Gaseous Signaling Molecules in Cardiovascular Function: From Mechanisms to Clinical Translation

  • Sung Ryul Lee
  • Bernd Nilius
  • Jin HanEmail author
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 174)


Carbon monoxide (CO), hydrogen sulfide (H2S), and nitric oxide (NO) constitute endogenous gaseous molecules produced by specific enzymes. These gases are chemically simple, but exert multiple effects and act through shared molecular targets to control both physiology and pathophysiology in the cardiovascular system (CVS). The gases act via direct and/or indirect interactions with each other in proteins such as heme-containing enzymes, the mitochondrial respiratory complex, and ion channels, among others. Studies of the major impacts of CO, H2S, and NO on the CVS have revealed their involvement in controlling blood pressure and in reducing cardiac reperfusion injuries, although their functional roles are not limited to these conditions. In this review, the basic aspects of CO, H2S, and NO, including their production and effects on enzymes, mitochondrial respiration and biogenesis, and ion channels are briefly addressed to provide insight into their biology with respect to the CVS. Finally, potential therapeutic applications of CO, H2S, and NO with the CVS are addressed, based on the use of exogenous donors and different types of delivery systems.


Carbon monoxide Cardiovascular Hydrogen sulfide Ion channel Mitochondria Nitric oxide Translational medicine 



The authors apologize for the vast number of outstanding publications that could not be cited owing to space limitations. This work was supported by the Priority Research Centers Program (2010-0020224) and the Basic Science Research Program (2015R1A2A1A13001900 and 2015R1D1A3A01015596) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology.

Conflicts of Interest

The authors declare that there are no conflicts of interest.


  1. Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071PubMedCrossRefGoogle Scholar
  2. Acin-Perez R, Fernandez-Silva P, Peleato ML, Perez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32:529–539PubMedCrossRefGoogle Scholar
  3. Akbarali HI, Kang M (2015) Postranslational modification of ion channels in colonic inflammation. Curr Neuropharmacol 13:234–238PubMedPubMedCentralCrossRefGoogle Scholar
  4. Akrouh A, Halcomb SE, Nichols CG, Sala-Rabanal M (2009) Molecular biology of K(ATP) channels and implications for health and disease. IUBMB Life 61:971–978PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alexander SP, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Catterall WA, Spedding M, Peters JA, Harmar AJ (2013) The concise guide to pharmacology 2013/14: ion channels. Br J Pharmacol 170:1607–1651PubMedPubMedCentralCrossRefGoogle Scholar
  6. Algalarrondo V, Nattel S (2016) Potassium channel remodeling in heart disease. Card Electrophysiol Clin 8:337–347PubMedCrossRefGoogle Scholar
  7. Allen BW, Stamler JS, Piantadosi CA (2009) Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation. Trends Mol Med 15:452–460PubMedPubMedCentralCrossRefGoogle Scholar
  8. Al-Magableh MR, Kemp-Harper BK, Hart JL (2015) Hydrogen sulfide treatment reduces blood pressure and oxidative stress in angiotensin II-induced hypertensive mice. Hypertens Res 38:13–20PubMedCrossRefGoogle Scholar
  9. Almeida AS, Figueiredo-Pereira C, Vieira HL (2015) Carbon monoxide and mitochondria-modulation of cell metabolism, redox response and cell death. Front Physiol 6:33PubMedPubMedCentralCrossRefGoogle Scholar
  10. Alonso-Carbajo L, Kecskes M, Jacobs G, Pironet A, Syam N, Talavera K, Vennekens R (2017) Muscling in on TRP channels in vascular smooth muscle cells and cardiomyocytes. Cell Calcium 66:48–61PubMedCrossRefGoogle Scholar
  11. Amin AS, Tan HL, Wilde AA (2010) Cardiac ion channels in health and disease. Heart Rhythm 7:117–126PubMedCrossRefGoogle Scholar
  12. Anand P, Stamler JS (2012) Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease. J Mol Med (Berl) 90:233–244CrossRefGoogle Scholar
  13. Andersen ME, Clewell HJ 3rd, Mahle DA, Gearhart JM (1994) Gas uptake studies of deuterium isotope effects on dichloromethane metabolism in female B6C3F1 mice in vivo. Toxicol Appl Pharmacol 128:158–165PubMedCrossRefGoogle Scholar
  14. Andreadou I, Iliodromitis EK, Rassaf T, Schulz R, Papapetropoulos A, Ferdinandy P (2015) The role of gasotransmitters NO, H2S and CO in myocardial ischaemia/reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. Br J Pharmacol 172:1587–1606PubMedCrossRefGoogle Scholar
  15. Andrei SR, Sinharoy P, Bratz IN, Damron DS (2016) TRPA1 is functionally co-expressed with TRPV1 in cardiac muscle: co-localization at z-discs, costameres and intercalated discs. Channels 10:395–409PubMedPubMedCentralCrossRefGoogle Scholar
  16. Ash-Bernal R, Wise R, Wright SM (2004) Acquired methemoglobinemia: a retrospective series of 138 cases at 2 teaching hospitals. Medicine 83:265–273PubMedCrossRefGoogle Scholar
  17. Asimakopoulou A, Panopoulos P, Chasapis CT, Coletta C, Zhou Z, Cirino G, Giannis A, Szabo C, Spyroulias GA, Papapetropoulos A (2013) Selectivity of commonly used pharmacological inhibitors for cystathionine β synthase (CBS) and cystathionine γ lyase (CSE). Br J Pharmacol 169:922–932PubMedPubMedCentralCrossRefGoogle Scholar
  18. Avanzato D, Merlino A, Porrera S, Wang R, Munaron L, Mancardi D (2014) Role of calcium channels in the protective effect of hydrogen sulfide in rat cardiomyoblasts. Cell Physiol Biochem 33:1205–1214PubMedCrossRefGoogle Scholar
  19. Babot M, Birch A, Labarbuta P, Galkin A (2014) Characterisation of the active/de-active transition of mitochondrial complex I. Biochim Biophys Acta 1837:1083–1092PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bai CX, Namekata I, Kurokawa J, Tanaka H, Shigenobu K, Furukawa T (2005) Role of nitric oxide in Ca2+ sensitivity of the slowly activating delayed rectifier K+ current in cardiac myocytes. Circ Res 96:64–72PubMedCrossRefGoogle Scholar
  21. Balakumar P, Kathuria S, Taneja G, Kalra S, Mahadevan N (2012) Is targeting eNOS a key mechanistic insight of cardiovascular defensive potentials of statins? J Mol Cell Cardiol 52:83–92PubMedCrossRefGoogle Scholar
  22. Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, Kobeissi ZA, Hobai IA, Lemmon CA, Burnett AL, O'Rourke B, Rodriguez ER, Huang PL, Lima JA, Berkowitz DE, Hare JM (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416:337–339PubMedCrossRefGoogle Scholar
  23. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  24. Basudhar D, Ridnour LA, Cheng R, Kesarwala AH, Heinecke J, Wink DA (2016) Biological signaling by small inorganic molecules. Coord Chem Rev 306:708–723PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bathoorn E, Slebos DJ, Postma DS, Koeter GH, van Oosterhout AJ, van der Toorn M, Boezen HM, Kerstjens HA (2007) Anti-inflammatory effects of inhaled carbon monoxide in patients with COPD: a pilot study. Eur Respir J 30:1131–1137PubMedCrossRefGoogle Scholar
  26. Belikova NA, Vladimirov YA, Osipov AN, Kapralov AA, Tyurin VA, Potapovich MV, Basova LV, Peterson J, Kurnikov IV, Kagan VE (2006) Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes. Biochemistry 45:4998–5009PubMedPubMedCentralCrossRefGoogle Scholar
  27. Beltowski J (2015) Hydrogen sulfide in pharmacology and medicine – an update. Pharmacol Rep 67:647–658PubMedCrossRefGoogle Scholar
  28. Beltowski J, Jamroz-Wisniewska A (2014) Hydrogen sulfide and endothelium-dependent vasorelaxation. Molecules 19:21183–21199PubMedCrossRefGoogle Scholar
  29. Bendall JK, Douglas G, McNeill E, Channon KM, Crabtree MJ (2014) Tetrahydrobiopterin in cardiovascular health and disease. Antioxid Redox Signal 20:3040–3077PubMedPubMedCentralCrossRefGoogle Scholar
  30. Benoit G, Cooney A, Giguere V, Ingraham H, Lazar M, Muscat G, Perlmann T, Renaud JP, Schwabe J, Sladek F, Tsai MJ, Laudet V (2006) International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev 58:798–836PubMedCrossRefGoogle Scholar
  31. Bianco CL, Toscano JP, Bartberger MD, Fukuto JM (2017) The chemical biology of HNO signaling. Arch Biochem Biophys 617:129–136PubMedCrossRefGoogle Scholar
  32. Bilban M, Haschemi A, Wegiel B, Chin BY, Wagner O, Otterbein LE (2008) Heme oxygenase and carbon monoxide initiate homeostatic signaling. J Mol Med (Berl) 86:267–279CrossRefGoogle Scholar
  33. Blackstone E, Morrison M, Roth MB (2005) H2S induces a suspended animation-like state in mice. Science 308:518PubMedCrossRefGoogle Scholar
  34. Boczkowski J, Poderoso JJ, Motterlini R (2006) CO–metal interaction: vital signaling from a lethal gas. Trends Biochem Sci 31:614–621PubMedCrossRefGoogle Scholar
  35. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368:850–853PubMedCrossRefGoogle Scholar
  36. Bouillaud F, Blachier F (2011) Mitochondria and sulfide: a very old story of poisoning, feeding, and signaling? Antioxid Redox Signal 15:379–391PubMedCrossRefGoogle Scholar
  37. Boycott HE, Dallas ML, Elies J, Pettinger L, Boyle JP, Scragg JL, Gamper N, Peers C (2013) Carbon monoxide inhibition of Cav3.2 T-type Ca2+ channels reveals tonic modulation by thioredoxin. FASEB J 27:3395–3407PubMedCrossRefGoogle Scholar
  38. Brahimi-Horn MC, Pouyssegur J (2007) Oxygen, a source of life and stress. FEBS Lett 581:3582–3591PubMedCrossRefGoogle Scholar
  39. Bredt DS (2003) Nitric oxide signaling specificity – the heart of the problem. J Cell Sci 116:9–15PubMedCrossRefGoogle Scholar
  40. Brookes PS (2005) Mitochondrial H(+) leak and ROS generation: an odd couple. Free Radic Biol Med 38:12–23PubMedCrossRefGoogle Scholar
  41. Burger DE, Lu X, Lei M, Xiang FL, Hammoud L, Jiang M, Wang H, Jones DL, Sims SM, Feng Q (2009) Neuronal nitric oxide synthase protects against myocardial infarction-induced ventricular arrhythmia and mortality in mice. Circulation 120:1345–1354PubMedCrossRefGoogle Scholar
  42. Burwell LS, Brookes PS (2008) Mitochondria as a target for the cardioprotective effects of nitric oxide in ischemia-reperfusion injury. Antioxid Redox Signal 10:579–599PubMedCrossRefGoogle Scholar
  43. Burwell LS, Nadtochiy SM, Tompkins AJ, Young S, Brookes PS (2006) Direct evidence for S-nitrosation of mitochondrial complex I. Biochem J 394:627–634PubMedPubMedCentralCrossRefGoogle Scholar
  44. Burwell LS, Nadtochiy SM, Brookes PS (2009) Cardioprotection by metabolic shut-down and gradual wake-up. J Mol Cell Cardiol 46:804–810PubMedPubMedCentralCrossRefGoogle Scholar
  45. Buys E, Sips P (2014) New insights into the role of soluble guanylate cyclase in blood pressure regulation. Curr Opin Nephrol Hypertens 23:135–142PubMedPubMedCentralCrossRefGoogle Scholar
  46. Cacanyiova S, Berenyiova A, Kristek F (2016a) The role of hydrogen sulphide in blood pressure regulation. Physiol Res 65:S273–s289PubMedGoogle Scholar
  47. Cacanyiova S, Berenyiova A, Kristek F, Drobna M, Ondrias K, Grman M (2016b) The adaptive role of nitric oxide and hydrogen sulphide in vasoactive responses of thoracic aorta is triggered already in young spontaneously hypertensive rats. J Physiol Pharmacol 67:501–512PubMedGoogle Scholar
  48. Calvert JW, Lefer DJ (2010) Clinical translation of nitrite therapy for cardiovascular diseases. Nitric Oxide 22:91–97PubMedCrossRefGoogle Scholar
  49. Campbell DL, Stamler JS, Strauss HC (1996) Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol 108:277–293PubMedCrossRefGoogle Scholar
  50. Campuzano O, Beltran-Alvarez P, Iglesias A, Scornik F, Perez G, Brugada R (2010) Genetics and cardiac channelopathies. Genet Med 12:260–267PubMedCrossRefGoogle Scholar
  51. Carpenter AW, Schoenfisch MH (2012) Nitric oxide release part II. Therapeutic applications. Chem Soc Rev 41:3742–3752PubMedPubMedCentralCrossRefGoogle Scholar
  52. Carter RN, Morton NM (2016) Cysteine and hydrogen sulphide in the regulation of metabolism: insights from genetics and pharmacology. J Pathol 238:321–332PubMedCrossRefGoogle Scholar
  53. Cary SP, Winger JA, Marletta MA (2005) Tonic and acute nitric oxide signaling through soluble guanylate cyclase is mediated by nonheme nitric oxide, ATP, and GTP. Proc Natl Acad Sci U S A 102:13064–13069PubMedPubMedCentralCrossRefGoogle Scholar
  54. Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316PubMedCrossRefGoogle Scholar
  55. Cattaruzza M, Hecker M (2008) Protein carbonylation and decarboylation: a new twist to the complex response of vascular cells to oxidative stress. Circ Res 102:273–274PubMedCrossRefGoogle Scholar
  56. Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555PubMedCrossRefGoogle Scholar
  57. Cebova M, Kosutova M, Pechanova O (2016) Cardiovascular effects of gasotransmitter donors. Physiol Res 65:S291–s307PubMedGoogle Scholar
  58. Chatzianastasiou A, Bibli SI, Andreadou I, Efentakis P, Kaludercic N, Wood ME, Whiteman M, Di Lisa F, Daiber A, Manolopoulos VG, Szabo C, Papapetropoulos A (2016) Cardioprotection by H2S donors: nitric oxide-dependent and independent mechanisms. J Pharmacol Exp Ther 358:431–440PubMedCrossRefGoogle Scholar
  59. Chaudhary KR, El-Sikhry H, Seubert JM (2011) Mitochondria and the aging heart. J Geriatr Cardiol 8:159–167PubMedPubMedCentralCrossRefGoogle Scholar
  60. Chen Q, Camara AK, Stowe DF, Hoppel CL, Lesnefsky EJ (2007) Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am J Physiol Cell Physiol 292:C137–C147PubMedCrossRefGoogle Scholar
  61. Chen YY, Chu HM, Pan KT, Teng CH, Wang DL, Wang AH, Khoo KH, Meng TC (2008) Cysteine S-nitrosylation protects protein-tyrosine phosphatase 1B against oxidation-induced permanent inactivation. J Biol Chem 283:35265–35272PubMedPubMedCentralCrossRefGoogle Scholar
  62. Chen J, Gao J, Sun W, Li L, Wang Y, Bai S, Li X, Wang R, Wu L, Li H, Xu C (2016) Involvement of exogenous H2S in recovery of cardioprotection from ischemic post-conditioning via increase of autophagy in the aged hearts. Int J Cardiol 220:681–692PubMedCrossRefGoogle Scholar
  63. Chevalier M, Gilbert G, Roux E, Lory P, Marthan R, Savineau JP, Quignard JF (2014) T-type calcium channels are involved in hypoxic pulmonary hypertension. Cardiovasc Res 103:597–606PubMedCrossRefGoogle Scholar
  64. Clark JE, Naughton P, Shurey S, Green CJ, Johnson TR, Mann BE, Foresti R, Motterlini R (2003) Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. Circ Res 93:e2–e8PubMedCrossRefGoogle Scholar
  65. Clayton DA (1991) Replication and transcription of vertebrate mitochondrial DNA. Annu Rev Cell Biol 7:453–478PubMedCrossRefGoogle Scholar
  66. Coburn RF, Williams WJ, Kahn SB (1966) Endogenous carbon monoxide production in patients with hemolytic anemia. J Clin Invest 45:460–468PubMedPubMedCentralCrossRefGoogle Scholar
  67. Cohen MV, Yang XM, Downey JM (2006) Nitric oxide is a preconditioning mimetic and cardioprotectant and is the basis of many available infarct-sparing strategies. Cardiovasc Res 70:231–239PubMedCrossRefGoogle Scholar
  68. Coletta C, Papapetropoulos A, Erdelyi K, Olah G, Modis K, Panopoulos P, Asimakopoulou A, Gero D, Sharina I, Martin E, Szabo C (2012a) Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci U S A 109:9161–9166PubMedPubMedCentralCrossRefGoogle Scholar
  69. Coletta C, Papapetropoulos A, Erdelyi K, Olah G, Módis K, Panopoulos P, Asimakopoulou A, Gerö D, Sharina I, Martin E, Szabo C (2012b) Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci 109:9161–9166PubMedPubMedCentralCrossRefGoogle Scholar
  70. Cooper CE, Brown GC (2008) The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenerg Biomembr 40:533–539PubMedCrossRefGoogle Scholar
  71. Cooper CE, Giulivi C (2007) Nitric oxide regulation of mitochondrial oxygen consumption II: molecular mechanism and tissue physiology. Am J Physiol Cell Physiol 292:C1993–C2003PubMedCrossRefGoogle Scholar
  72. Cooper GJ, Zhou Y, Bouyer P, Grichtchenko II, Boron WF (2002) Transport of volatile solutes through AQP1. J Physiol 542:17–29PubMedPubMedCentralCrossRefGoogle Scholar
  73. Cordes CM, Bennett RG, Siford GL, Hamel FG (2009) Nitric oxide inhibits insulin-degrading enzyme activity and function through S-nitrosylation. Biochem Pharmacol 77:1064–1073PubMedCrossRefGoogle Scholar
  74. Cortese-Krott MM, Fernandez BO, Kelm M, Butler AR, Feelisch M (2015) On the chemical biology of the nitrite/sulfide interaction. Nitric Oxide 46:14–24PubMedCrossRefGoogle Scholar
  75. da Cunha FM, Torelli NQ, Kowaltowski AJ (2015) Mitochondrial retrograde signaling: triggers, pathways, and outcomes. Oxidative Med Cell Longev 2015:482582CrossRefGoogle Scholar
  76. Dahm CC, Moore K, Murphy MP (2006) Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria. J Biol Chem 281:10056–10065PubMedCrossRefGoogle Scholar
  77. Daiber A, Munzel T (2015) Organic nitrate therapy, nitrate tolerance, and nitrate-induced endothelial dysfunction: emphasis on redox biology and oxidative stress. Antioxid Redox Signal 23:899–942PubMedPubMedCentralCrossRefGoogle Scholar
  78. Dallas ML, Boyle JP, Milligan CJ, Sayer R, Kerrigan TL, McKinstry C, Lu P, Mankouri J, Harris M, Scragg JL, Pearson HA, Peers C (2011) Carbon monoxide protects against oxidant-induced apoptosis via inhibition of Kv2.1. FASEB J 25:1519–1530PubMedCrossRefGoogle Scholar
  79. Dallas ML, Yang Z, Boyle JP, Boycott HE, Scragg JL, Milligan CJ, Elies J, Duke A, Thireau J, Reboul C, Richard S, Bernus O, Steele DS, Peers C (2012) Carbon monoxide induces cardiac arrhythmia via induction of the late Na+ current. Am J Respir Crit Care Med 186:648–656PubMedPubMedCentralCrossRefGoogle Scholar
  80. Dampney RA (1994) Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 74:323–364PubMedCrossRefGoogle Scholar
  81. Derbyshire ER, Marletta MA (2012) Structure and regulation of soluble guanylate cyclase. Annu Rev Biochem 81:533–559PubMedCrossRefGoogle Scholar
  82. Di Lisa F, Bernardi P (2015) Modulation of mitochondrial permeability transition in ischemia-reperfusion injury of the heart. Advantages and limitations. Curr Med Chem 22:2480–2487PubMedCrossRefGoogle Scholar
  83. Di Lisa F, Canton M, Menabo R, Kaludercic N, Bernardi P (2007) Mitochondria and cardioprotection. Heart Fail Rev 12:249–260PubMedCrossRefGoogle Scholar
  84. Diaz F, Moraes CT (2008) Mitochondrial biogenesis and turnover. Cell Calcium 44:24–35PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ding Y, McCoubrey WK Jr, Maines MD (1999) Interaction of heme oxygenase-2 with nitric oxide donors. Is the oxygenase an intracellular “sink” for NO? Eur J Biochem 264:854–861PubMedCrossRefGoogle Scholar
  86. Dioum EM, Rutter J, Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA, SL MK (2002) NPAS2: a gas-responsive transcription factor. Science 298:2385–2387PubMedCrossRefGoogle Scholar
  87. Dong DL, Zhang Y, Lin DH, Chen J, Patschan S, Goligorsky MS, Nasjletti A, Yang BF, Wang WH (2007) Carbon monoxide stimulates the Ca2(+)-activated big conductance k channels in cultured human endothelial cells. Hypertension 50:643–651PubMedCrossRefGoogle Scholar
  88. Dorsey P, Keel C, Klavens M, Hellstrom WJ (2010) Phosphodiesterase type 5 (PDE5) inhibitors for the treatment of erectile dysfunction. Expert Opin Pharmacother 11:1109–1122PubMedCrossRefGoogle Scholar
  89. Drose S, Stepanova A, Galkin A (2016) Ischemic A/D transition of mitochondrial complex I and its role in ROS generation. Biochim Biophys Acta 1857:946–957PubMedPubMedCentralCrossRefGoogle Scholar
  90. Du J, Yan H, Tang C (2003) Endogenous H2S is involved in the development of spontaneous hypertension. Beijing Da Xue Xue Bao 35:102PubMedGoogle Scholar
  91. Dugbartey GJ (2016) Diabetic nephropathy: a potential savior with “rotten-egg” smell. Pharmacol Rep 69:331–339PubMedCrossRefGoogle Scholar
  92. Earley S (2012) TRPA1 channels in the vasculature. Br J Pharmacol 167:13–22PubMedPubMedCentralCrossRefGoogle Scholar
  93. Eberhardt M, Dux M, Namer B, Miljkovic J, Cordasic N, Will C, Kichko TI, de la Roche J, Fischer M, Suarez SA, Bikiel D, Dorsch K, Leffler A, Babes A, Lampert A, Lennerz JK, Jacobi J, Marti MA, Doctorovich F, Hogestatt ED, Zygmunt PM, Ivanovic-Burmazovic I, Messlinger K, Reeh P, Filipovic MR (2014) H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway. Nat Commun 5:4381PubMedPubMedCentralCrossRefGoogle Scholar
  94. Elies J, Scragg JL, Huang S, Dallas ML, Huang D, MacDougall D, Boyle JP, Gamper N, Peers C (2014) Hydrogen sulfide inhibits Cav3.2 T-type Ca2+ channels. FASEB J 28:5376–5387PubMedCrossRefGoogle Scholar
  95. Elies J, Scragg JL, Boyle JP, Gamper N, Peers C (2016) Regulation of the T-type Ca(2+) channel Cav3.2 by hydrogen sulfide: emerging controversies concerning the role of H2S in nociception. J Physiol 594:4119–4129PubMedPubMedCentralCrossRefGoogle Scholar
  96. Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L, Jiao X, Scalia R, Kiss L, Szabo C, Kimura H, Chow CW, Lefer DJ (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A 104:15560–15565PubMedPubMedCentralCrossRefGoogle Scholar
  97. Enokido Y, Suzuki E, Iwasawa K, Namekata K, Okazawa H, Kimura H (2005) Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J 19:1854–1856PubMedCrossRefGoogle Scholar
  98. Ertuna E, Loot AE, Fleming I, Yetik-Anacak G (2017) The role of eNOS on the compensatory regulation of vascular tonus by H2S in mouse carotid arteries. Nitric Oxide 69:45–50PubMedCrossRefGoogle Scholar
  99. Ewing JF, Raju VS, Maines MD (1994) Induction of heart heme oxygenase-1 (HSP32) by hyperthermia: possible role in stress-mediated elevation of cyclic 3′:5′-guanosine monophosphate. J Pharmacol Exp Ther 271:408–414PubMedGoogle Scholar
  100. Fang L, Zhao J, Chen Y, Ma T, Xu G, Tang C, Liu X, Geng B (2009) Hydrogen sulfide derived from periadventitial adipose tissue is a vasodilator. J Hypertens 27:2174–2185PubMedCrossRefGoogle Scholar
  101. Farrugia G, Szurszewski JH (2014) Carbon monoxide, hydrogen sulfide, and nitric oxide as signaling molecules in the gastrointestinal tract. Gastroenterology 147:303–313PubMedPubMedCentralCrossRefGoogle Scholar
  102. Fayad-Kobeissi S, Ratovonantenaina J, Dabire H, Wilson JL, Rodriguez AM, Berdeaux A, Dubois-Rande JL, Mann BE, Motterlini R, Foresti R (2016) Vascular and angiogenic activities of CORM-401, an oxidant-sensitive CO-releasing molecule. Biochem Pharmacol 102:64–77PubMedCrossRefGoogle Scholar
  103. Feelisch M, Schonafinger K, Noack E (1992) Thiol-mediated generation of nitric oxide accounts for the vasodilator action of furoxans. Biochem Pharmacol 44:1149–1157PubMedCrossRefGoogle Scholar
  104. Fernandez-Falgueras A, Sarquella-Brugada G, Brugada J, Brugada R, Campuzano O (2017) Cardiac channelopathies and sudden death: recent clinical and genetic advances. Biology 6PubMedCentralCrossRefGoogle Scholar
  105. Ferreira R (2010) The reduction of infarct size – forty years of research. Rev Port Cardiol 29:1037–1053PubMedGoogle Scholar
  106. Filipovic MR, Eberhardt M, Prokopovic V, Mijuskovic A, Orescanin-Dusic Z, Reeh P, Ivanovic-Burmazovic I (2013) Beyond H2S and NO interplay: hydrogen sulfide and nitroprusside react directly to give nitroxyl (HNO). A new pharmacological source of HNO. J Med Chem 56:1499–1508PubMedCrossRefGoogle Scholar
  107. Fink B, Bassenge E (1997) Unexpected, tolerance-devoid vasomotor and platelet actions of pentaerythrityl tetranitrate. J Cardiovasc Pharmacol 30:831–836PubMedCrossRefGoogle Scholar
  108. Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257:387–389PubMedCrossRefGoogle Scholar
  109. Finsterer J, Kothari S (2014) Cardiac manifestations of primary mitochondrial disorders. Int J Cardiol 177:754–763PubMedCrossRefGoogle Scholar
  110. Fowler B (2005) Homocystein – an independent risk factor for cardiovascular and thrombotic diseases. Ther Umsch 62:641–646PubMedCrossRefGoogle Scholar
  111. Francis SH, Busch JL, Corbin JD, Sibley D (2010) cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 62:525–563PubMedPubMedCentralCrossRefGoogle Scholar
  112. Frey N, Katus HA, Olson EN, Hill JA (2004) Hypertrophy of the heart: a new therapeutic target? Circulation 109:1580–1589PubMedCrossRefGoogle Scholar
  113. Gao L, Cheng C, Sparatore A, Zhang H, Wang C (2015) Hydrogen sulfide inhibits human platelet aggregation in vitro in part by interfering gap junction channels: effects of ACS14, a hydrogen sulfide-releasing aspirin. Heart Lung Circ 24:77–85PubMedCrossRefGoogle Scholar
  114. Garbers DL, Chrisman TD, Wiegn P, Katafuchi T, Albanesi JP, Bielinski V, Barylko B, Redfield MM, Burnett JC Jr (2006) Membrane guanylyl cyclase receptors: an update. Trends Endocrinol Metab 17:251–258PubMedPubMedCentralCrossRefGoogle Scholar
  115. Ge Y, Moss RL (2012) Nitroxyl, redox switches, cardiac myofilaments, and heart failure: a prequel to novel therapeutics? Circ Res 111:954–956PubMedPubMedCentralCrossRefGoogle Scholar
  116. Geng B, Yang J, Qi Y, Zhao J, Pang Y, Du J, Tang C (2004a) H2S generated by heart in rat and its effects on cardiac function. Biochem Biophys Res Commun 313:362–368PubMedCrossRefGoogle Scholar
  117. Geng B, Chang L, Pan C, Qi Y, Zhao J, Pang Y, Du J, Tang C (2004b) Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem Biophys Res Commun 318:756–763PubMedCrossRefGoogle Scholar
  118. Ghosh S, Gal J, Marczin N (2010) Carbon monoxide: endogenous mediator, potential diagnostic and therapeutic target. Ann Med 42:1–12PubMedCrossRefGoogle Scholar
  119. Grabellus F, Schmid C, Levkau B, Breukelmann D, Halloran PF, August C, Takeda N, Takeda A, Wilhelm M, Deng MC, Baba HA (2002) Reduction of hypoxia-inducible heme oxygenase-1 in the myocardium after left ventricular mechanical support. J Pathol 197:230–237PubMedCrossRefGoogle Scholar
  120. Greiner R, Palinkas Z, Basell K, Becher D, Antelmann H, Nagy P, Dick TP (2013) Polysulfides link H2S to protein thiol oxidation. Antioxid Redox Signal 19:1749–1765PubMedPubMedCentralCrossRefGoogle Scholar
  121. Griscavage JM, Fukuto JM, Komori Y, Ignarro LJ (1994) Nitric oxide inhibits neuronal nitric oxide synthase by interacting with the heme prosthetic group. Role of tetrahydrobiopterin in modulating the inhibitory action of nitric oxide. J Biol Chem 269:21644–21649PubMedGoogle Scholar
  122. Gunasekar PG, Prabhakaran K, Li L, Zhang L, Isom GE, Borowitz JL (2004) Receptor mechanisms mediating cyanide generation in PC12 cells and rat brain. Neurosci Res 49:13–18PubMedCrossRefGoogle Scholar
  123. Guo JP, Milhoan KA, Tuan RS, Lefer AM (1994) Beneficial effect of SPM-5185, a cysteine-containing nitric oxide donor, in rat carotid artery intimal injury. Circ Res 75:77–84PubMedCrossRefGoogle Scholar
  124. Hara MR, Snyder SH (2006) Nitric oxide-GAPDH-Siah: a novel cell death cascade. Cell Mol Neurobiol 26:527–538PubMedCrossRefGoogle Scholar
  125. Hare JM (2003) Nitric oxide and excitation-contraction coupling. J Mol Cell Cardiol 35:719–729PubMedCrossRefGoogle Scholar
  126. Hare GM, Tsui AK, Crawford JH, Patel RP (2013) Is methemoglobin an inert bystander, biomarker or a mediator of oxidative stress – the example of anemia? Redox Biol 1:65–69PubMedPubMedCentralCrossRefGoogle Scholar
  127. Harteneck C, Plant TD, Schultz G (2000) From worm to man: three subfamilies of TRP channels. Trends Neurosci 23:159–166PubMedCrossRefGoogle Scholar
  128. Hartsfield CL (2002) Cross talk between carbon monoxide and nitric oxide. Antioxid Redox Signal 4:301–307PubMedCrossRefGoogle Scholar
  129. Hartsfield CL, Alam J, Cook JL, Choi AM (1997) Regulation of heme oxygenase-1 gene expression in vascular smooth muscle cells by nitric oxide. Am J Phys 273:L980–L988Google Scholar
  130. Hassall CJ, Hoyle CH (1997) Heme oxygenase-2 and nitric oxide synthase in guinea-pig intracardiac neurones. Neuroreport 8:1043–1046PubMedCrossRefGoogle Scholar
  131. Hayashi S, Omata Y, Sakamoto H, Higashimoto Y, Hara T, Sagara Y, Noguchi M (2004) Characterization of rat heme oxygenase-3 gene. Implication of processed pseudogenes derived from heme oxygenase-2 gene. Gene 336:241–250PubMedCrossRefGoogle Scholar
  132. Hayashida R, Kondo K, Morita S, Unno K, Shintani S, Shimizu Y, Calvert JW, Shibata R, Murohara T (2017) Diallyl trisulfide augments ischemia-induced angiogenesis via an endothelial nitric oxide synthase-dependent mechanism. Circ J 81:870–878PubMedCrossRefGoogle Scholar
  133. Heales SJ, Bolanos JP, Stewart VC, Brookes PS, Land JM, Clark JB (1999) Nitric oxide, mitochondria and neurological disease. Biochim Biophys Acta 1410:215–228PubMedCrossRefGoogle Scholar
  134. Heine CL, Schmidt R, Geckl K, Schrammel A, Gesslbauer B, Schmidt K, Mayer B, Gorren AC (2015) Selective irreversible inhibition of neuronal and inducible nitric-oxide synthase in the combined presence of hydrogen sulfide and nitric oxide. J Biol Chem 290:24932–24944PubMedPubMedCentralCrossRefGoogle Scholar
  135. Heneberg P (2014) Reactive nitrogen species and hydrogen sulfide as regulators of protein tyrosine phosphatase activity. Antioxid Redox Signal 20:2191–2209PubMedPubMedCentralCrossRefGoogle Scholar
  136. Hinkel R, Lange P, Petersen B, Gottlieb E, Ng JK, Finger S, Horstkotte J, Lee S, Thormann M, Knorr M, El-Aouni C, Boekstegers P, Reichart B, Wenzel P, Niemann H, Kupatt C (2015) Heme oxygenase-1 gene therapy provides cardioprotection via control of post-ischemic inflammation: an experimental study in a pre-clinical pig model. J Am Coll Cardiol 66:154–165PubMedCrossRefGoogle Scholar
  137. Hishiki T, Yamamoto T, Morikawa T, Kubo A, Kajimura M, Suematsu M (2012) Carbon monoxide: impact on remethylation/transsulfuration metabolism and its pathophysiologic implications. J Mol Med (Berl) 90:245–254CrossRefGoogle Scholar
  138. Ho JJ, Man HS, Marsden PA (2012) Nitric oxide signaling in hypoxia. J Mol Med (Berl) 90:217–231CrossRefGoogle Scholar
  139. Hoffmann LS, Chen HH (2014) cGMP: transition from bench to bedside: a report of the 6th international conference on cGMP generators, effectors and therapeutic implications. Naunyn Schmiedeberg's Arch Pharmacol 387:707–718CrossRefGoogle Scholar
  140. Hom J, Sheu SS (2009) Morphological dynamics of mitochondria – a special emphasis on cardiac muscle cells. J Mol Cell Cardiol 46:811–820PubMedPubMedCentralCrossRefGoogle Scholar
  141. Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527–531PubMedCrossRefGoogle Scholar
  142. Hsu MF, Meng TC (2010) Enhancement of insulin responsiveness by nitric oxide-mediated inactivation of protein-tyrosine phosphatases. J Biol Chem 285:7919–7928PubMedPubMedCentralCrossRefGoogle Scholar
  143. Hua W, Chen Q, Gong F, Xie C, Zhou S, Gao L (2013) Cardioprotection of H2S by downregulating iNOS and upregulating HO-1 expression in mice with CVB3-induced myocarditis. Life Sci 93:949–954PubMedCrossRefGoogle Scholar
  144. Huang P, Chen S, Wang Y, Liu J, Yao Q, Huang Y, Li H, Zhu M, Wang S, Li L, Tang C, Tao Y, Yang G, Du J, Jin H, Down-regulated CBS (2015) H2S pathway is involved in high-salt-induced hypertension in Dahl rats. Nitric Oxide 46:192–203PubMedCrossRefGoogle Scholar
  145. Humphries ES, Dart C (2015) Neuronal and cardiovascular potassium channels as therapeutic drug targets: promise and pitfalls. J Biomol Screen 20:1055–1073PubMedPubMedCentralCrossRefGoogle Scholar
  146. Iciek M, Kowalczyk-Pachel D, Bilska-Wilkosz A, Kwiecien I, Gorny M, Wlodek L (2015) S-sulfhydration as a cellular redox regulation. Biosci Rep 36. pii: e00304PubMedCrossRefGoogle Scholar
  147. Iglesias DE, Bombicino SS, Valdez LB, Boveris A (2015) Nitric oxide interacts with mitochondrial complex III producing antimycin-like effects. Free Radic Biol Med 89:602–613PubMedCrossRefGoogle Scholar
  148. Immenschuh S, Baumgart-Vogt E, Tan M, Iwahara S, Ramadori G, Fahimi HD (2003) Differential cellular and subcellular localization of heme-binding protein 23/peroxiredoxin I and heme oxygenase-1 in rat liver. J Histochem Cytochem 51:1621–1631PubMedCrossRefGoogle Scholar
  149. Ishigami M, Hiraki K, Umemura K, Ogasawara Y, Ishii K, Kimura H (2009) A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid Redox Signal 11:205–214PubMedCrossRefGoogle Scholar
  150. Ishii I, Akahoshi N, XN Y, Kobayashi Y, Namekata K, Komaki G, Kimura H (2004) Murine cystathionine gamma-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression. Biochem J 381:113–123PubMedPubMedCentralCrossRefGoogle Scholar
  151. Ishii I, Akahoshi N, Yamada H, Nakano S, Izumi T, Suematsu M (2010) Cystathionine gamma-Lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury. J Biol Chem 285:26358–26368PubMedPubMedCentralCrossRefGoogle Scholar
  152. Jacobson JR (2009) Statins in endothelial signaling and activation. Antioxid Redox Signal 11:811–821PubMedCrossRefGoogle Scholar
  153. Jaggar JH, Li A, Parfenova H, Liu J, Umstot ES, Dopico AM, Leffler CW (2005) Heme is a carbon monoxide receptor for large-conductance Ca2+−activated K+ channels. Circ Res 97:805–812PubMedPubMedCentralCrossRefGoogle Scholar
  154. Jain SK, Bull R, Rains JL, Bass PF, Levine SN, Reddy S, McVie R, Bocchini JA (2010) Low levels of hydrogen sulfide in the blood of diabetes patients and streptozotocin-treated rats causes vascular inflammation? Antioxid Redox Signal 12:1333–1337PubMedPubMedCentralCrossRefGoogle Scholar
  155. Jarosz AP, Wei W, Gauld JW, Auld J, Ozcan F, Aslan M, Mutus B (2015) Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is inactivated by S-sulfuration in vitro. Free Radic Biol Med 89:512–521PubMedCrossRefGoogle Scholar
  156. Jennings ML (2013) Transport of H2S and HS(−) across the human red blood cell membrane: rapid H2S diffusion and AE1-mediated Cl(−)/HS(−) exchange. Am J Physiol Cell Physiol 305:C941–C950PubMedPubMedCentralCrossRefGoogle Scholar
  157. Ji X, Zhou C, Ji K, Aghoghovbia RE, Pan Z, Chittavong V, Ke B, Wang B (2016) Click and release: a chemical strategy toward developing gasotransmitter prodrugs by using an intramolecular Diels-Alder reaction. Angew Chem Int Ed 55:15846–15851CrossRefGoogle Scholar
  158. Johnson RA, Lavesa M, DeSeyn K, Scholer MJ, Nasjletti A (1996) Heme oxygenase substrates acutely lower blood pressure in hypertensive rats. Am J Phys 271:H1132–H1138Google Scholar
  159. Jugdutt BI (1994) Use of nitroglycerin for the treatment of acute myocardial infarction. Heart Vessel 9:3–13CrossRefGoogle Scholar
  160. Kabil O, Yadav V, Banerjee R (2016) Heme-dependent metabolite switching regulates H2S synthesis in response to endoplasmic reticulum (ER) stress. J Biol Chem 291:16418–16423PubMedPubMedCentralCrossRefGoogle Scholar
  161. Kaczara P, Motterlini R, Rosen GM, Augustynek B, Bednarczyk P, Szewczyk A, Foresti R, Chlopicki S (2015) Carbon monoxide released by CORM-401 uncouples mitochondrial respiration and inhibits glycolysis in endothelial cells: A role for mitoBKCa channels. Biochim Biophys Acta 1847:1297–1309PubMedCrossRefGoogle Scholar
  162. Kajimura M, Fukuda R, Bateman RM, Yamamoto T, Suematsu M (2010) Interactions of multiple gas-transducing systems: hallmarks and uncertainties of CO, NO, and H2S gas biology. Antioxid Redox Signal 13:157–192PubMedPubMedCentralCrossRefGoogle Scholar
  163. Kamoun P, Belardinelli MC, Chabli A, Lallouchi K, Chadefaux-Vekemans B (2003) Endogenous hydrogen sulfide overproduction in down syndrome. Am J Med Genet A 116a:310–311PubMedCrossRefGoogle Scholar
  164. Kanai A, Epperly M, Pearce L, Birder L, Zeidel M, Meyers S, Greenberger J, de Groat W, Apodaca G, Peterson J (2004) Differing roles of mitochondrial nitric oxide synthase in cardiomyocytes and urothelial cells. Am J Physiol Heart Circ Physiol 286:H13–H21PubMedCrossRefGoogle Scholar
  165. Kaniak-Golik A, Skoneczna A (2015) Mitochondria-nucleus network for genome stability. Free Radic Biol Med 82:73–104PubMedCrossRefGoogle Scholar
  166. Kashfi K, Olson KR (2013) Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. Biochem Pharmacol 85:689–703PubMedCrossRefGoogle Scholar
  167. Kawano T, Zoga V, Kimura M, Liang MY, HE W, Gemes G, McCallum JB, Kwok WM, Hogan QH, Sarantopoulos CD (2009) Nitric oxide activates ATP-sensitive potassium channels in mammalian sensory neurons: action by direct S-nitrosylation. Mol Pain 5:1744–8069CrossRefGoogle Scholar
  168. Keef KD, Hume JR, Zhong J (2001) Regulation of cardiac and smooth muscle Ca(2+) channels (Ca(V)1.2a,b) by protein kinases. Am J Physiol Cell Physiol 281:C1743–C1756PubMedCrossRefGoogle Scholar
  169. Kevil CG, Patel RP (2010) S-nitrosothiol biology and therapeutic potential in metabolic disease. Curr Opin Investig Drugs 11:1127–1134PubMedPubMedCentralGoogle Scholar
  170. Kida M, Sugiyama T, Yoshimoto T, Ogawa Y (2013) Hydrogen sulfide increases nitric oxide production with calcium-dependent activation of endothelial nitric oxide synthase in endothelial cells. Eur J Pharm Sci 48:211–215PubMedCrossRefGoogle Scholar
  171. Kim JB (2014) Channelopathies. Korean J Pediatr 57:1–18PubMedPubMedCentralCrossRefGoogle Scholar
  172. Kim HP, Ryter SW, Choi AM (2006) CO as a cellular signaling molecule. Annu Rev Pharmacol Toxicol 46:411–449PubMedCrossRefGoogle Scholar
  173. Kimura H (2014) The physiological role of hydrogen sulfide and beyond. Nitric Oxide 41:4–10PubMedCrossRefGoogle Scholar
  174. Kimura H (2016) Hydrogen polysulfide (H2S n ) signaling along with hydrogen sulfide (H2S) and nitric oxide (NO). J Neural Transm (Vienna) 123:1235–1245CrossRefGoogle Scholar
  175. Kina-Tanada M, Sakanashi M, Tanimoto A, Kaname T, Matsuzaki T, Noguchi K, Uchida T, Nakasone J, Kozuka C, Ishida M, Kubota H, Taira Y, Totsuka Y, Kina SI, Sunakawa H, Omura J, Satoh K, Shimokawa H, Yanagihara N, Maeda S, Ohya Y, Matsushita M, Masuzaki H, Arasaki A, Tsutsui M (2017) Long-term dietary nitrite and nitrate deficiency causes the metabolic syndrome, endothelial dysfunction and cardiovascular death in mice. Diabetologia 60(6):1138–1151PubMedCrossRefGoogle Scholar
  176. Knecht KR, Milam S, Wilkinson DA, Fedinec AL, Leffler CW (2010) Time-dependent action of carbon monoxide on the newborn cerebrovascular circulation. Am J Physiol Heart Circ Physiol 299:H70–H75PubMedPubMedCentralCrossRefGoogle Scholar
  177. Kohlhaas M, Nickel AG, Bergem S, Casadei B, Laufs U, Maack C (2017) Endogenous nitric oxide formation in cardiac myocytes does not control respiration during beta-adrenergic stimulation. J Physiol 595:3781–3798PubMedCrossRefPubMedCentralGoogle Scholar
  178. Kokkinos P (2014) Cardiorespiratory fitness, exercise, and blood pressure. Hypertension 64:1160–1164PubMedCrossRefGoogle Scholar
  179. Kolluru GK, Prasai PK, Kaskas AM, Letchuman V, Pattillo CB (2016) Oxygen tension, H2S, and NO bioavailability: is there an interaction? J Appl Physiol 120:263–270PubMedCrossRefGoogle Scholar
  180. Kondo K, Bhushan S, King AL, Prabhu SD, Hamid T, Koenig S, Murohara T, Predmore BL, Gojon G Sr, Gojon G Jr, Wang R, Karusula N, Nicholson CK, Calvert JW, Lefer DJ (2013) H(2)S protects against pressure overload-induced heart failure via upregulation of endothelial nitric oxide synthase. Circulation 127:1116–1127PubMedPubMedCentralCrossRefGoogle Scholar
  181. Koppen M, Langer T (2007) Protein degradation within mitochondria: versatile activities of AAA proteases and other peptidases. Crit Rev Biochem Mol Biol 42:221–242PubMedCrossRefGoogle Scholar
  182. Kovick RB, Tillisch JH, Berens SC, Bramowitz AD, Shine KI (1976) Vasodilator therapy for chronic left ventricular failure. Circulation 53:322–328PubMedCrossRefGoogle Scholar
  183. Kozai D, Sakaguchi R, Ohwada T, Mori Y (2015) Deciphering subtype-selective modulations in TRPA1 biosensor channels. Curr Neuropharmacol 13:266–278PubMedPubMedCentralCrossRefGoogle Scholar
  184. Kubo S, Doe I, Kurokawa Y, Nishikawa H, Kawabata A (2007) Direct inhibition of endothelial nitric oxide synthase by hydrogen sulfide: contribution to dual modulation of vascular tension. Toxicology 232:138–146PubMedCrossRefGoogle Scholar
  185. Kuo IY, Howitt L, Sandow SL, McFarlane A, Hansen PB, Hill CE (2014) Role of T-type channels in vasomotor function: team player or chameleon? Pflugers Arch 466:767–779PubMedCrossRefGoogle Scholar
  186. Kyle BD, Braun AP (2014) The regulation of BK channel activity by pre- and post-translational modifications. Front Physiol 5:316PubMedPubMedCentralCrossRefGoogle Scholar
  187. Laggner H, Hermann M, Esterbauer H, Muellner MK, Exner M, Gmeiner BM, Kapiotis S (2007) The novel gaseous vasorelaxant hydrogen sulfide inhibits angiotensin-converting enzyme activity of endothelial cells. J Hypertens 25:2100–2104PubMedCrossRefGoogle Scholar
  188. Lancaster JR Jr (2006) Nitroxidative, nitrosative, and nitrative stress: kinetic predictions of reactive nitrogen species chemistry under biological conditions. Chem Res Toxicol 19:1160–1174PubMedCrossRefGoogle Scholar
  189. Lancel S, Hassoun SM, Favory R, Decoster B, Motterlini R, Neviere R (2009) Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. J Pharmacol Exp Ther 329:641–648PubMedCrossRefGoogle Scholar
  190. Lang JD Jr, Teng X, Chumley P, Crawford JH, Isbell TS, Chacko BK, Liu Y, Jhala N, Crowe DR, Smith AB, Cross RC, Frenette L, Kelley EE, Wilhite DW, Hall CR, Page GP, Fallon MB, Bynon JS, Eckhoff DE, Patel RP (2007) Inhaled NO accelerates restoration of liver function in adults following orthotopic liver transplantation. J Clin Invest 117:2583–2591PubMedPubMedCentralCrossRefGoogle Scholar
  191. Lee SR, Han J (2017) Mitochondrial metabolic inhibition and cardioprotection. Korean Circ J 47:168–170PubMedPubMedCentralCrossRefGoogle Scholar
  192. Lee BS, Heo J, Kim YM, Shim SM, Pae HO, Kim YM, Chung HT (2006) Carbon monoxide mediates heme oxygenase 1 induction via Nrf2 activation in hepatoma cells. Biochem Biophys Res Commun 343:965–972PubMedCrossRefGoogle Scholar
  193. Lee SW, Cheng Y, Moore PK, Bian JS (2007) Hydrogen sulphide regulates intracellular pH in vascular smooth muscle cells. Biochem Biophys Res Commun 358:1142–1147PubMedCrossRefGoogle Scholar
  194. Lee S, Kim N, Noh Y, Xu Z, Ko K, Rhee B, Han J (2016) Mitochondrial DNA, mitochondrial dysfunction, and cardiac manifestations. Front Biosci (Landmark Ed) 21:1410–1426CrossRefGoogle Scholar
  195. Lefer AM, Lefer DJ (1993) Pharmacology of the endothelium in ischemia-reperfusion and circulatory shock. Annu Rev Pharmacol Toxicol 33:71–90PubMedCrossRefGoogle Scholar
  196. Lefer AM, Murohara T (1995) Comparative pharmacology of nitric oxide and nitric oxide generators on cardiac contractility in mammalian species. Int J Cardiol 50:239–242PubMedCrossRefGoogle Scholar
  197. Leitner LM, Wilson RJ, Yan Z, Godecke A (2017) Reactive oxygen species/nitric oxide mediated inter-organ communication in skeletal muscle wasting diseases. Antioxid Redox Signal 26:700–717PubMedPubMedCentralCrossRefGoogle Scholar
  198. Leon-Paravic CG, Figueroa VA, Guzman DJ, Valderrama CF, Vallejos AA, Fiori MC, Altenberg GA, Reuss L, Retamal MA (2014) Carbon monoxide (CO) is a novel inhibitor of connexin hemichannels. J Biol Chem 289:36150–36157PubMedPubMedCentralCrossRefGoogle Scholar
  199. Levitt MD, Abdel-Rehim MS, Furne J (2011) Free and acid-labile hydrogen sulfide concentrations in mouse tissues: anomalously high free hydrogen sulfide in aortic tissue. Antioxid Redox Signal 15:373–378PubMedCrossRefGoogle Scholar
  200. Li S, Yang G (2015) Hydrogen sulfide maintains mitochondrial DNA replication via demethylation of TFAM. Antioxid Redox Signal 23:630–642PubMedPubMedCentralCrossRefGoogle Scholar
  201. Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, Zhao Y, Baskar R, Tan CH, Moore PK (2008) Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 117:2351–2360PubMedCrossRefGoogle Scholar
  202. Li H, Zhang C, Sun W, Li L, Wu B, Bai S, Li H, Zhong X, Wang R, Wu L, Xu C (2015) Exogenous hydrogen sulfide restores cardioprotection of ischemic post-conditioning via inhibition of mPTP opening in the aging cardiomyocytes. Cell Biosci 5:43PubMedPubMedCentralCrossRefGoogle Scholar
  203. Li X-H, Xue W-L, Wang M-J, Zhou Y, Zhang C-C, Sun C, Zhu L, Liang K, Chen Y, Tao B-B, Tan B, Yu B, Zhu Y-C (2017) H2S regulates endothelial nitric oxide synthase protein stability by promoting microRNA-455-3p expression. Sci Rep 7:44807PubMedPubMedCentralCrossRefGoogle Scholar
  204. Liu Y, Li S, Li Z, Zhang J, Han JS, Zhang Y, Yin ZT, Wang HS (2017) A safety evaluation of profound hypothermia-induced suspended animation for delayed resuscitation at 90 or 120 min. Mil Med Res 4:16PubMedPubMedCentralCrossRefGoogle Scholar
  205. Lloyd D (2006) Hydrogen sulfide: clandestine microbial messenger? Trends Microbiol 14:456–462PubMedCrossRefGoogle Scholar
  206. Lo Faro ML, Fox B, Whatmore JL, Winyard PG, Whiteman M (2014) Hydrogen sulfide and nitric oxide interactions in inflammation. Nitric Oxide 41:38–47PubMedCrossRefGoogle Scholar
  207. Long Q, Yang K, Yang Q (2015) Regulation of mitochondrial ATP synthase in cardiac pathophysiology. Am J Cardiovasc Dis 5:19–32PubMedPubMedCentralGoogle Scholar
  208. Lowicka E, Beltowski J (2007) Hydrogen sulfide (H2S) – the third gas of interest for pharmacologists. Pharmacol Rep 59:4–24PubMedGoogle Scholar
  209. Lundberg JO, Gladwin MT, Weitzberg E (2015) Strategies to increase nitric oxide signalling in cardiovascular disease. Nat Rev Drug Discov 14:623–641PubMedCrossRefGoogle Scholar
  210. Magierowski M, Magierowska K, Szmyd J, Surmiak M, Sliwowski Z, Kwiecien S, Brzozowski T (2016) Hydrogen sulfide and carbon monoxide protect gastric mucosa compromised by mild stress against alendronate injury. Dig Dis Sci 61:3176–3189PubMedPubMedCentralCrossRefGoogle Scholar
  211. Maines MD (1988) Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J 2:2557–2568PubMedCrossRefGoogle Scholar
  212. Malekova L, Krizanova O, Ondrias K (2009) H(2)S and HS(−) donor NaHS inhibits intracellular chloride channels. Gen Physiol Biophys 28:190–194PubMedCrossRefGoogle Scholar
  213. Mani S, Li H, Untereiner A, Wu L, Yang G, Austin RC, Dickhout JG, Lhotak S, Meng QH, Wang R (2013) Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. Circulation 127:2523–2534PubMedCrossRefGoogle Scholar
  214. Marshall HE, Stamler JS (1999) Exhaled nitric oxide (NO), NO synthase activity, and regulation of nuclear factor (NF)-kappaB. Am J Respir Cell Mol Biol 21:296–297PubMedCrossRefGoogle Scholar
  215. Martelli A, Rapposelli S, Calderone V (2006) NO-releasing hybrids of cardiovascular drugs. Curr Med Chem 13:609–625PubMedCrossRefGoogle Scholar
  216. Martin E, Berka V, Tsai AL, Murad F (2005) Soluble guanylyl cyclase: the nitric oxide receptor. Methods Enzymol 396:478–492PubMedCrossRefGoogle Scholar
  217. Martins PN, Reuzel-Selke A, Jurisch A, Atrott K, Pascher A, Pratschke J, Buelow R, Neuhaus P, Volk HD, Tullius SG (2005) Induction of carbon monoxide in the donor reduces graft immunogenicity and chronic graft deterioration. Transplant Proc 37:379–381PubMedCrossRefGoogle Scholar
  218. Martins PN, Reutzel-Selke A, Jurisch A, Denecke C, Attrot K, Pascher A, Kotsch K, Pratschke J, Neuhaus P, Volk HD, Tullius SG (2006) Induction of carbon monoxide in donor animals prior to organ procurement reduces graft immunogenicity and inhibits chronic allograft dysfunction. Transplantation 82:938–944PubMedCrossRefGoogle Scholar
  219. Matsumoto T, Takahashi M, Nakae I, Kinoshita M (1995) Vasorelaxing effect of S-nitrosocaptopril on dog coronary arteries: no cross-tolerance with nitroglycerin. J Pharmacol Exp Ther 275:1247–1253PubMedGoogle Scholar
  220. McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:R551–R560PubMedCrossRefGoogle Scholar
  221. McCleskey EW, Fox AP, Feldman D, Tsien RW (1986) Different types of calcium channels. J Exp Biol 124:177–190PubMedGoogle Scholar
  222. McCoubrey WK Jr, Huang TJ, Maines MD (1997) Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem 247:725–732PubMedCrossRefGoogle Scholar
  223. McMahon TJ, Ahearn GS, Moya MP, Gow AJ, Huang YC, Luchsinger BP, Nudelman R, Yan Y, Krichman AD, Bashore TM, Califf RM, Singel DJ, Piantadosi CA, Tapson VF, Stamler JS (2005) A nitric oxide processing defect of red blood cells created by hypoxia: deficiency of S-nitrosohemoglobin in pulmonary hypertension. Proc Natl Acad Sci U S A 102:14801–14806PubMedPubMedCentralCrossRefGoogle Scholar
  224. Megson IL, Leslie SJ (2009) LA-419, a nitric-oxide donor for the treatment of cardiovascular disorders. Curr Opin Investig Drugs 10:276–285PubMedGoogle Scholar
  225. Meigh L, Greenhalgh SA, Rodgers TL, Cann MJ, Roper DI, Dale N (2013) CO(2)directly modulates connexin 26 by formation of carbamate bridges between subunits. eLife 2:e01213PubMedPubMedCentralCrossRefGoogle Scholar
  226. Mikami Y, Shibuya N, Kimura Y, Nagahara N, Yamada M, Kimura H (2011) Hydrogen sulfide protects the retina from light-induced degeneration by the modulation of Ca2+ influx. J Biol Chem 286:39379–39386PubMedPubMedCentralCrossRefGoogle Scholar
  227. Mikami Y, Shibuya N, Ogasawara Y, Kimura H (2013) Hydrogen sulfide is produced by cystathionine gamma-lyase at the steady-state low intracellular Ca(2+) concentrations. Biochem Biophys Res Commun 431:131–135PubMedCrossRefGoogle Scholar
  228. Milkiewicz M, Ispanovic E, Doyle JL, Haas TL (2006) Regulators of angiogenesis and strategies for their therapeutic manipulation. Int J Biochem Cell Biol 38:333–357PubMedCrossRefGoogle Scholar
  229. Mistry RK, Brewer AC (2017) Redox regulation of gasotransmission in the vascular system: a focus on angiogenesis. Free Radic Biol Med 108:500–516PubMedPubMedCentralCrossRefGoogle Scholar
  230. Miyamoto R, Koike S, Takano Y, Shibuya N, Kimura Y, Hanaoka K, Urano Y, Ogasawara Y, Kimura H (2017) Polysulfides (H2Sn) produced from the interaction of hydrogen sulfide (H2S) and nitric oxide (NO) activate TRPA1 channels. Sci Rep 7:45995PubMedPubMedCentralCrossRefGoogle Scholar
  231. Modis K, Panopoulos P, Coletta C, Papapetropoulos A, Szabo C (2013) Hydrogen sulfide-mediated stimulation of mitochondrial electron transport involves inhibition of the mitochondrial phosphodiesterase 2A, elevation of cAMP and activation of protein kinase A. Biochem Pharmacol 86:1311–1319PubMedCrossRefGoogle Scholar
  232. Modis K, Bos EM, Calzia E, van Goor H, Coletta C, Papapetropoulos A, Hellmich MR, Radermacher P, Bouillaud F, Szabo C (2014) Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects. Br J Pharmacol 171:2123–2146PubMedPubMedCentralCrossRefGoogle Scholar
  233. Modis K, Ju Y, Ahmad A, Untereiner AA, Altaany Z, Wu L, Szabo C, Wang R (2016) S-sulfhydration of ATP synthase by hydrogen sulfide stimulates mitochondrial bioenergetics. Pharmacol Res 113:116–124PubMedPubMedCentralCrossRefGoogle Scholar
  234. Montgomery MR, Rubin RJ (1971) The effect of carbon monoxide inhalation on in vivo drug metabolism in the rat. J Pharmacol Exp Ther 179:465–473PubMedGoogle Scholar
  235. Morrison ML, Blackwood JE, Lockett SL, Iwata A, Winn RK, Roth MB (2008) Surviving blood loss using hydrogen sulfide. J Trauma 65:183–188PubMedCrossRefGoogle Scholar
  236. Motterlini R, Foresti R (2017) Biological signaling by carbon monoxide and carbon monoxide-releasing molecules (CO-RMs). Am J Physiol Cell Physiol 11Google Scholar
  237. Motterlini R, Otterbein LE (2010) The therapeutic potential of carbon monoxide. Nat Rev Drug Discov 9:728–743PubMedCrossRefGoogle Scholar
  238. Motterlini R, Sawle P, Hammad J, Bains S, Alberto R, Foresti R, Green CJ (2005) CORM-A1: a new pharmacologically active carbon monoxide-releasing molecule. FASEB J 19:284–286PubMedCrossRefGoogle Scholar
  239. Munoz-Sanchez J, Chanez-Cardenas ME (2014) A review on hemeoxygenase-2: focus on cellular protection and oxygen response. Oxidative Med Cell Longev 2014:604981CrossRefGoogle Scholar
  240. Munzel T, Feil R, Mulsch A, Lohmann SM, Hofmann F, Walter U (2003) Physiology and pathophysiology of vascular signaling controlled by guanosine 3′,5′-cyclic monophosphate-dependent protein kinase [corrected]. Circulation 108:2172–2183PubMedCrossRefGoogle Scholar
  241. Musameh MD, Fuller BJ, Mann BE, Green CJ, Motterlini R (2006) Positive inotropic effects of carbon monoxide-releasing molecules (CO-RMs) in the isolated perfused rat heart. Br J Pharmacol 149:1104–1112PubMedPubMedCentralCrossRefGoogle Scholar
  242. Mustafa AK, Gadalla MM, Snyder SH (2009a) Signaling by gasotransmitters. Sci Signal 2:re2PubMedPubMedCentralGoogle Scholar
  243. Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, Barrow RK, Yang G, Wang R, Snyder SH (2009b) H2S signals through protein S-sulfhydration. Sci Signal 2:ra72PubMedPubMedCentralGoogle Scholar
  244. Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R, Amzel LM, Berkowitz DE, Snyder SH (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109:1259PubMedPubMedCentralCrossRefGoogle Scholar
  245. Nagpure BV, Bian JS (2016) Interaction of hydrogen sulfide with nitric oxide in the cardiovascular system. Oxidative Med Cell Longev 2016:6904327CrossRefGoogle Scholar
  246. Napoli C, Cirino G, Del Soldato P, Sorrentino R, Sica V, Condorelli M, Pinto A, Ignarro LJ (2001) Effects of nitric oxide-releasing aspirin versus aspirin on restenosis in hypercholesterolemic mice. Proc Natl Acad Sci U S A 98:2860–2864PubMedPubMedCentralCrossRefGoogle Scholar
  247. Ndisang JF, Tabien HE, Wang R (2004) Carbon monoxide and hypertension. J Hypertens 22:1057–1074PubMedCrossRefGoogle Scholar
  248. Nesci S, Ventrella V, Trombetti F, Pirini M, Pagliarani A (2016) Preferential nitrite inhibition of the mitochondrial F1FO-ATPase activities when activated by Ca(2+) in replacement of the natural cofactor Mg(2+). Biochim Biophys Acta 1860:345–353PubMedCrossRefGoogle Scholar
  249. Nicholson CK, Lambert JP, Molkentin JD, Sadoshima J, Calvert JW (2013) Thioredoxin 1 is essential for sodium sulfide-mediated cardioprotection in the setting of heart failure. Arterioscler Thromb Vasc Biol 33:744–751PubMedCrossRefGoogle Scholar
  250. Niemeyer BA, Mery L, Zawar C, Suckow A, Monje F, Pardo LA, Stuhmer W, Flockerzi V, Hoth M (2001) Ion channels in health and disease. 83rd Boehringer Ingelheim Fonds International Titisee Conference. EMBO Rep 2:568–573PubMedPubMedCentralCrossRefGoogle Scholar
  251. Nilius B, Carbone E (2014) Amazing T-type calcium channels: updating functional properties in health and disease. Pflugers Arch 466:623–626PubMedCrossRefGoogle Scholar
  252. Nilius B, Hess P, Lansman JB, Tsien RW (1985) A novel type of cardiac calcium channel in ventricular cells. Nature 316:443–446PubMedCrossRefGoogle Scholar
  253. Nishida M, Sawa T, Kitajima N, Ono K, Inoue H, Ihara H, Motohashi H, Yamamoto M, Suematsu M, Kurose H, van der Vliet A, Freeman BA, Shibata T, Uchida K, Kumagai Y, Akaike T (2012) Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. Nat Chem Biol 8:714–724PubMedPubMedCentralCrossRefGoogle Scholar
  254. Nisoli E, Falcone S, Tonello C, Cozzi V, Palomba L, Fiorani M, Pisconti A, Brunelli S, Cardile A, Francolini M, Cantoni O, Carruba MO, Moncada S, Clementi E (2004) Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc Natl Acad Sci U S A 101:16507–16512PubMedPubMedCentralCrossRefGoogle Scholar
  255. Niture SK, Khatri R, Jaiswal AK (2014) Regulation of Nrf2-an update. Free Radic Biol Med 66:36–44PubMedCrossRefGoogle Scholar
  256. Nussbaum C, Klinke A, Adam M, Baldus S, Sperandio M (2013) Myeloperoxidase: a leukocyte-derived protagonist of inflammation and cardiovascular disease. Antioxid Redox Signal 18:692–713PubMedCrossRefGoogle Scholar
  257. Nystul TG, Roth MB (2004) Carbon monoxide-induced suspended animation protects against hypoxic damage in Caenorhabditis elegans. Proc Natl Acad Sci U S A 101:9133–9136PubMedPubMedCentralCrossRefGoogle Scholar
  258. Ohno K, Okuda K, Uehara T (2015) Endogenous S-sulfhydration of PTEN helps protect against modification by nitric oxide. Biochem Biophys Res Commun 456:245–249PubMedCrossRefGoogle Scholar
  259. Okubo K, Takahashi T, Sekiguchi F, Kanaoka D, Matsunami M, Ohkubo T, Yamazaki J, Fukushima N, Yoshida S, Kawabata A (2011) Inhibition of T-type calcium channels and hydrogen sulfide-forming enzyme reverses paclitaxel-evoked neuropathic hyperalgesia in rats. Neuroscience 188:148–156PubMedCrossRefGoogle Scholar
  260. Okubo K, Matsumura M, Kawaishi Y, Aoki Y, Matsunami M, Okawa Y, Sekiguchi F, Kawabata A (2012) Hydrogen sulfide-induced mechanical hyperalgesia and allodynia require activation of both Cav3.2 and TRPA1 channels in mice. Br J Pharmacol 166:1738–1743PubMedPubMedCentralCrossRefGoogle Scholar
  261. Oliver JJ, Hughes VE, Dear JW, Webb DJ (2010) Clinical potential of combined organic nitrate and phosphodiesterase type 5 inhibitor in treatment-resistant hypertension. Hypertension 56:62–67PubMedCrossRefGoogle Scholar
  262. Otterbein LE, Foresti R, Motterlini R (2016) Heme oxygenase-1 and carbon monoxide in the heart: the balancing act between danger signaling and pro-survival. Circ Res 118:1940–1959PubMedPubMedCentralCrossRefGoogle Scholar
  263. Owens EO (2010) Endogenous carbon monoxide production in disease. Clin Biochem 43:1183–1188PubMedCrossRefGoogle Scholar
  264. Ozen M, Zhao H, Lewis DB, Wong RJ, Stevenson DK (2015) Heme oxygenase and the immune system in normal and pathological pregnancies. Front Pharmacol 6:84PubMedPubMedCentralCrossRefGoogle Scholar
  265. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424PubMedPubMedCentralCrossRefGoogle Scholar
  266. Pagliaro P, Gattullo D, Rastaldo R, Losano G (2001) Involvement of nitric oxide in ischemic preconditioning. Ital Heart J 2:660–668PubMedGoogle Scholar
  267. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526PubMedCrossRefGoogle Scholar
  268. Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, Branski LK, Herndon DN, Wang R, Szabó C (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci 106:21972–21977PubMedPubMedCentralCrossRefGoogle Scholar
  269. Papapetropoulos A, Hobbs AJ, Topouzis S (2015a) Extending the translational potential of targeting NO/cGMP-regulated pathways in the CVS. Br J Pharmacol 172:1397–1414PubMedPubMedCentralCrossRefGoogle Scholar
  270. Papapetropoulos A, Foresti R, Ferdinandy P (2015b) Pharmacology of the “gasotransmitters” NO, CO and H2S: translational opportunities. Br J Pharmacol 172:1395–1396PubMedPubMedCentralCrossRefGoogle Scholar
  271. Pardee KI, Xu X, Reinking J, Schuetz A, Dong A, Liu S, Zhang R, Tiefenbach J, Lajoie G, Plotnikov AN, Botchkarev A, Krause HM, Edwards A (2009) The structural basis of gas-responsive transcription by the human nuclear hormone receptor REV-ERBbeta. PLoS Biol 7:e43PubMedCrossRefGoogle Scholar
  272. Park CM, Nagel RL (1984) Sulfhemoglobinemia. Clinical and molecular aspects. N Engl J Med 310:1579–1584PubMedCrossRefGoogle Scholar
  273. Patel HH, Insel PA (2009) Lipid rafts and caveolae and their role in compartmentation of redox signaling. Antioxid Redox Signal 11:1357–1372PubMedPubMedCentralCrossRefGoogle Scholar
  274. Paul BD, Snyder SH (2012) H2S signalling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol 13:499–507PubMedCrossRefGoogle Scholar
  275. Paul BT, Manz DH, Torti FM, Torti SV (2017) Mitochondria and iron: current questions. Expert Rev Hematol 10:65–79PubMedCrossRefGoogle Scholar
  276. Pearce LL, Kanai AJ, Birder LA, Pitt BR, Peterson J (2002) The catabolic fate of nitric oxide: the nitric oxide oxidase and peroxynitrite reductase activities of cytochrome oxidase. J Biol Chem 277:13556–13562PubMedCrossRefGoogle Scholar
  277. Pechanova O, Simko F (2009) Chronic antioxidant therapy fails to ameliorate hypertension: potential mechanisms behind. J Hypertens Suppl 27:S32–S36PubMedCrossRefGoogle Scholar
  278. Pechanova O, Varga ZV, Cebova M, Giricz Z, Pacher P, Ferdinandy P (2015) Cardiac NO signalling in the metabolic syndrome. Br J Pharmacol 172:1415–1433PubMedCrossRefGoogle Scholar
  279. Penney DG (1988) Hemodynamic response to carbon monoxide. Environ Health Perspect 77:121–130PubMedPubMedCentralGoogle Scholar
  280. Petersen LC (1977) The effect of inhibitors on the oxygen kinetics of cytochrome c oxidase. Biochim Biophys Acta 460:299–307PubMedCrossRefGoogle Scholar
  281. Piantadosi CA, Carraway MS, Babiker A, Suliman HB (2008) Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res 103:1232–1240PubMedPubMedCentralCrossRefGoogle Scholar
  282. Picard M, Wallace DC, Burelle Y (2016) The rise of mitochondria in medicine. Mitochondrion 30:105–116PubMedPubMedCentralCrossRefGoogle Scholar
  283. Polhemus DJ, Lefer DJ (2014) Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ Res 114:730–737PubMedPubMedCentralCrossRefGoogle Scholar
  284. Polhemus DJ, Li Z, Pattillo CB, Gojon G Sr, Gojon G Jr, Giordano T, Krum H (2015) A novel hydrogen sulfide prodrug, SG1002, promotes hydrogen sulfide and nitric oxide bioavailability in heart failure patients. Cardiovasc Ther 33:216–226PubMedPubMedCentralCrossRefGoogle Scholar
  285. Prabhakar NR, Semenza GL (2012) Gaseous messengers in oxygen sensing. J Mol Med (Berl) 90:265–272CrossRefGoogle Scholar
  286. Pun PB, Lu J, Kan EM, Moochhala S (2010) Gases in the mitochondria. Mitochondrion 10:83–93PubMedCrossRefGoogle Scholar
  287. Puranik M, Weeks CL, Lahaye D, Kabil O, Taoka S, Nielsen SB, Groves JT, Banerjee R, Spiro TG (2006) Dynamics of carbon monoxide binding to cystathionine beta-synthase. J Biol Chem 281:13433–13438PubMedPubMedCentralCrossRefGoogle Scholar
  288. Qian Y, Matson JB (2017) Gasotransmitter delivery via self-assembling peptides: treating diseases with natural signaling gases. Adv Drug Deliv Rev 110–111:137–156PubMedCrossRefGoogle Scholar
  289. Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Jarvinen T, Savolainen J (2008) Prodrugs: design and clinical applications. Nat Rev Drug Discov 7:255–270PubMedCrossRefGoogle Scholar
  290. Retamal MA (2016) Carbon monoxide modulates connexin function through a lipid peroxidation-dependent process: a hypothesis. Front Physiol 7Google Scholar
  291. Retamal MA, Yin S, Altenberg GA, Reuss L (2009) Modulation of Cx46 hemichannels by nitric oxide. Am J Physiol Cell Physiol 296:C1356–C1363PubMedPubMedCentralCrossRefGoogle Scholar
  292. Riccio DA, Malowitz JR, Cotten CM, Murtha AP, McMahon TJ (2016) S-Nitrosylated fetal hemoglobin in neonatal human blood. Biochem Biophys Res Commun 473:1084–1089PubMedPubMedCentralCrossRefGoogle Scholar
  293. Rochette L, Cottin Y, Zeller M, Vergely C (2013) Carbon monoxide: mechanisms of action and potential clinical implications. Pharmacol Ther 137:133–152PubMedCrossRefGoogle Scholar
  294. Roden DM, Balser JR, George AL Jr, Anderson ME (2002) Cardiac ion channels. Annu Rev Physiol 64:431–475PubMedCrossRefGoogle Scholar
  295. Rodgers PA, Vreman HJ, Dennery PA, Stevenson DK (1994) Sources of carbon monoxide (CO) in biological systems and applications of CO detection technologies. Semin Perinatol 18:2–10PubMedGoogle Scholar
  296. Rossello X, Yellon DM (2016) A critical review on the translational journey of cardioprotective therapies. Int J Cardiol 220:176–184PubMedCrossRefGoogle Scholar
  297. Rossoni G, Berti M, Colonna VD, Bernareggi M, Del Soldato P, Berti F (2000) Myocardial protection by the nitroderivative of aspirin, NCX 4016: in vitro and in vivo experiments in the rabbit. Ital Heart J 1:146–155PubMedGoogle Scholar
  298. Rossoni G, Manfredi B, Tazzari V, Sparatore A, Trivulzio S, Del Soldato P, Berti F (2010) Activity of a new hydrogen sulfide-releasing aspirin (ACS14) on pathological cardiovascular alterations induced by glutathione depletion in rats. Eur J Pharmacol 648:139–145PubMedCrossRefGoogle Scholar
  299. Rothberg BS (2012) The BK channel: a vital link between cellular calcium and electrical signaling. Protein Cell 3:883–892PubMedPubMedCentralCrossRefGoogle Scholar
  300. Salloum FN, Chau VQ, Hoke NN, Abbate A, Varma A, Ockaili RA, Toldo S, Kukreja RC (2009) Phosphodiesterase-5 inhibitor, tadalafil, protects against myocardial ischemia/reperfusion through protein-kinase g-dependent generation of hydrogen sulfide. Circulation 120:S31–S36PubMedPubMedCentralCrossRefGoogle Scholar
  301. Salloum FN, Das A, Samidurai A, Hoke NN, Chau VQ, Ockaili RA, Stasch JP, Kukreja RC (2012) Cinaciguat, a novel activator of soluble guanylate cyclase, protects against ischemia/reperfusion injury: role of hydrogen sulfide. Am J Physiol Heart Circ Physiol 302:H1347–H1354PubMedPubMedCentralCrossRefGoogle Scholar
  302. Sartiani L, Cerbai E, Lonardo G, DePaoli P, Tattoli M, Cagiano R, Carratu MR, Cuomo V, Mugelli A (2004) Prenatal exposure to carbon monoxide affects postnatal cellular electrophysiological maturation of the rat heart: a potential substrate for arrhythmogenesis in infancy. Circulation 109:419–423PubMedCrossRefGoogle Scholar
  303. Sayed N, Baskaran P, Ma X, van den Akker F, Beuve A (2007) Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation. Proc Natl Acad Sci U S A 104:12312–12317PubMedPubMedCentralCrossRefGoogle Scholar
  304. Schwarz K, Siddiqi N, Singh S, Neil CJ, Dawson DK, Frenneaux MP (2014) The breathing heart – mitochondrial respiratory chain dysfunction in cardiac disease. Int J Cardiol 171:134–143PubMedCrossRefGoogle Scholar
  305. Scragg JL, Dallas ML, Wilkinson JA, Varadi G, Peers C (2008) Carbon monoxide inhibits L-type Ca2+ channels via redox modulation of key cysteine residues by mitochondrial reactive oxygen species. J Biol Chem 283:24412–24419PubMedPubMedCentralCrossRefGoogle Scholar
  306. Semenza GL, Prabhakar NR (2012) Gas biology: small molecular medicine. J Mol Med 90:213–215PubMedCrossRefGoogle Scholar
  307. Sen N (2017) Functional and molecular insights of hydrogen sulfide signaling and protein sulfhydration. J Mol Biol 429:543–561PubMedCrossRefGoogle Scholar
  308. Serafim RA, Primi MC, Trossini GH, Ferreira EI (2012) Nitric oxide: state of the art in drug design. Curr Med Chem 19:386–405PubMedCrossRefGoogle Scholar
  309. Shao M, Zhuo C, Jiang R, Chen G, Shan J, Ping J, Tian H, Wang L, Lin C, Hu L (2017) Protective effect of hydrogen sulphide against myocardial hypertrophy in mice. Oncotarget 8:22344–22352PubMedPubMedCentralGoogle Scholar
  310. Sharma HS, Das DK, Verdouw PD (1999) Enhanced expression and localization of heme oxygenase-1 during recovery phase of porcine stunned myocardium. Mol Cell Biochem 196:133–139PubMedCrossRefGoogle Scholar
  311. Shen Y, Shen Z, Miao L, Xin X, Lin S, Zhu Y, Guo W, Zhu YZ (2015) miRNA-30 family inhibition protects against cardiac ischemic injury by regulating cystathionine-gamma-lyase expression. Antioxid Redox Signal 22:224–240PubMedPubMedCentralCrossRefGoogle Scholar
  312. Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC, Smithies O (1996) Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 93:13176–13181PubMedPubMedCentralCrossRefGoogle Scholar
  313. Shibahara S, Nakayama M, Kitamuro T, Udono-Fujimori R, Takahashi K (2003) Repression of heme oxygenase-1 expression as a defense strategy in humans. Exp Biol Med (Maywood) 228:472–473CrossRefGoogle Scholar
  314. Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, Fukui K, Nagahara N, Kimura H (2013) A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun 4:1366PubMedCrossRefGoogle Scholar
  315. Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M (2000) Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev 52:557–594PubMedGoogle Scholar
  316. Shimizu I, Minamino T (2016) Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 97:245–262PubMedCrossRefGoogle Scholar
  317. Shimizu S, Takahashi N, Mori Y (2014) TRPs as chemosensors (ROS, RNS, RCS, gasotransmitters). Handb Exp Pharmacol 223:767–794PubMedCrossRefGoogle Scholar
  318. Shintani T, Iwabuchi T, Soga T, Kato Y, Yamamoto T, Takano N, Hishiki T, Ueno Y, Ikeda S, Sakuragawa T, Ishikawa K, Goda N, Kitagawa Y, Kajimura M, Matsumoto K, Suematsu M (2009) Cystathionine beta-synthase as a carbon monoxide-sensitive regulator of bile excretion. Hepatology 49:141–150PubMedCrossRefGoogle Scholar
  319. Sikora M, Drapala A, Ufnal M (2014) Exogenous hydrogen sulfide causes different hemodynamic effects in normotensive and hypertensive rats via neurogenic mechanisms. Pharmacol Rep 66:751–758PubMedCrossRefGoogle Scholar
  320. Sjoberg F, Singer M (2013) The medical use of oxygen: a time for critical reappraisal. J Intern Med 274:505–528PubMedCrossRefGoogle Scholar
  321. Snijder PM, Frenay AR, de Boer RA, Pasch A, Hillebrands JL, Leuvenink HG, van Goor H (2015) Exogenous administration of thiosulfate, a donor of hydrogen sulfide, attenuates angiotensin II-induced hypertensive heart disease in rats. Br J Pharmacol 172:1494–1504PubMedPubMedCentralCrossRefGoogle Scholar
  322. Soni H, Patel P, Rath AC, Jain M, Mehta AA (2010) Cardioprotective effect with carbon monoxide releasing molecule-2 (CORM-2) in isolated perfused rat heart: role of coronary endothelium and underlying mechanism. Vasc Pharmacol 53:68–76CrossRefGoogle Scholar
  323. Srinivasan S, Avadhani NG (2012) Cytochrome c oxidase dysfunction in oxidative stress. Free Radic Biol Med 53:1252–1263PubMedPubMedCentralCrossRefGoogle Scholar
  324. Stram AR, Payne RM (2016) Post-translational modifications in mitochondria: protein signaling in the powerhouse. Cell Mol Life Sci 73:4063–4073PubMedPubMedCentralCrossRefGoogle Scholar
  325. Sugishima M, Sakamoto H, Noguchi M, Fukuyama K (2003) Crystal structures of ferrous and CO-, CN(−)-, and NO-bound forms of rat heme oxygenase-1 (HO-1) in complex with heme: structural implications for discrimination between CO and O2 in HO-1. Biochemistry 42:9898–9905PubMedCrossRefGoogle Scholar
  326. Suliman HB, Carraway MS, Tatro LG, Piantadosi CA (2007) A new activating role for CO in cardiac mitochondrial biogenesis. J Cell Sci 120:299–308PubMedCrossRefGoogle Scholar
  327. Sun J, Picht E, Ginsburg KS, Bers DM, Steenbergen C, Murphy E (2006) Hypercontractile female hearts exhibit increased S-nitrosylation of the L-type Ca2+ channel alpha1 subunit and reduced ischemia/reperfusion injury. Circ Res 98:403–411PubMedCrossRefGoogle Scholar
  328. Sun J, Morgan M, Shen RF, Steenbergen C, Murphy E (2007) Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport. Circ Res 101:1155–1163PubMedCrossRefGoogle Scholar
  329. Sun YG, Cao YX, Wang WW, Ma SF, Yao T, Zhu YC (2008) Hydrogen sulphide is an inhibitor of L-type calcium channels and mechanical contraction in rat cardiomyocytes. Cardiovasc Res 79:632–641PubMedCrossRefGoogle Scholar
  330. Szabo C (2010) Gaseotransmitters: new frontiers for translational science. Sci Transl Med 2:59ps54PubMedPubMedCentralCrossRefGoogle Scholar
  331. Szabo C, Coletta C, Chao C, Modis K, Szczesny B, Papapetropoulos A, Hellmich MR (2013) Tumor-derived hydrogen sulfide, produced by cystathionine-beta-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc Natl Acad Sci U S A 110:12474–12479PubMedPubMedCentralCrossRefGoogle Scholar
  332. Takahashi S, Lin H, Geshi N, Mori Y, Kawarabayashi Y, Takami N, Mori MX, Honda A, Inoue R (2008) Nitric oxide-cGMP-protein kinase G pathway negatively regulates vascular transient receptor potential channel TRPC6. J Physiol 586:4209–4223PubMedPubMedCentralCrossRefGoogle Scholar
  333. Takahashi N, Kozai D, Mori Y (2012) TRP channels: sensors and transducers of gasotransmitter signals. Front Physiol 3:324PubMedPubMedCentralCrossRefGoogle Scholar
  334. Takahashi K, Kakimoto Y, Toda K, Naruse K (2013) Mechanobiology in cardiac physiology and diseases. J Cell Mol Med 17:225–232PubMedPubMedCentralCrossRefGoogle Scholar
  335. Takano N, Yamamoto T, Adachi T, Suematsu M (2010) Assessing a shift of glucose biotransformation by LC-MS/MS-based metabolome analysis in carbon monoxide-exposed cells. Adv Exp Med Biol 662:101–107PubMedCrossRefGoogle Scholar
  336. Talavera K, Nilius B (2006) Biophysics and structure-function relationship of T-type Ca2+ channels. Cell Calcium 40:97–114PubMedCrossRefGoogle Scholar
  337. Tang XD, Xu R, Reynolds MF, Garcia ML, Heinemann SH, Hoshi T (2003) Haem can bind to and inhibit mammalian calcium-dependent Slo1 BK channels. Nature 425:531–535PubMedCrossRefGoogle Scholar
  338. Tang G, Wu L, Liang W, Wang R (2005) Direct stimulation of K(ATP) channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol Pharmacol 68:1757–1764PubMedGoogle Scholar
  339. Tang G, Wu L, Wang R (2010) Interaction of hydrogen sulfide with ion channels. Clin Exp Pharmacol Physiol 37:753–763PubMedCrossRefGoogle Scholar
  340. Taniguchi S, Kimura T, Umeki T, Kimura Y, Kimura H, Ishii I, Itoh N, Naito Y, Yamamoto H, Niki I (2012) Protein phosphorylation involved in the gene expression of the hydrogen sulphide producing enzyme cystathionine gamma-lyase in the pancreatic beta-cell. Mol Cell Endocrinol 350:31–38PubMedCrossRefGoogle Scholar
  341. Taoka S, Banerjee R (2001) Characterization of NO binding to human cystathionine beta-synthase: possible implications of the effects of CO and NO binding to the human enzyme. J Inorg Biochem 87:245–251PubMedCrossRefGoogle Scholar
  342. Taoka S, Ohja S, Shan X, Kruger WD, Banerjee R (1998) Evidence for heme-mediated redox regulation of human cystathionine beta-synthase activity. J Biol Chem 273:25179–25184PubMedCrossRefGoogle Scholar
  343. Teng H, Wu B, Zhao K, Yang G, Wu L, Wang R (2013) Oxygen-sensitive mitochondrial accumulation of cystathionine β-synthase mediated by Lon protease. Proc Natl Acad Sci 110:12679–12684PubMedPubMedCentralCrossRefGoogle Scholar
  344. Teodoro RO, O’Farrell PH (2003) Nitric oxide-induced suspended animation promotes survival during hypoxia. EMBO J 22:580–587PubMedPubMedCentralCrossRefGoogle Scholar
  345. Thomas DD, Heinecke JL, Ridnour LA, Cheng RY, Kesarwala AH, Switzer CH, McVicar DW, Roberts DD, Glynn S, Fukuto JM, Wink DA, Miranda KM (2015) Signaling and stress: the redox landscape in NOS2 biology. Free Radic Biol Med 87:204–225PubMedPubMedCentralCrossRefGoogle Scholar
  346. Thorup C, Jones CL, Gross SS, Moore LC, Goligorsky MS (1999) Carbon monoxide induces vasodilation and nitric oxide release but suppresses endothelial NOS. Am J Physiol Ren Physiol 277:F882–F889CrossRefGoogle Scholar
  347. Tomasova L, Dobrowolski L, Jurkowska H, Wrobel M, Huc T, Ondrias K, Ostaszewski R, Ufnal M (2016) Intracolonic hydrogen sulfide lowers blood pressure in rats. Nitric Oxide 60:50–58PubMedCrossRefGoogle Scholar
  348. Tonks NK (2013) Protein tyrosine phosphatases – from housekeeping enzymes to master regulators of signal transduction. FEBS J 280:346–378PubMedPubMedCentralCrossRefGoogle Scholar
  349. Toohey JI (2011) Sulfur signaling: is the agent sulfide or sulfane? Anal Biochem 413:1–7PubMedCrossRefGoogle Scholar
  350. Traylor TG, Sharma VS (1992) Why NO? Biochemistry 31:2847–2849PubMedCrossRefGoogle Scholar
  351. Tsai AL, Martin E, Berka V, Olson JS (2012) How do heme-protein sensors exclude oxygen? Lessons learned from cytochrome c′, Nostoc puntiforme heme nitric oxide/oxygen-binding domain, and soluble guanylyl cyclase. Antioxid Redox Signal 17:1246–1263CrossRefGoogle Scholar
  352. Ulker SN, Kocer G, Senturk UK (2017) Carbon monoxide does not contribute to vascular tonus improvement in exercise-trained rats with chronic nitric oxide synthase inhibition. Nitric Oxide 65:60–67PubMedCrossRefGoogle Scholar
  353. Untereiner AA, Fu M, Modis K, Wang R, Ju Y, Wu L (2016) Stimulatory effect of CSE-generated H2S on hepatic mitochondrial biogenesis and the underlying mechanisms. Nitric Oxide 58:67–76PubMedCrossRefGoogle Scholar
  354. Valerio A, Nisoli E (2015) Nitric oxide, interorganelle communication, and energy flow: a novel route to slow aging. Front Cell Dev Biol 3:6PubMedPubMedCentralCrossRefGoogle Scholar
  355. Vandiver M, Snyder SH (2012) Hydrogen sulfide: a gasotransmitter of clinical relevance. J Mol Med 90:255–263PubMedPubMedCentralCrossRefGoogle Scholar
  356. Vasquez-Trincado C, Garcia-Carvajal I, Pennanen C, Parra V, Hill JA, Rothermel BA, Lavandero S (2016) Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol 594:509–525PubMedPubMedCentralCrossRefGoogle Scholar
  357. Vega RB, Konhilas JP, Kelly DP, Leinwand LA (2017) Molecular mechanisms underlying cardiac adaptation to exercise. Cell Metab 25:1012–1026PubMedPubMedCentralCrossRefGoogle Scholar
  358. Vicente JB, Colaco HG, Mendes MI, Sarti P, Leandro P, Giuffre A (2014) NO* binds human cystathionine beta-synthase quickly and tightly. J Biol Chem 289:8579–8587PubMedPubMedCentralCrossRefGoogle Scholar
  359. Vicente JB, Malagrino F, Arese M, Forte E, Sarti P, Giuffre A (2016) Bioenergetic relevance of hydrogen sulfide and the interplay between gasotransmitters at human cystathionine beta-synthase. Biochim Biophys Acta 1857:1127–1138PubMedCrossRefGoogle Scholar
  360. Victorino VJ, Mencalha AL, Panis C (2015) Post-translational modifications disclose a dual role for redox stress in cardiovascular pathophysiology. Life Sci 129:42–47PubMedCrossRefGoogle Scholar
  361. Villanueva C, Kross RD (2012) Antioxidant-induced stress. Int J Mol Sci 13:2091–2109PubMedPubMedCentralCrossRefGoogle Scholar
  362. Volpato MD, Gian P, Searles BAR, Yu PDB, Scherrer-Crosbie MDPDM, Bloch MD, Kenneth D, Ichinose MDF, Zapol MD, Warren M (2008a) Inhaled hydrogen sulfide: a rapidly reversible inhibitor of cardiac and metabolic function in the mouse. Anesthesiology 108:659–668PubMedPubMedCentralCrossRefGoogle Scholar
  363. Volpato GP, Searles R, Yu B, Scherrer-Crosbie M, Bloch KD, Ichinose F, Zapol WM (2008b) Inhaled hydrogen sulfide: a rapidly reversible inhibitor of cardiac and metabolic function in the mouse. Anesthesiology 108:659–668PubMedPubMedCentralCrossRefGoogle Scholar
  364. Walter A, Gutknecht J (1986) Permeability of small nonelectrolytes through lipid bilayer membranes. J Membr Biol 90:207–217PubMedCrossRefGoogle Scholar
  365. Wang R (2003) The gasotransmitter role of hydrogen sulfide. Antioxid Redox Signal 5:493–501PubMedCrossRefGoogle Scholar
  366. Wang R (2012) Shared signaling pathways among gasotransmitters. Proc Natl Acad Sci U S A 109:8801–8802PubMedPubMedCentralCrossRefGoogle Scholar
  367. Wang R (2014) Gasotransmitters: growing pains and joys. Trends Biochem Sci 39:227–232PubMedCrossRefGoogle Scholar
  368. Wang CY, Chau LY (2010) Heme oxygenase-1 in cardiovascular diseases: molecular mechanisms and clinical perspectives. Chang Gung Med J 33:13–24PubMedGoogle Scholar
  369. Wang R, Wu L, Wang Z (1997) The direct effect of carbon monoxide on KCa channels in vascular smooth muscle cells. Pflugers Arch 434:285–291PubMedCrossRefGoogle Scholar
  370. Wang PG, Xian M, Tang X, Wu X, Wen Z, Cai T, Janczuk AJ (2002) Nitric oxide donors: chemical activities and biological applications. Chem Rev 102:1091–1134PubMedCrossRefGoogle Scholar
  371. Wang YY, Chang RB, Liman ER (2010) TRPA1 is a Component of the Nociceptive Response to CO(2) (CO(2) Sensing by TRPA1). J Neurosci 30:12958–12963Google Scholar
  372. Wang R, Szabo C, Ichinose F, Ahmed A, Whiteman M, Papapetropoulos A (2015a) The role of H2S bioavailability in endothelial dysfunction. Trends Pharmacol Sci 36:568–578PubMedPubMedCentralCrossRefGoogle Scholar
  373. Wang L, Tang ZP, Zhao W, Cong BH, JQ L, Tang XL, Li XH, Zhu XY, Ni X (2015b) MiR-22/Sp-1 links estrogens with the up-regulation of cystathionine gamma-lyase in myocardium, which contributes to estrogenic cardioprotection against oxidative stress. Endocrinology 156:2124–2137PubMedCrossRefGoogle Scholar
  374. Watanabe M, Osada J, Aratani Y, Kluckman K, Reddick R, Malinow MR, Maeda N (1995) Mice deficient in cystathionine beta-synthase: animal models for mild and severe homocyst(e)inemia. Proc Natl Acad Sci 92:1585–1589PubMedPubMedCentralCrossRefGoogle Scholar
  375. Webb AJ, Patel N, Loukogeorgakis S, Okorie M, Aboud Z, Misra S, Rashid R, Miall P, Deanfield J, Benjamin N, MacAllister R, Hobbs AJ, Ahluwalia A (2008) Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension 51:784–790PubMedPubMedCentralCrossRefGoogle Scholar
  376. Wedmann R, Ivanovic-Burmazovic I, Filipovic MR (2017) Nitrosopersulfide (SSNO-) decomposes in the presence of sulfide, cyanide or glutathione to give HSNO/SNO-: consequences for the assumed role in cell signalling. Interface Focus 7:20160139PubMedPubMedCentralCrossRefGoogle Scholar
  377. Wegiel B, Nemeth Z, Correa-Costa M, Bulmer AC, Otterbein LE (2014) Heme oxygenase-1: a metabolic nike. Antioxid Redox Signal 20:1709–1722PubMedPubMedCentralCrossRefGoogle Scholar
  378. Wegiel B, Hauser CJ, Otterbein LE (2015) Heme as a danger molecule in pathogen recognition. Free Radic Biol Med 89:651–661PubMedCrossRefGoogle Scholar
  379. Wesseling S, Fledderus JO, Verhaar MC, Joles JA (2015) Beneficial effects of diminished production of hydrogen sulfide or carbon monoxide on hypertension and renal injury induced by NO withdrawal. Br J Pharmacol 172:1607–1619PubMedCrossRefGoogle Scholar
  380. Whiteman M, Li L, Kostetski I, Chu SH, Siau JL, Bhatia M, Moore PK (2006) Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem Biophys Res Commun 343:303–310PubMedCrossRefGoogle Scholar
  381. Whiteman M, Gooding KM, Whatmore JL, Ball CI, Mawson D, Skinner K, Tooke JE, Shore AC (2010) Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulphide. Diabetologia 53:1722–1726PubMedCrossRefGoogle Scholar
  382. Whiteman M, Perry A, Zhou Z, Bucci M, Papapetropoulos A, Cirino G, Wood ME (2015) Phosphinodithioate and phosphoramidodithioate hydrogen sulfide donors. Handb Exp Pharmacol 230:337–363PubMedCrossRefGoogle Scholar
  383. Wilkinson WJ, Kemp PJ (2011) Carbon monoxide: an emerging regulator of ion channels. J Physiol 589:3055–3062PubMedPubMedCentralCrossRefGoogle Scholar
  384. Williams SE, Wootton P, Mason HS, Bould J, Iles DE, Riccardi D, Peers C, Kemp PJ (2004) Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel. Science 306:2093–2097PubMedCrossRefGoogle Scholar
  385. Wong CM, Marcocci L, Das D, Wang X, Luo H, Zungu-Edmondson M, Suzuki YJ (2013) Mechanism of protein decarbonylation. Free Radic Biol Med 65:1126–1133PubMedCrossRefGoogle Scholar
  386. Woo J, Iyer S, Cornejo MC, Mori N, Gao L, Sipos I, Maines M, Buelow R (1998) Stress protein-induced immunosuppression: inhibition of cellular immune effector functions following overexpression of haem oxygenase (HSP 32). Transpl Immunol 6:84–93PubMedCrossRefGoogle Scholar
  387. Wu L, Wang R (2005) Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev 57:585–630PubMedCrossRefGoogle Scholar
  388. Wu L, Cao K, Lu Y, Wang R (2002) Different mechanisms underlying the stimulation of K(Ca) channels by nitric oxide and carbon monoxide. J Clin Invest 110:691–700PubMedPubMedCentralCrossRefGoogle Scholar
  389. Wu ML, Ho YC, Lin CY, Yet SF (2011) Heme oxygenase-1 in inflammation and cardiovascular disease. Am J Cardiovasc Dis 1:150–158PubMedPubMedCentralGoogle Scholar
  390. Xu L, JP E, Meissner G, Stamler JS (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279:234–237PubMedCrossRefGoogle Scholar
  391. Yamamoto T, Takano N, Ishiwata K, Suematsu M (2011) Carbon monoxide stimulates global protein methylation via its inhibitory action on cystathionine beta-synthase. J Clin Biochem Nutr 48:96–100PubMedCrossRefGoogle Scholar
  392. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587–590PubMedPubMedCentralCrossRefGoogle Scholar
  393. Yet SF, Pellacani A, Patterson C, Tan L, Folta SC, Foster L, Lee WS, Hsieh CM, Perrella MA (1997) Induction of heme oxygenase-1 expression in vascular smooth muscle cells. A link to endotoxic shock. J Biol Chem 272:4295–4301PubMedCrossRefGoogle Scholar
  394. Yet SF, Tian R, Layne MD, Wang ZY, Maemura K, Solovyeva M, Ith B, Melo LG, Zhang L, Ingwall JS, Dzau VJ, Lee ME, Perrella MA (2001) Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice. Circ Res 89:168–173PubMedCrossRefGoogle Scholar
  395. Yong QC, Pan TT, LF H, Bian JS (2008) Negative regulation of beta-adrenergic function by hydrogen sulphide in the rat hearts. J Mol Cell Cardiol 44:701–710PubMedCrossRefGoogle Scholar
  396. Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase – a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2:669–677PubMedCrossRefGoogle Scholar
  397. Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2:596–607PubMedCrossRefGoogle Scholar
  398. Yu W, Jin H, Tang C, Du J, Zhang Z (2017a) Sulfur-containing gaseous signal molecules, ion channels and cardiovascular diseases. Br J Pharmacol [Epub ahead of print]
  399. Yu L, Li S, Tang X, Li Z, Zhang J, Xue X, Han J, Liu Y, Zhang Y, Zhang Y, Xu Y, Yang Y, Wang H (2017b) Diallyl trisulfide ameliorates myocardial ischemia-reperfusion injury by reducing oxidative stress and endoplasmic reticulum stress-mediated apoptosis in type 1 diabetic rats: role of SIRT1 activation. Apoptosis 22:942–954PubMedCrossRefGoogle Scholar
  400. Yuan S, Pardue S, Shen X, Alexander JS, Orr AW, Kevil CG (2016) Hydrogen sulfide metabolism regulates endothelial solute barrier function. Redox Biol 9:157–166PubMedPubMedCentralCrossRefGoogle Scholar
  401. Zhang R, Sun Y, Tsai H, Tang C, Jin H, Du J (2012) Hydrogen sulfide inhibits L-type calcium currents depending upon the protein sulfhydryl state in rat cardiomyocytes. PLoS One 7:10PubMedCentralGoogle Scholar
  402. Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20:6008–6016PubMedPubMedCentralCrossRefGoogle Scholar
  403. Zhao W, Ndisang JF, Wang R (2003) Modulation of endogenous production of H2S in rat tissues. Can J Physiol Pharmacol 81:848–853PubMedCrossRefGoogle Scholar
  404. Zhao Y, Biggs TD, Xian M (2014) Hydrogen sulfide (H2S) releasing agents: chemistry and biological applications. Chem Commun (Camb) 50:11788–11805CrossRefGoogle Scholar
  405. Ziolo MT, Katoh H, Bers DM (2001) Positive and negative effects of nitric oxide on Ca(2+) sparks: influence of beta-adrenergic stimulation. Am J Physiol Heart Circ Physiol 281:H2295–H2303PubMedCrossRefGoogle Scholar
  406. Zobi F (2013) CO and CO-releasing molecules in medicinal chemistry. Future Med Chem 5:175–188PubMedCrossRefGoogle Scholar
  407. Zuckerbraun BS, Chin BY, Wegiel B, Billiar TR, Czsimadia E, Rao J, Shimoda L, Ifedigbo E, Kanno S, Otterbein LE (2006) Carbon monoxide reverses established pulmonary hypertension. J Exp Med 203:2109–2119PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of MedicineInje UniversityBusanRepublic of Korea
  2. 2.Laboratory of Ion Channel Research, Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
  3. 3.National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease CenterInje UniversityBusanRepublic of Korea

Personalised recommendations