Skip to main content

Role of ASIC1a in Normal and Pathological Synaptic Plasticity

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 177))

Abstract

Acid-sensing ion channels (ASICs), members of the degenerin/epithelial Na+ channel superfamily, are broadly distributed in the mammalian nervous system where they play important roles in a variety of physiological processes, including neurotransmission and memory-related behaviors. In the last few years, we and others have investigated the role of ASIC1a in different forms of synaptic plasticity especially in the CA1 area of the hippocampus. This review summarizes the latest research linking ASIC1a to synaptic function either in physiological or pathological conditions. A better understanding of how these channels are regulated in brain circuitries relevant to synaptic plasticity and memory may offer novel targets for pharmacological intervention in neuropsychiatric and neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

ASICs:

Acid-sensing ion channels

CNS:

Central nervous system

EAE:

Experimental autoimmune encephalomyelitis

EPSCs:

Excitatory post-synaptic currents

LTD:

Long-term depression

LTP:

Long-term potentiation

MS:

Multiple sclerosis

NAc:

Nucleus accumbens

NMDA:

N-methyl-D-aspartate

PcTx1:

Psalmotoxin-1

References

  • Alvarez De La Rosa D, Krueger SR, Kolar A, Shao D, Fitzsimonds RM, Canessa CM (2003) Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. J Physiol 546:77–87

    CAS  PubMed  Google Scholar 

  • Amor S, Peferoen LA, Vogel DY, Breur M, van der Valk P, Baker D, van Noort JM (2014) Inflammation in neurodegenerative diseases – an update. Immunology 142:151–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amorini AM, Nociti V, Petzold A, Gasperini C, Quartuccio E, Lazzarino G, Di Pietro V, Belli A, Signoretti S, Vagnozzi R, Lazzarino G, Tavazzi B (2014) Serum lactate as a novel potential biomarker in multiple sclerosis. Biochim Biophys Acta 1842:1137–1143

    CAS  PubMed  Google Scholar 

  • Anderson RG, Orci L (1988) A view of acidic intracellular compartments. J Cell Biol 106:539–543

    CAS  PubMed  Google Scholar 

  • Arias RL, Sung MLA, Vasylyev D, Zhang MY, Albinson K, Kubek K, Kagan N, Beyer C, Lin Q, Dwyer JM, Zaleska MM, Bowlby MR, Dunlop J, Monaghan M (2008) Amiloride is neuroprotective in an MPTP model of Parkinson’s disease. Neurobiol Dis 31:334–341

    CAS  PubMed  Google Scholar 

  • Arun T, Tomassini V, Sbardella E, de Ruiter MB, Matthews L, Leite MI, Gelineau-Morel R, Cavey A, Vergo S, Craner M, Fugger L, Rovira A, Jenkinson M, Palace J (2013) Targeting ASIC1 in primary progressive multiple sclerosis: evidence of neuroprotection with amiloride. Brain 136:106–115

    PubMed  Google Scholar 

  • Babini E, Paukert M, Geisler HS, Grunder S (2002) Alternative splicing and interaction with di- and polyvalent cations control the dynamic range of acid-sensing ion channel 1 (ASIC1). J Biol Chem 277:41597–41603

    CAS  PubMed  Google Scholar 

  • Babinski K, Le KT, Seguela P (1999) Molecular cloning and regional distribution of a human proton receptor subunit with biphasic functional properties. J Neurochem 72:51–57

    CAS  PubMed  Google Scholar 

  • Baron A, Schaefer L, Lingueglia E, Champigny G, Lazdunski M (2001) Zn2+ and H+ are coactivators of acid-sensing ion channels. J Biol Chem 276:35361–35367

    CAS  PubMed  Google Scholar 

  • Bassilana F, Champigny G, Waldmann R, de Weille JR, Heurteaux C, Lazdunski M (1997) The acid-sensitive ionic channel subunit ASIC and the mammalian degenerin MDEG form a heteromultimeric H+-gated Na+ channel with novel properties. J Biol Chem 272:28819–28822

    CAS  PubMed  Google Scholar 

  • Bässler EL, Ngo-Anh TJ, Geisler HS, Ruppersberg JP, GrĂĽnder S (2001) Molecular and functional characterization of acid-sensing ion channel (ASIC) 1b. J Biol Chem 276:33782–33787

    PubMed  Google Scholar 

  • Bermudez-Rattoni F (2004) Molecular mechanisms of taste-recognition memory. Nat Rev Neurosci 5:209–217

    CAS  PubMed  Google Scholar 

  • Bianchi L, Driscoll M (2002) Protons at the gate: DEG/ENaC ion channels help us feel and remember. Neuron 34:337–340

    CAS  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    CAS  PubMed  Google Scholar 

  • Bohlen CJ, Chesler AT, Sharif-Naeini R, Medzihradszky KF, Zhou S, King D, Sánchez EE, Burlingame AL, Basbaum AI, Julius D (2011) A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature 479:410–414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boillat A, Alijevic O, Kellenberger S (2014) Calcium entry via TRPV1 but not ASICs induces neuropeptide release from sensory neurons. Mol Cell Neurosci 61:13–22

    CAS  PubMed  Google Scholar 

  • Buta A, Maximyuk O, Kovalskyy D, Sukach V, Vovk M, Ievglevskyi O, Isaeva E, Isaev D, Savotchenko A, Krishtal O (2015) Novel potent orthosteric antagonist of ASIC1a prevents NMDAR-dependent LTP induction. J Med Chem 58:4449–4461

    CAS  PubMed  Google Scholar 

  • Chapman PF, White GL, Jones MW, Cooper-Blacketer D, Marshall VJ, Irizarry M, Younkin L, Good MA, Bliss TV, Hyman BT, Younkin SG, Hsiao KK (1999) Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci 2:271–276

    CAS  PubMed  Google Scholar 

  • Chen CC, England S, Akopian AN, Wood JN (1998) A sensory neuron-specific, proton-gated ion channel. Proc Natl Acad Sci U S A 95:10240–10245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen QS, Kagan BL, Hirakura Y, Xie CW (2000) Impairment of hippocampal long-term potentiation by Alzheimer amyloid beta-peptides. J Neurosci Res 60:65–72

    CAS  PubMed  Google Scholar 

  • Chesler M (2003) Regulation and modulation of pH in the brain. Physiol Rev 83:1183–1221

    CAS  PubMed  Google Scholar 

  • Chesler M, Kaila K (1992) Modulation of pH by neuronal activity. Trends Neurosci 15:396–402

    CAS  PubMed  Google Scholar 

  • Chiang PH, Chien TC, Chen CC, Yanagawa Y, Lien CC (2015) ASIC-dependent LTP at multiple glutamatergic synapses in amygdala network is required for fear memory. Sci Rep 15:10143

    Google Scholar 

  • Cho JH, Askwith CC (2008) Presynaptic release probability is increased in hippocampal neurons from ASIC1 knockout mice. J Neurophysiol 99:426–441

    CAS  PubMed  Google Scholar 

  • Chu XP, Xiong ZG (2012) Physiological and pathological functions of Acid-sensing ion channels in the central nervous system. Curr Drug Targets 13:263–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu XP, Wemmie JA, Wang WZ, Zhu XM, Saugstad JA, Price MP, Simon RP, Xiong ZG (2004) Subunit-dependent high-affinity zinc inhibition of acid- sensing ion channels. J Neurosci 24:8678–8689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collingridge GL, Kehl SJ, McLennan H (1983) Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol:334

    Google Scholar 

  • Coryell MW, Ziemann AE, Westmoreland PJ, Haenfler JM, Kurjakovic Z, Zha XM, Price M, Schnizler MK, Wemmie JA (2007) Targeting ASIC1a reduces innate fear and alters neuronal activity in the fear circuit. Biol Psychiatry 62:1140–1148

    CAS  PubMed  Google Scholar 

  • Coryell MW, Wunsch AM, Haenfler JM, Allen JE, Schnizler M, Ziemann AE, Cook MN, Dunning JP, Price MP, Rainier JD, Liu Z, Light AR, Langbehn DR, Wemmie JA (2009) Acid-sensing ion channel-1a in the amygdala, a novel therapeutic target in depression-related behavior. J Neurosci 29:5381–5388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Craig AD (2009) How do you feel--now? The anterior insula and human awareness. Nat Rev Neurosci 10:59–70

    CAS  PubMed  Google Scholar 

  • Damasio AR, Grabowski TJ, Bechara A, Damasio H, Ponto LL, Parvizi J, Hichwa RD (2000) Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci 3:1049–1056

    CAS  PubMed  Google Scholar 

  • Deval E, Lingueglia E (2015) Acid-sensing ion channels and nociception in the peripheral and central nervous systems. Neuropharmacology 94:49–57

    CAS  PubMed  Google Scholar 

  • Deval E, Baron A, Lingueglia E, Mazarguil H, Zajac JM, Lazdunski M (2003) Effects of neuropeptide SF and related peptides on acid sensing ion channel 3 and sensory neuron excitability. Neuropharmacology 44:662–671

    CAS  PubMed  Google Scholar 

  • Diochot S, Baron A, Salinas M, Douguet D, Scarzello S, Dabert-Gay AS, Debayle D, Friend V, Alloui A, Lazdunski M, Lingueglia E (2012) Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature 490:552–555

    CAS  PubMed  Google Scholar 

  • Du J, Reznikov LR, Price MP, Zha XM, Lu Y, Moninger TO, Wemmie JA, Welsh MJ (2014) Protons are a neurotransmitter that regulates synaptic plasticity in the lateral amygdala. Proc Natl Acad Sci U S A 111:8961–8966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duan B, Wang YZ, Yang T, Chu XP, Yu Y, Huang Y, Cao H, Hansen J, Simon RP, Zhu MX, Xiong ZG, Xu TL (2011) Extracellular spermine exac- erbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis. J Neurosci 31:2101–2112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dube GR, Elagoz A, Mangat H (2009) Acid sensing ion channels and acid nociception. Curr Pharm Des 15:1750–1766

    CAS  PubMed  Google Scholar 

  • Escoubas P, De Weille JR, Lecoq A, Diochot S, Waldmann R, Champigny G, Moinier D, MĂ©nez A, Lazdunski M (2000) Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J Biol Chem 1275:25116–25121

    Google Scholar 

  • Friese MA, Craner MJ, Etzensperger R, Vergo S, Wemmie JA, Welsh MJ, Vincent A, Fugger L (2007) Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med 13:1483–1489

    CAS  PubMed  Google Scholar 

  • Gao J, Duan B, Wang DG, Deng XH, Zhang GY, Xu L, Xu TL (2005) Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron 48:635–646

    CAS  PubMed  Google Scholar 

  • Gao S, Yu Y, Ma ZY, Sun H, Zhang YL, Wang XT et al (2015) NMDA-mediated hippocampal neuronal death is exacerbated by activities of ASIC1a. Neurotox Res 28:122–137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzales EB, Kawate T, Gouaux E (2009) Pore architecture and ion sites in acid- sensing ion channels and P2X receptors. Nature 460:599–604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gutman AL, Cosme CV, Noterman MF, Worth WR, Wemlumie JA, LaLumiere RT (2018) Overexpression of ASIC1A in the nucleus accumbens of rats potentiates cocaine-seeking behavior. Addict Biol. https://doi.org/10.1111/adb.12690

  • Hesselager M, Timmermann DB, Ahring PK (2004) pH Dependency and desensitization kinetics of heterologously expressed combinations of acid-sensing ion channel subunits. J Biol Chem 279:11006–11015

    CAS  PubMed  Google Scholar 

  • Hnasko TS, Edwards RH (2012) Neurotransmitter co-release: mechanism and physiological role. Annu Rev Physiol 74:225–243

    CAS  PubMed  Google Scholar 

  • Hu NW, Nicoll AJ, Zhang D, Mably AJ, O’Malley T, Purro SA, Terry C, Collinge J, Walsh DM, Rowanm MJ (2014) Glu5 receptors and cellular prion protein mediate amyloid-β-facilitated synaptic long-term depression in vivo. Nat Commun 4:533–574

    Google Scholar 

  • Huang Y, Jiang N, Li J, Ji YH, Xiong ZJ, Zha XM (2015) Two aspects of ASIC function: synaptic plasticity and neuronal injury. Neuropharmacology 94:42–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007) Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449:316–323

    CAS  PubMed  Google Scholar 

  • Jiang Q, Wang CM, Fibuch EE, Wang JQ, Chu XP (2013) Differential regulation of locomotor activity to acute and chronic cocaine administration by acid-sensing ion channel 1a and 2 in adult mice. Neuroscience 246:170–178

    CAS  PubMed  Google Scholar 

  • Kellenberger S, Schild L (2015) International union of basic and clinical pharmacology. XCI. structure, function, and pharmacology of acid-sensing ion channels and the epithelial Na+ channel. Pharmacol Rev 67:1–35

    PubMed  Google Scholar 

  • Kim Y, Trussell LO (2009) Negative shift in the glycine reversal potential mediated by a Ca2+- and pH-dependent mechanism in interneurons. J Neurosci 29:11495–11510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kleyman TR, Cragoe EJ Jr (1988) Amiloride and its analogs as tools in the study of ion transport. J Membr Biol 105:1–21

    CAS  PubMed  Google Scholar 

  • Kourrich S, Rothwell PE, Klug JR, Thomas MJ (2007) Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. J Neurosci 27:7921–7928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krauson AJ, Rooney JG, Carattino MD (2018) Molecular basis of inhibition of acid sensing ion channel 1A by diminazene. PLoS One 13(5):e0196894

    PubMed  PubMed Central  Google Scholar 

  • Kreple CJ, Lu Y, Taugher RJ, Schwager-Gutman AL, Du J, Stump M, Wang Y, Ghobbeh A, Fan R, Cosme CV, Sowers LP, Welsh MJ, Radley JJ, LaLumiere RT, Wemmie JA (2014) Acid-sensing ion channels contribute to synaptic transmission and inhibit cocaine-evoked plasticity. Nat Neurosci 17:1083–1091

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krishtal O (2003) The ASICs: signaling molecules? Modulators? Trends Neurosci 26:477–483

    CAS  PubMed  Google Scholar 

  • Krishtal OA, Pidoplichko VI (1981a) Receptor for protons in the membrane of sensory neurons. Brain Res 214:150–154

    CAS  PubMed  Google Scholar 

  • Krishtal OA, Pidoplichko VI (1981b) A receptor for protons in the membrane of sensory neurons may participate in nociception. Neuroscience 6:2599–2601

    CAS  PubMed  Google Scholar 

  • Li WG, Liu MG, Deng S, Liu YM, Shang L, Ding J, Hsu TT, Jiang Q, Li Y, Li F, Zhu MX, Xu TL (2016) ASIC1a regulates insular long-term depression and is required for the extinction of conditioned taste aversion. Nat Commun 7:7–13770

    Google Scholar 

  • Li HS, Su XY, Song XL, Qi X, Li Y, Wang RQ, Maximyuk O, Krishtal O, Wang T, Fang H, Liao L, Cao H, Zhang YQ, Zhu MX, Liu MG, Xu TL (2019) Protein kinase C lambda mediates acid-sensing ion channel 1a-dependent cortical synaptic plasticity and pain hypersensitivity. J Neurosci 39:5773–5793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Edwards RH (1997) The role of vesicular transport proteins in synaptic transmission and neural degeneration. Annu Rev Neurosci 20:125–156

    CAS  PubMed  Google Scholar 

  • Liu MG, Li HS, Li WG, Wu YJ, Deng SN, Huang C, Maximyuk O, Sukach V, Krishtal O, Zhu MX, Xu TL (2016) Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms. Sci Rep 21:6–23350

    CAS  Google Scholar 

  • Lv RJ, He JS, Fu YH, Zhang YQ, Shao XQ, Wu LW, Lu Q, Jin LR, Liu H (2011) ASIC1a polymorphism is associated with temporal lobe epilepsy. Epilepsy Res 96:74–80

    CAS  PubMed  Google Scholar 

  • Ma CL, Sun H, Yang L, Wang XT, Gao S, Chen XW, Ma ZY, Wang GH, Shi Z, Zheng QY (2019) Acid-sensing ion channel 1a modulates NMDA receptor function through targeting NR1/NR2A/NR2B triheteromeric receptors. Neuroscience 406:389–404

    CAS  PubMed  Google Scholar 

  • Magnotta VA, Heo HY, Dlouhy BJ, Dahdaleh NS, Follmer RL, Thedens DR, Welsh MJ, Wemmie JA (2012) Detecting activity evoked pH changes in human brain. Proc Natl Acad Sci U S A 109:8270–8273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mango D, Nisticò R (2018) Role of ASIC1a in Aβ-induced synaptic alterations in the hippocampus. Pharmacol Res 131:61–65

    CAS  PubMed  Google Scholar 

  • Mango D, Nisticò R (2019) Acid-sensing ion channel 1a is involved in N-methyl D-aspartate receptor-dependent long-term depression in the hippocampus. Front Pharmacol 10:555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mango D, Barbato G, Piccirilli S, Panico MB, Feligioni M, Schepisi C, Graziani M, Porrini V, Benarese M, Lanzillotta A, Pizzi M, Pieraccini S, Sironi M, Blandini F, Nicoletti F, Mercuri NB, Imbimbo BP, Nisticò R (2014) Electrophysiological and metabolic effects of CHF5074 in the hippocampus: protection against in vitro ischemia. Pharmacol Res 81:83–90

    CAS  PubMed  Google Scholar 

  • Mango D, Braksator E, Battaglia G, Marcelli S, Mercuri NB, Feligioni M, Nicoletti F, Bashir ZI, Nisticò R (2017) Acid-sensing ion channel 1a is required for mGlu receptor dependent long-term depression in the hippocampus. Pharmacol Res 119:12–19

    CAS  PubMed  Google Scholar 

  • Mango D, Saidi A, Cisale GY, Feligioni M, Corbo M, Nisticò R (2019) Targeting synaptic plasticity in experimental models of Alzheimer’s disease. Front Pharmacol 10:778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    CAS  PubMed  Google Scholar 

  • Munro G, Christensen JK, Erichsen HK, Dyhring T, Demnitz J, Dam E, Ahring PK (2016) NS383 selectively inhibits acid-sensing ion channels containing 1a and 3 subunits to reverse inflammatory and neuropathic hyperalgesia in rats. CNS Neurosci Ther 22:135–145

    CAS  PubMed  Google Scholar 

  • Nagaeva EI, Tikhonova TB, Magazanik LG, Tikhonov DB (2016) Histamine selectively potentiates acid-sensing ion channel 1a. Neurosci Lett 632:136–140

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (2012) The insular cortex: a review. Prog Brain Res 195:123–163

    PubMed  Google Scholar 

  • Nisticò R, Salter E, Nicolas C, Feligioni M, Mango D, Bortolotto ZA, Gressens P, Collingridge GL, Peineau S (2017) Synaptoimmunology – roles in health and disease. Mol Brain 10:26

    PubMed  PubMed Central  Google Scholar 

  • Noel J, Salinas M, Baron A, Diochot S, Deval E, Lingueglia E (2010) Current perspectives on acid-sensing ion channels: new advances and therapeutic implications. Expert Rev Clin Pharmacol 3:331–346

    CAS  PubMed  Google Scholar 

  • Olesen AE, Nielsen LM, Larsen IM, Drewes AM (2015) Randomized clinical trial: efficacy and safety of PPC-5650 on experimental esophageal pain and hyperalgesia in healthy volunteer. Scand J Gastroenterol 50:138–144

    CAS  PubMed  Google Scholar 

  • Palmer MJ, Hull C, Vigh J, von Gersdorff H (2003) Synaptic cleft acidification and modulation of short-term depression by exocytosed protons in retinal bipolar cells. J Neurosci 23:11332–11341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poirot O, Berta T, Decosterd I, Kellenberger S (2006) Distinct ASIC currents are expressed in rat putative nociceptors and are modulated by nerve injury. J Physiol 576:215–234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Price MP, Snyder PM, Welsh MJ (1996) Cloning and expression of a novel human brain Na+ channel. J Biol Chem 271:7879–7882

    CAS  PubMed  Google Scholar 

  • Price MP, Gong H, Parsons MG, Kundert JR, Reznikov LR, Bernardinelli L, Chaloner K, Buchanan GF, Wemmie JA, Richerson GB, Cassell MD, Welsh MJ (2014) Localization and behaviors in null mice suggest that ASIC1 and ASIC2 modulate responses to aversive stimuli. Genes Brain Behav 13:179–194

    CAS  PubMed  Google Scholar 

  • Qiang M, Dong X, Zha Z, Zuo XK, Song XL, Zhao L, Yuan C, Huang C, Tao P, Hu H, Li WG, Hu W, Li J, Nie Y, Buratto D, Zonta F, Ma P, Zi Y, Liu L, Zhang Y, Yang B, Xie J, Xu TL, Qu Z, Yang G, Lerner R (2018) Selection of an ASIC1a-blocking combinatorial antibody that protects cells from ischemic death. Proc Natl Acad Sci U S A 115:7469–7477

    Google Scholar 

  • Qiu S, Chen T, Koga K, Guo YY, Xu H, Song Q, Wang JJ, Descalzi G, Kaang BK, Luo JH, Zhuo M, Zhao MG (2013) An increase in synaptic NMDA receptors in the insular cortex contributes to neuropathic pain. Sci Signal 6:34

    Google Scholar 

  • Qiu S, Zhang M, Liu Y, Guo Y, Zhao H, Song Q, Zhao M, Huganir RL, Luo J, Xu H, Zhuo M (2014) GluA1 phosphorylation contributes to postsynaptic amplification of neuropathic pain in the insular cortex. J Neurosci 34:13505–13515

    PubMed  PubMed Central  Google Scholar 

  • Quintana P, Soto D, Poirot O, Zonouzi M, Kellenberger S, Muller D, Chrast R, Cull-Candy SG (2015) Acid-sensing ion channel 1a drives AMPA receptor plasticity following ischaemia and acidosis in hippocampal CA1 neurons. J Physiol 593:4373–4386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenblum K, Berman DE, Hazvi S, Lamprecht R, Dudai Y (1997) NMDA receptor and the tyrosine phosphorylation of its 2B subunit in taste learning in the rat insular cortex. J Neurosci 17:5129–5135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schild L, Schneeberger E, Gautschi I, Firsov D (1997) Identification of amino acid residues in the alpha, beta, and gamma subunits of the epithelial sodium channel (ENaC) involved in amiloride block and ion permeation. J Gen Physiol 109:15–26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    CAS  PubMed  Google Scholar 

  • Shteinikov VY, Korosteleva A, Tikhonova TB, Potapieva NN, Tikhonov DB (2017) Ligands of histamine receptors modulate acid-sensing ion channels. Biochem Biophys Res Commun 490:1314–1318

    CAS  PubMed  Google Scholar 

  • Sluka KA, Winter OC, Wemmie JA (2009) Acid-sensing ion channels: a new target for pain and CNS diseases. Curr Opin Drug Discov Devel 12:693–704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suman A, Mehta B, Guo ML, Chu XP, Fibuch EE, Mao LM, Wang JQ (2010) Alterations in subcellular expression of acid-sensing ion channels in the rat forebrain following chronic amphetamine administration. Neurosci Res 68:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trapp S, LĂĽckermann M, Kaila KA, Ballanyi K (1996) Acidosis of hippocampal neurones mediated by a plasmalemmal Ca2+/H+ pump. Neuroreport 7:2000–2004

    CAS  PubMed  Google Scholar 

  • Varga E, Juhász G, BozsĂł Z, Penke B, FĂĽlöp L, Szegedi V (2015) Amyloid-β1-42 disrupts synaptic plasticity by altering glutamate recycling at the synapse. J Alzheimers Dis 45:449–456

    CAS  PubMed  Google Scholar 

  • Vergo S, Craner MJ, Etzensperger R, Attfield K, Friese MA, Newcombe J, Esiri M, Fugger L (2011) Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model. Brain 5:571–584

    Google Scholar 

  • Voilley N, de Weille J, Mamet J, Lazdunski M (2001) Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci 21:8026–8033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vukicevic M, Kellenberger S (2004) Modulatory effects of acid-sensing ion channels on action potential generation in hippocampal neurons. Am J Physiol Cell Physiol 287:682–690

    Google Scholar 

  • Waldmann R, Lazdunski M (1998) H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol 8:418–424

    CAS  PubMed  Google Scholar 

  • Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M (1997) A proton-gated cation channel involved in acid-sensing. Nature 386:173–177

    CAS  PubMed  Google Scholar 

  • Wang Q, Wang Q, Song XL, Jiang Q, Wu YJ, Li Y, Yuan TF, Zhang S, Xu NJ, Zhu MX, Li WJ, Xu TL (2018) Fear extinction requires ASIC1a-dependent regulation of hippocampal-prefrontal correlates. Sci Adv 4:3075

    Google Scholar 

  • Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, Yoder PG, Lamani E, Hoshi T, Freeman JH Jr, Welsh MJ (2002) The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34:463–477

    CAS  PubMed  Google Scholar 

  • Wemmie JA, Askwith CC, Lamani E, Cassell MD, Freeman JH Jr, Welsh MJ (2003) Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J Neurosci 23:5496–5502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wemmie JA, Coryell MW, Askwith CC, Lamani E, Leonard AS, Sigmund CD, Welsh MJ (2004) Over- expression of acid-sensing ion channel 1a in transgenic mice increases acquired fear-related behavior. Proc Natl Acad Sci U S A 101:3621–3626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong HK, Bauer PO, Kurosawa M, Goswami A, Washizu C, Machida Y, Tosaki A, Yamada M, Knöpfel T, Nakamura T, Nukina N (2008) Blocking acid-sensing ion channel 1 alleviates Huntington’s disease pathology via an ubiquitin-proteasome system-dependent mechanism. Hum Mol Genet 17:3223–3235

    CAS  PubMed  Google Scholar 

  • Wu PY, Huang YY, Chen CC, Hsu TT, Lin YC, Weng JY, Chien TC, Cheng IH, Lien CC (2013) Acid-sensing ion channel-1a is not required for normal hippocampal LTP and spatial memory. J Neurosci 33:1828–1832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang-ming Z, Wemmie JA, Green SH, Welsh MJ (2006) Acid-sensing ion channel 1a is a postsynaptic proton receptor that affects the density of dendritic spines. Proc Natl Acad Sci U S A 103:16556–16561

    Google Scholar 

  • Yu Z, Wu YJ, Wang YZ, Liu DS, Song XL, Jiang Q, Li Y, Zhang S, Xu NJ, Zhu MX, Li WG, Xu TL (2018) The acid-sensing ion channel ASIC1a mediates striatal synapse remodeling and procedural motor learning. Sci Signal 11:4481

    Google Scholar 

  • Zaaraoui W, Rico A, Audoin Reuter B, Malikova I, Soulier E, Viout P, Le Fur Y, Confort-Gouny S, Cozzone PJ, Pellettier J, Ranjeva JP (2010) Unfolding the long-term pathophysiological processes following an acute inflammatory demyelinating lesion of multiple sclerosis. Magn Reson Imaging 28:477–486

    CAS  PubMed  Google Scholar 

  • Zha X-m, Wemmie JA, Green SH, Welsh MJ (2006) Acid-sensing ion channel 1a is a postsynaptic proton receptor that affects the density of dendritic spines. Proc Natl Acad Sci U S A 103:16556–16561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang GC, Mao LM, Wang JQ, Chu XP (2009) Upregulation of acid-sensing ion channel 1 protein expression by chronic administration of cocaine in the mouse striatum in vivo. Neurosci Lett 459:119–122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang RJ, Yin YF, Xie XJ, Gu HF (2020) Acid-sensing ion channels: linking extracellular acidification with atherosclerosis. Clin Chim Acta 502:183–190

    CAS  PubMed  Google Scholar 

  • Ziemann AE, Schnizler MK, Albert GW, Severson MA, Howard MA, Welsh MJ, Wemmie JA (2008) Seizure termination by acidosis depends on ASIC1a. Nat Neurosci 11:816–822

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Contributions

DM conceived the idea and prepared the manuscript, RN prepared the manuscript and reviewed the drafts. All authors contributed to the writing and final approval of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mango, D., Nisticò, R. (2020). Role of ASIC1a in Normal and Pathological Synaptic Plasticity. In: Pedersen, S.H.F. (eds) Reviews of Physiology, Biochemistry and Pharmacology . Reviews of Physiology, Biochemistry and Pharmacology, vol 177. Springer, Cham. https://doi.org/10.1007/112_2020_45

Download citation

Publish with us

Policies and ethics