrinology 111:104482

    Article  CAS  Google Scholar 

  • Ross AP, McCann KE et al (2019) Sex-dependent effects of social isolation on the regulation of arginine-vasopressin (AVP) V1a, oxytocin (OT) and serotonin (5HT) 1a receptor binding and aggression. Horm Behav 116:104578

    Article  CAS  Google Scholar 

  • Rung JM, Horta M et al (2021) Safety and tolerability of chronic intranasal oxytocin in older men: results from a randomized controlled trial. Psychopharmacology 238:2405–2418

    Article  CAS  Google Scholar 

  • Sabino AD, Chagas MHN et al (2020) Acute effects of oxytocin in music performance anxiety: a crossover, randomized, placebo-controlled trial. Psychopharmacology 237(6):1757–1767

    Article  CAS  Google Scholar 

  • Sances G, Granella F et al (2003) Course of migraine during pregnancy and postpartum: a prospective study. Cephalalgia 23(3):197–205

    Article  CAS  Google Scholar 

  • Sances G, Tassorelli C et al (2004) Reliability of the nitroglycerin provocative test in the diagnosis of neurovascular headaches. Cephalalgia 24(2):110–119

    Article  CAS  Google Scholar 

  • Schipper NG, Verhoef JC et al (1991) The nasal mucociliary clearance: relevance to nasal drug delivery. Pharm Res 8(7):807–814

    Article  CAS  Google Scholar 

  • Scott BW, Wojtowicz JM et al (2000) Neurogenesis in the dentate gyrus of the rat following electroconvulsive shock seizures. Exp Neurol 165(2):231–236

    Article  CAS  Google Scholar 

  • Shilling PD, Feifel D (2016) Potential of oxytocin in the treatment of schizophrenia. CNS Drugs 30(3):193–208

    Article  CAS  Google Scholar 

  • Shin MS, Ko IG et al (2010) Vardenafil enhances oxytocin expression in the paraventricular nucleus without sexual stimulation. Int Neurourol J 14(4):213

    Article  Google Scholar 

  • Sikich L, Kolevzon A et al (2021) Intranasal oxytocin in children and adolescents with autism spectrum disorder. N Engl J Med 385(16):1462–1473

    Article  CAS  Google Scholar 

  • Siu MT, Goodman SJ et al (2021) DNA Methylation of the Oxytocin Receptor Across Neurodevelopmental Disorders. J Autism Dev Disord 51:3610–3623

    Article  Google Scholar 

  • Son SJ, Filosa JA et al (2013) Dendritic peptide release mediates interpopulation crosstalk between neurosecretory and preautonomic networks. Neuron 78(6):1036–1049

    Article  CAS  Google Scholar 

  • Souza RP, Ismail P et al (2010) Variants in the oxytocin gene and risk for schizophrenia. Schizophr Res 121(1-3):279–280

    Article  Google Scholar 

  • Sun J, Nan G (2016) The mitogen-activated protein kinase (MAPK) signaling pathway as a discovery target in stroke. J Mol Neurosci 59(1):90–98

    Article  CAS  Google Scholar 

  • Sweeney MD, Sagare AP et al (2018) Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14(3):133–150

    Article  CAS  Google Scholar 

  • Tanaka A, Furubayashi T et al (2018) Delivery of oxytocin to the brain for the treatment of autism spectrum disorder by nasal application. Mol Pharm 15(3):1105–1111

    Article  CAS  Google Scholar 

  • Tomizawa K, Iga N et al (2003) Oxytocin improves long-lasting spatial memory during motherhood through MAP kinase cascade. Nat Neurosci 6(4):384–390

    Article  CAS  Google Scholar 

  • Troncy E, Morin V et al (2008) Evidence for non-linear pharmacokinetics of oxytocin in anesthetizetized rat. J Pharm Pharm Sci 11(4):12–24

    Article  Google Scholar 

  • Tsai T-Y, Tseng H-H et al (2019) The interaction of oxytocin and social support, loneliness, and cortisol level in major depression. Clin Psychopharmacol Neurosci 17(4):487

    Article  CAS  Google Scholar 

  • Tzabazis A, Kori S et al (2017) Oxytocin and migraine headache. Headache 57:64–75

    Article  Google Scholar 

  • Vacher C-M, Frétier P et al (2002) Activation by serotonin and noradrenaline of vasopressin and oxytocin expression in the mouse paraventricular and supraoptic nuclei. J Neurosci 22(5):1513–1522

    Article  CAS  Google Scholar 

  • Van Den Burg EH, Stindl J et al (2015) Oxytocin stimulates extracellular Ca 2+ influx through TRPV2 channels in hypothalamic neurons to exert its anxiolytic effects. Neuropsychopharmacology 40(13):2938–2947

    Article  Google Scholar 

  • Van Leengoed E, Kerker E et al (1987) Inhibition of post-partum maternal behaviour in the rat by injecting an oxytocin antagonist into the cerebral ventricles. J Endocrinol 112(2):275–282

    Article  Google Scholar 

  • van Zuiden M, Frijling JL et al (2017) Intranasal oxytocin to prevent posttraumatic stress disorder symptoms: a randomized controlled trial in emergency department patients. Biol Psychiatry 81(12):1030–1040

    Article  Google Scholar 

  • Veening JG, de Jong T et al (2010) Oxytocin-messages via the cerebrospinal fluid: behavioral effects; a review. Physiol Behav 101(2):193–210

    Article  CAS  Google Scholar 

  • Vrachnis N, Malamas FM et al (2011) The oxytocin-oxytocin receptor system and its antagonists as tocolytic agents. Int J Endocrinol 2011

    Google Scholar 

  • Wang Y-L, Yuan Y et al (2013) The interaction between the oxytocin and pain modulation in headache patients. Neuropeptides 47(2):93–97

    Article  CAS  Google Scholar 

  • Watanabe T, Kuroda M et al (2015) Clinical and neural effects of six-week administration of oxytocin on core symptoms of autism. Brain 138(11):3400–3412

    Article  Google Scholar 

  • Wei D, Lee D et al (2015) Endocannabinoid signaling mediates oxytocin-driven social reward. Proc Natl Acad Sci 112(45):14084–14089

    Article  CAS  Google Scholar 

  • Willmore LJ (2005) Antiepileptic drugs and neuroprotection: current status and future roles. Epilepsy Behav 7:25–28

    Article  Google Scholar 

  • Winter J, Meyer M et al (2021) Chronic oxytocin-driven alternative splicing of CRFR2α induces anxiety. Mol Psychiatry:1–14

    Google Scholar 

  • Winton-Brown TT, Fusar-Poli P et al (2014) Dopaminergic basis of salience dysregulation in psychosis. Trends Neurosci 37(2):85–94

    Article  CAS  Google Scholar 

  • Wong JC, Shapiro L et al (2021) Nanoparticle encapsulated oxytocin increases resistance to induced seizures and restores social behavior in Scn1a-derived epilepsy. Neurobiol Dis 147:105147

    Article  CAS  Google Scholar 

  • Xiao L, Priest MF et al (2017) Biased oxytocinergic modulation of midbrain dopamine systems. Neuron 95(2):368-384. e365

    Article  Google Scholar 

  • Yamasue H, Okada T et al (2020) Effect of intranasal oxytocin on the core social symptoms of autism spectrum disorder: a randomized clinical trial. Mol Psychiatry 25(8):1849–1858

    Article  CAS  Google Scholar 

  • Ye X, Shin B-C et al (2021) Developing brain glucose transporters, serotonin, serotonin transporter, and oxytocin receptor expression in response to early-life hypocaloric and hypercaloric dietary, and air pollutant exposures. Dev Neurosci 43(1):27–42

    Article  CAS  Google Scholar 

  • Yeomans DC, Hanson LR et al (2021) Nasal oxytocin for the treatment of psychiatric disorders and pain: achieving meaningful brain concentrations. Transl Psychiatry 11(1):1–10

    Article  Google Scholar 

  • Zaninetti M, Raggenbass M (2000) Oxytocin receptor agonists enhance inhibitory synaptic transmission in the rat hippocampus by activating interneurons in stratum pyramidale. Eur J Neurosci 12(11):3975–3984

    Article  CAS  Google Scholar 

  • Zhang Z, Klyachko V et al (2007) Blockade of phosphodiesterase type 5 enhances rat neurohypophysial excitability and electrically evoked oxytocin release. J Physiol 584(1):137–147

    Article  CAS  Google Scholar 

Download references

Financial Support

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of Interest

None.

Declarations of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mennatallah A. Gowayed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghazy, A.A., Soliman, O.A., Elbahnasi, A.I., Alawy, A.Y., Mansour, A.M., Gowayed, M.A. (2022). Role of Oxytocin in Different Neuropsychiatric, Neurodegenerative, and Neurodevelopmental Disorders. In: Pedersen, S.H.F. (eds) Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 186. Springer, Cham. https://doi.org/10.1007/112_2022_72

Download citation

Publish with us

Policies and ethics