Catechol-O-Methyltransferase (COMT): An Update on Its Role in Cancer, Neurological and Cardiovascular Diseases

  • Pedro Bastos
  • Tiago Gomes
  • Laura RibeiroEmail author
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 173)


Catechol-O-methyltransferase (COMT) is an enzyme that catalyses the methylation of catechol substrates, classically in catecholamine metabolism, but also acting upon other substrates such as oestrogen and polyphenols. Although its classical function has been established for more than five decades, an ever expanding COMT role in other pathways and diseases has become a subject of active study in recent years. The most highlighted domains are related with COMT involvement in neuropsychiatric disorders and its role in the neurobiology of cognition, behaviour, emotions, pain processing and perception, sleep regulation, addictive behaviour and neurodegeneration. Nonetheless, great attention is also being devoted to a possible COMT contribution to the development of cardiovascular disorders and hormonally influenced diseases, including cancer. This review aims to update the role of COMT function and its involvement in cardiovascular and neurological disorders.


Cancer Cardiovascular COMT Neurodegeneration Polymorphisms Psychiatric disorders 


  1. Abdolmaleky HM, Cheng KH, Faraone SV, Wilcox M, Glatt SJ, Gao F, Smith CL, Shafa R, Aeali B, Carnevale J, Pan H, Papageorgis P, Ponte JF, Sivaraman V, Tsuang MT, Thiagalingam S (2006) Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet 15(21):3132–3145PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adameova A, Abdellatif Y, Dhalla N (2009) Role of the excessive amounts of circulating catecholamines and glucocorticoids in stress-induced heart disease. Can J Physiol Pharmacol 87(7):493–514PubMedCrossRefGoogle Scholar
  3. Ahlers SJ, Elens LL, van Gulik L, van Schaik RH, van Dongen EP, Bruins P, Tibboel D, Knibbe CA (2013) The Val158Met polymorphism of the COMT gene is associated with increased pain sensitivity in morphine-treated patients undergoing a painful procedure after cardiac surgery. Br J Clin Pharmacol 75(6):1506–1515. doi: 10.1111/bcp.12052 PubMedCrossRefGoogle Scholar
  4. Ameyaw MM, Syvänen AC, Ulmanen I, Ofori‐Adjei D, McLeod HL (2000) Pharmacogenetics of catechol‐O‐methyltransferase: frequency of low activity allele in a Ghanaian population. Hum Mutat 16(5):445–446. doi: 10.1002/1098-1004(200011)16:5<445::AID-HUMU13>3.0.CO;2-3 PubMedCrossRefGoogle Scholar
  5. Annerbrink K, Westberg L, Nilsson S, Rosmond R, Holm G, Eriksson E (2008) Catechol O-methyltransferase val158-met polymorphism is associated with abdominal obesity and blood pressure in men. Metabolism 57(5):708–711PubMedCrossRefGoogle Scholar
  6. Antypa N, Drago A, Serretti A (2013) The role of COMT gene variants in depression: bridging neuropsychological, behavioral and clinical phenotypes. Neurosci Biobehav Rev 37(8):1597–1610PubMedCrossRefGoogle Scholar
  7. Ashare RL, Valdez JN, Ruparel K, Albelda B, Hopson RD, Keefe JR, Loughead J, Lerman C (2013) Association of abstinence-induced alterations in working memory function and COMT genotype in smokers. Psychopharmacology 230(4):653–662. doi: 10.1007/s00213-013-3197-3 PubMedCrossRefGoogle Scholar
  8. Axelrod J, Tomchick R (1958) Enzymatic O-methylation of epinephrine and other catechols. J Biol Chem 233(3):702–705PubMedGoogle Scholar
  9. Axelrod J, Senoh S, Wiktop B (1958) O-methylation of catechol amines in vivo. J Biol Chem 233(3):697–701PubMedGoogle Scholar
  10. Bastos P, Araújo JR, Azevedo I, Martins MJ, Ribeiro L (2014) Effect of a natural mineral-rich water on catechol-O-methyltransferase function. Magnes Res 27(3):131–141PubMedGoogle Scholar
  11. Belfer I, Segall SK, Lariviere WR, Smith SB, Dai F, Slade GD, Rashid NU, Mogil JS, Campbell CM, Edwards RR, Liu Q, Bair E, Maixner W, Diatchenko L (2013) Pain modality- and sex-specific effects of COMT genetic functional variants. Pain 154(8):1368–1376. doi: 10.1016/j.pain.2013.04.028 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Berryhill ME, Wiener M, Stephens JA, Lohoff FW, Coslett HB (2013) COMT and ANKK1-Taq-Ia genetic polymorphisms influence visual working memory. PLoS One 8(1):e55862. doi: 10.1371/journal.pone.0055862 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bilder RM, Volavka J, Lachman HM, Grace AA (2004) The cathecol-O-methyltransferase polymorphism: relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology 29(11):1943–1961PubMedCrossRefGoogle Scholar
  14. Boehn SNE, Spahn S, Neudecker S, Keppler A, Bihoreau M-T, Kränzlin B, Pandey P, Hoffmann SC, Li L, Torres VE, Gröne H-J, Gretz N (2013) Inhibition of Comt with tolcapone slows progression of polycystic kidney disease in the more severely affected PKD/Mhm (cy/+) substrain of the Hannover Sprague-Dawley rat. Nephrol Dial Transplant 28(8):2045–2058PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bonifacio MJ, Vieira-Coelho MA, Borges N, Soares-da-Silva P (2000) Kinectics of rat brain and liver solubilized membrane-bound catechol-O-methyltransferase. Arch Biochem Biophys 384(2):361–367PubMedCrossRefGoogle Scholar
  16. Bonifacio MJ, Palma PN, Almeida L, Soares-da-Silva P (2007) Catechol-O-methyltransferase and its inhibitors in Parkinson’s disease. CNS Drug Rev 13(3):352–379PubMedCrossRefGoogle Scholar
  17. Bray NJ, Buckland PR, Williams NM, Williams HJ, Norton N, Owen MJ, O'Donovan MC (2003) A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain. Am J Hum Genet 73(1):152–161PubMedPubMedCentralCrossRefGoogle Scholar
  18. Brede M, Nagy G, Philipp M, Sorensen J, Lohse M, Heinz L (2003) Differential control of adrenal and sympathetic catecholamine release by α2-adrenoceptor subtypes. Mol Endocrinol 17(8):1640–1646PubMedCrossRefGoogle Scholar
  19. Bunker A, Männistö PT, St. Pierre J, Rog T, Pomorski P, Stimson L, Karttunen M (2008) Molecular dynamics simulations of the enzyme catechol-O-methyltransferase: methodological issues. SAR QSAR Environ Res 19(1-2):179–189PubMedCrossRefGoogle Scholar
  20. Cargnin S, Magnani F, Viana M, Tassorelli C, Mittino D, Cantello R, Sances G, Nappi G, Canonico PL, Genazzani AA, Raffaeli W, Terrazzino S (2013) An opposite-direction modulation of the COMT Val158Met polymorphism on the clinical response to intrathecal morphine and triptans. J Pain 14(10):1097–1106. doi: 10.1016/j.jpain.2013.04.006 PubMedCrossRefGoogle Scholar
  21. Carothers AM, Hughes SA, Ortega D, Bertagnolli MM (2002) 2-Methoxyestradiol induces p53-associated apoptosis of colorectal cancer cells. Cancer Lett 187(1-2):77–86PubMedCrossRefGoogle Scholar
  22. Catling L, Abubakar I, Lake I, Swift L, Hunter P (2008) A systematic review of analytical observational studies investigating the association between cardiovascular disease and drinking water hardness. J Water Health 6(4):433–442PubMedCrossRefGoogle Scholar
  23. Cavalieiri EL, Devanesan P, Bosland MC, Badawi AF, Rogan EG (2002) Catechol estrogen metabolites and conjugates in different regions of the prostate of noble rats treated with 4-hydroxyestradiol: implications for estrogen-induced initiation of prostate cancer. Carcinogenesis 23(2):329–333CrossRefGoogle Scholar
  24. Chang I, Liu J, Majid S, Saini S, Zaman MS, Yamamura S, Shahryari V, Chiyomaru T, Deng G, Dahiya R, Tanaka Y (2012) Catechol-O-methyltransferase-mediated metabolism of 4-hydroxyestradiol inhibits the growth of human renal cancer cells through the apoptotic pathway. Carcinogenesis 33(2):420–426PubMedCrossRefGoogle Scholar
  25. Cheuk DK, Wong V (2006) Meta-analysis of association between a catechol-O-methyltransferase gene polymorphism and attention deficit hyperactivity disorder. Behav Genet 36(5):651–659PubMedCrossRefGoogle Scholar
  26. Chi HN, Miyaki K, Song Y, Ikeda S, Shimbo T, Muramatsu M (2011) Association of the catechol-O-methyltransferase gene Val158Met polymorphism with blood pressure and prevalence of hypertension: interaction with dietary energy intake. Am J Hypertens 29(9):1022–1026Google Scholar
  27. Collip D, van Winkel R, Peerbooms O, Lataster T, Thewissen V, Lardinois M, Drukker M, Rutten BP, Van Os J, Myin-Germeys I (2011) COMT Val158Met-stress interaction in psychosis: role of background psychosis risk. CNS Neurosci Ther 17(6):612–619PubMedCrossRefGoogle Scholar
  28. Colzato LS, Waszak F, Nieuwenhuis S, Posthuma D, Hommel B (2010) The flexible mind is associated with the catechol-O-methyltransferase (COMT) Val158Met polymorphism: evidence for a role of dopamine in the control of task-switching. Neuropsychologia 48(9):2764–2768. doi: 10.1016/j.neuropsychologia.2010.04.023 PubMedCrossRefGoogle Scholar
  29. Cordts EB, Santos MC, Peluso C, Kayaki EA, Bianco B, Barbosa CP, Christofolini DM (2014) COMT polymorphism influences decrease of ovarian follicles and emerges as a predictive factor for premature ovarian insufficiency. J Ovarian Res 7:47. doi: 10.1186/1757-2215-7-47 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dauvilliers Y, Neidhart E, Lecendreux M, Billiard M, Tafti M (2001) MAO-A and COMT polymorphisms and gene effects in narcolepsy. Mol Psychiatry 6(4):367–372. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  31. Dauvilliers Y, Tafti M, Landolt HP (2015) Catechol-O-methyltransferase, dopamine, and sleep-wake regulation. Sleep Med Rev 22:47–53PubMedCrossRefGoogle Scholar
  32. De Gregori M, Garbin G, De Gregori S, Minella CE, Bugada D, Lisa A, Govoni S, Regazzi M, Allegri M, Ranzani GN (2013) Genetic variability at COMT but not at OPRM1 and UGT2B7 loci modulates morphine analgesic response in acute postoperative pain. Eur J Clin Pharmacol 69(9):1651–1658. doi: 10.1007/s00228-013-1523-7 PubMedCrossRefGoogle Scholar
  33. de Lau LM, Verbaan D, Marinus J, Heutink P, van Hilten JJ (2012) Catechol-O-methyltransferase Val158Met and the risk of dyskinesias in Parkinson’s disease. Mov Disord 27(1):132–135. doi: 10.1002/mds.23805 PubMedCrossRefGoogle Scholar
  34. De Marchis ML, Barbanti P, Palmirotta R, Egeo G, Aurilia C, Fofi L, Piroso S, Ialongo C, Della-Morte D, D'Andrea G, Ferroni P, Guadagni F (2015) Look beyond Catechol-O-Methyltransferase genotype for cathecolamines derangement in migraine: the BioBIM rs4818 and rs4680 polymorphisms study. J Headache Pain 16:520. doi: 10.1186/s10194-015-0520-x PubMedCrossRefGoogle Scholar
  35. Diatchenko L, Slade GD, Nackley AG, Bhalang K, Sigurdsson A, Belfer I, Goldman D, Xu K, Shabalina SA, Shagin D, Max MB, Makarov SS, Maixner W (2005) Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum Mol Genet 14(1):135–143. doi: 10.1093/hmg/ddi013 PubMedCrossRefGoogle Scholar
  36. Diatchenko L, Nackley AG, Tchivileva IE, Shabalina SA, Maixner W (2007) Genetic architecture of human pain perception. Trends Genet 23(12):605–613. doi: 10.1016/j.tig.2007.09.004 PubMedCrossRefGoogle Scholar
  37. Diwadkar VA, Bustamante A, Rai H, Uddin M (2014) Epigenetics, stress, and their potential impact on brain network function: a focus on the schizophrenia diatheses. Front Psychiatry 5:71PubMedPubMedCentralGoogle Scholar
  38. Doyle AE, Goodman JE, Silber PM, Yager JD (2004) Catechol-O-methyltransferase low activity genotype (COMTLL) is associated with low levels of COMT protein in human hepatocytes. Cancer Lett 214(2):189–195PubMedCrossRefGoogle Scholar
  39. Du L, Merali Z, Poulter MO, Palkovits M, Faludi G, Anisman H (2014) Catechol-O-methyltransferase Val158Met polymorphism and altered COMT gene expression in the prefrontal cortex of suicide brains. Prog Neuro-Psychopharmacol Biol Psychiatry 50:178–183. doi: 10.1016/j.pnpbp.2013.12.016 CrossRefGoogle Scholar
  40. Eisenhofer G, Rundquist B, Aneman A, Friberg P, Dakak N, Kopin I, Jacobs M, Lenders J (1995) Regional release and removal of catecolamines and extraneuronal metabolism to metanephrines. J Clin Endocrinol Metab 80(10):3009–3017PubMedGoogle Scholar
  41. Ellingson T, Duddempudi S, Greenberg BD, Hooper D, Eisenhofer G (1999) Determination of differential activities of soluble and membrane bound catechol-O-methyltransferase in tissues and erythrocytes. J Chromatogr B Biomed Sci Appl 729(1–2):347–353PubMedCrossRefGoogle Scholar
  42. Eriksson AL, Skrtic S, Niklason A, Hultén LM, Wiklund O, Hedner T, Ohlsson C (2004) Association between the low activity genotype of catechol-O-methyltransferase and myocardial infarction in a hypertensive population. Eur Heart J 25(5):386–391PubMedCrossRefGoogle Scholar
  43. Eriksson AL, Suuriniemi M, Mahonen A, Cheng S, Ohlsson C (2005) The COMT val158met polymorphism is associated with early pubertal development, height and cortical bone mass in girls. Pediatr Res 58(1):71–77PubMedCrossRefGoogle Scholar
  44. Farrell SM, Tunbridge EM, Braeutigam S, Harrison PJ (2012) COMT Val(158)Met genotype determines the direction of cognitive effects produced by catechol-O-methyltransferase inhibition. Biol Psychiatry 71(6):538–544. doi: 10.1016/j.biopsych.2011.12.023 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Frank MJ, Fossella JA (2011) Neurogenetics and pharmacology of learning, motivation, and cognition. Neuropsychopharmacology 36(1):133–152. doi: 10.1038/npp.2010.96 PubMedCrossRefGoogle Scholar
  46. Fung M, Viveros O, O’Connor D (2008) Diseases of the adrenal medulla. Acta Physiol (Oxford) 192(2):325–335CrossRefGoogle Scholar
  47. Gatt JM, Burton KL, Williams LM, Schofield PR (2015) Specific and common genes implicated across major mental disorders: a review of meta-analysis studies. J Psychiatr Res 60:1–13PubMedCrossRefGoogle Scholar
  48. Ginsberg SD, Che S, Hashim A, Zavadil J, Cancro R, Lee SH, Petkova E, Sershen HW, Volavka J (2011) Differential regulation of catechol-O-methyltransferase expression in a mouse model of aggression. Brain Struct Funct 216(4):347–356PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gomes A, Correia G, Coelho M, Araújo JR, Pinho MJ, Teixeira AL, Medeiros R, Ribeiro L (2015) Dietary unsaturated fatty acids differently affect catecholamine handling by adrenal chromaffin cells. J Nutr Biochem 26(5):563–570PubMedCrossRefGoogle Scholar
  50. Green MJ, Chia TY, Cairns MJ, Wu J, Tooney PA, Scoot RJ, Carr VJ (2014) Catechol-O-methyltransferase (COMT) genotype moderates the effects of childhood trauma on cognition and symptoms in schizophrenia. J Psychiatr Res 49:43–50PubMedCrossRefGoogle Scholar
  51. Guimarães S, Moura D (2001) Vascular adrenoceptors: an update. Pharmacol Rev 53(2):319–356PubMedGoogle Scholar
  52. Gutiérrez B, Bertranpetit J, Guillamat R, Vallès V, Arranz MJ, Kerwin R, Fañanás L (1997) Association analysis of the catechol O-methyltransferase gene and bipolar affective disorder. Am J Psychiatry 154(1):113–115PubMedCrossRefGoogle Scholar
  53. Haase-Fielitz A, Haase M, Bellomo R, Lambert G, Matalanis G, Story D, Doolan L, Buxton B, Gutteridge G, Luft FC, Schunck WH, Dragun D (2009) Decreased catecholamine degradation associates with shock and kidney injury after cardiac surgery. J Am Soc Nephrol 20(6):1393–1403PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hagen K, Pettersen E, Stovner LJ, Skorpen F, Zwart JA (2006) The association between headache and Val158Met polymorphism in the catechol-O-methyltransferase gene: the HUNT study. J Headache Pain 7(2):70–74. doi: 10.1007/s10194-006-0281-7 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hagen K, Pettersen E, Stovner LJ, Skorpen F, Holmen J, Zwart JA (2007) High systolic blood pressure is associated with Val/Val genotype in the catechol-O-methyltransferase gene. The Nord-Trøndelag Health Study (HUNT). Am J Hypertens 20(1):21–26PubMedCrossRefGoogle Scholar
  56. Hall KT, Lembo AJ, Kirsch I, Ziogas DC, Douaiher J, Jensen KB, Conboy LA, Kelley JM, Kokkotou E, Kaptchuk TJ (2012) Catechol-O-methyltransferase val158met polymorphism predicts placebo effect in irritable bowel syndrome. PLoS One 7(10):e48135. doi: 10.1371/journal.pone.0048135 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hall KT, Nelson CP, Davis RB, Buring JE, Kirsch I, Mittleman MA, Loscalzo J, Samani NJ, Ridker PM, Kaptchuk TJ, Chasman DI (2014) Polymorphisms in catechol-O-methyltransferase modify treatment effects of aspirin on risk of cardiovascular disease. Arterioscler Thromb Vasc Biol 34(9):2160–2167PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hall KT, Loscalzo J, Kaptchuk TJ (2015a) Genetics and the placebo effect: the placebome. Trends Mol Med 21(5):285–294. doi: 10.1016/j.molmed.2015.02.009 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hall KT, Tolkin BR, Chinn GM, Kirsch I, Kelley JM, Lembo AJ, Kaptchuk TJ, Kokkotou E, Davis RB, Conboy LA (2015b) Conscientiousness is modified by genetic variation in catechol-O-methyltransferase to reduce symptom complaints in IBS patients. Brain Behav 5(1):39–44. doi: 10.1002/brb3.294 PubMedCrossRefGoogle Scholar
  60. Hall KT, Jablonski KA, Chen L, Harden M, Tolkin BR, Kaptchuk TJ, Bray GA, Ridker PM, Florez JC, Mukamal KJ, Chasman DI (2016a) Catechol-O-methyltransferase association with hemoglobin A1c. Metab Clin Exp 65(7):961–967PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hall KT, Kossowsky J, Oberlander TF, Kaptchuk TJ, Saul JP, Wyller VB, Fagermoen E, Sulheim D, Gjerstad J, Winger A, Mukamal KJ (2016b) Genetic variation in catechol-O-methyltransferase modifies effects of clonidine treatment in chronic fatigue syndrome. Pharmacogenomics J 16(5):454–460. doi: 10.1038/tpj.2016.53 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Hao H, Shao M, An J, Chen C, Feng X, Xie S, Gu Z, Chan P, Chinese Parkinson Study G (2014) Association of Catechol-O-Methyltransferase and monoamine oxidase B gene polymorphisms with motor complications in Parkinson's disease in a Chinese population. Parkinsonism Relat Disord 20(10):1041–1045. doi: 10.1016/j.parkreldis.2014.06.021 PubMedCrossRefGoogle Scholar
  63. Happonen P, Voutilainen S, Tuomainen TP, Salonen JT (2006) Catechol-O-methyltransferase gene polymorphism modifies the effect of coffee intake on incidence of acute coronary events. PLoS One 1:e117PubMedPubMedCentralCrossRefGoogle Scholar
  64. Harirah H, Thota C, Wentz MJ, Zaman W, Al-Hendy A (2009) Elevated expression of catechol-O-methyltransferase is associated with labor and increased prostaglandin E(2) production by human fetal membranes. Am J Obstet Gynecol 201(5):496.e491–496.e497CrossRefGoogle Scholar
  65. Harrison P, Tunbridge E (2008) Catechol-O-methyltransferase (COMT): a gene contributing to sex differences in brain function, and to sexual dimorphism in the predisposition to psychiatric disorders. Neuropsychopharmacology 33(13):3037–3045PubMedCrossRefGoogle Scholar
  66. Hartung JE, Eskew O, Wong T, Tchivileva IE, Oladosu FA, O’Buckley SC, Nackley AG (2015) Nuclear factor-kappa B regulates pain and COMT expression in a rodent model of inflammation. Brain Behav Immun 50:196–202. doi: 10.1016/j.bbi.2015.07.014 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Helkamaa T, Mannisto PT, Rauhala P, Cheng ZJ, Fickenberg P, Huotari M, Gogos JA, Karayiorgou M, Mervaala EMA (2003) Resistance to salt-induced hypertension in catechol-O-methyltransferase-gene disrupted mice. J Hypertens 21(12):2365–2374PubMedCrossRefGoogle Scholar
  68. Helkamaa T, Reenilä I, Tuominen E, Soinila S, Väanänen A, Tilgmann C, Rauhala P (2007) Increased catechol-O-methyltransferase activity and protein expression in OX-42-positive cells in the substantia nigra after lipopolysaccharide microinfusion. Neurochem Int 51(6–7):412–423PubMedCrossRefGoogle Scholar
  69. Herman AI, Jatlow PI, Gelernter J, Listman JB, Sofuoglu M (2013) COMT Val158Met modulates subjective responses to intravenous nicotine and cognitive performance in abstinent smokers. Pharmacogenomics J 13(6):490–497PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hernaus D, Collip D, Lataster J, Ceccarini J, Kenis G, Booij L, Pruessner J, Van Laere K, van Winkel R, van Os J, Myin-Germeys I (2013) COMT Val158Met genotype selectively alters prefrontal [18F]fallypride displacement and subjective feelings of stress in response to a psychosocial stress challenge. PLoS One 8(6):e65662PubMedPubMedCentralCrossRefGoogle Scholar
  71. Htun NC, Miyaki K, Zhao C, Muramatsu M, Sato N (2014) Epistasis effects of COMT and MTHFR on inter-individual differences in mental health: under the inverted U-shaped prefrontal dopamine model. Biochem Biophys Res Commun 451(4):574–579. doi: 10.1016/j.bbrc.2014.08.023 PubMedCrossRefGoogle Scholar
  72. Huh MM-O, Friedhoff AJ (1979) Multiple molecular forms of catechol-O-methyltransferase. J Biol Chem 254(2):299–308PubMedGoogle Scholar
  73. Huotari M, Santha M, Lucas LR, Karayiorgou M, Gogos JA, Männistö PT (2002) Effect of dopamine uptake inhibition on brain catecholamine levels and locomotion in catechol-O-methyltransferase-disrupted mice. J Pharmacol Exp Ther 303:1309–1316. doi: 10.1124/jpet.102.043042 PubMedCrossRefGoogle Scholar
  74. Ibarra FR, Armando I, Nowicki S, Carranza A, De Luca Sarobe V, Arrizurieta EE, Barontini M (2005) Dopamine is metabolised by different enzymes along the rat nephron. Pflugers Arch 450(3):185–191PubMedCrossRefGoogle Scholar
  75. Inoue K, Creveling CR (1991) Induction of catechol-O-methyltransferase in the luminal epithelium of rat uterus by progesterone. J Histochem Cytochem 39(6):823–828PubMedCrossRefGoogle Scholar
  76. Inoue K, Yoshizawa I, Creveling CR (1987) Immunocytochemical evidence for the coexistence of catecholestrogen and catechol-O-methyltransferase in the rat parotid gland. J Dent Res 66(11):1627–1629PubMedCrossRefGoogle Scholar
  77. Inoue K, Nishino T, Creveling CR (1991) Immunocytochemical evidence for the site of O-methylation in rat dental pulp. J Dent Res 70(6):966–969PubMedCrossRefGoogle Scholar
  78. Ira E, Zanoni M, Ruggeri M, Dazzan P, Tosato S (2013) COMT, neuropsychological function and brain structure in schizophrenia: a systematic review and neurobiological interpretation. J Psychiatry Neurosci 38(6):366–380PubMedPubMedCentralCrossRefGoogle Scholar
  79. Jasinska AJ, Stein EA, Kaiser J, Naumer MJ, Yalachkov Y (2014) Factors modulating neural reactivity to drug cues in addiction: a survey of human neuroimaging studies. Neurosci Biobehav Rev 38:1–16. doi: 10.1016/j.neubiorev.2013.10.013 PubMedCrossRefGoogle Scholar
  80. Jaspar M, Manard M, Dideberg V, Bours V, Maquet P, Collette F (2014) Influence of COMT genotype on antero-posterior cortical functional connectivity underlying interference resolution. Cereb Cortex 26:498–509. doi: 10.1093/cercor/bhu188 PubMedGoogle Scholar
  81. Jaspar M, Dideberg V, Bours V, Maquet P, Collette F (2015) Modulating effect of COMT Val158Met polymorphism on interference resolution during a working memory task. Brain Cogn 95:7–18PubMedCrossRefGoogle Scholar
  82. Ji W, Li N, Ju K, Zheng H, Yang C, Xu P, Chen S, Cao A, Chen X, Guo L (2015) Association of Catechol-O-methyltransferase val/met polymorphism with cognitive function in Gilles de la Tourette syndrome patients. Neurol Sci 36(4):561–570. doi: 10.1007/s10072-014-1992-1 PubMedCrossRefGoogle Scholar
  83. Jiang H, Xie T, Ramsden DB, Ho SL (2003) Human catechol-O-methyltransferase down-regulation by estradiol. Neuropharmacology 45(7):1011–1018PubMedCrossRefGoogle Scholar
  84. Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JA (2014) COMT gene and risk for Parkinson’s disease: a systematic review and meta-analysis. Pharmacogenet Genomics 24(7):331–339PubMedCrossRefGoogle Scholar
  85. Kambur O, Männistö PT (2010) Catechol-O-methyltransferase and pain. Int Rev Neurobiol 95:227–279PubMedCrossRefGoogle Scholar
  86. Kamide K, Kokubo Y, Yang J, Matayoshi T, Inamoto N, Takiuchi S, Horio T, Miwa Y, Yoshii M, Tomoike H, Tanaka C, Banno M, Okuda T, Kawano Y, Miyata T (2007) Association of genetic polymorphisms of ACADSB and COMT with human hypertension. J Hypertens 25(1):103–110PubMedCrossRefGoogle Scholar
  87. Kanasaki K, Palmsten K, Sugimoto H, Ahmad S, Hamano Y, Xie L, Parry S, Augustin HG, Gattone VH, Folkman J, Strauss JF, Kalluri R (2008) Deficiency in catechol-O-methyltransferase and 2-methoxyoestradiol is associated with pre-eclampsia. Nature 453(7198):1117–1121PubMedCrossRefGoogle Scholar
  88. Karhunen T, Tilgmann C, Ulmanen I, Julkunen I, Panula P (1994) Distribution of catechol-O-methyltransferase enzyme in rat tissues. J Histochem Cytochem 42(8):1079–1090PubMedCrossRefGoogle Scholar
  89. Karhunen T, Tilgmann C, Ulmanen I, Panula P (1995a) Catechol-O-methyltransferase (COMT) in rat brain: immunoelectron microscopic study with an antiserum against rat recombinant COMT protein. Neurosci Lett 187(1):57–60PubMedCrossRefGoogle Scholar
  90. Karhunen T, Tilgmann C, Ulmanen I, Panula P (1995b) Neuronal and non-neuronal catechol-O-methyltransferase in primary cultures of rat brain cells. Int J Dev Neurosci 13(8):825–834PubMedCrossRefGoogle Scholar
  91. Karling P, Danielsson Å, Wikgren M, Söderström I, Del-Favero J, Adolfsson R, Norrback KF (2011) The relationship between the val158met catechol-O-methyltransferase (COMT) polymorphism and irritable bowel syndrome. PLoS One 6(3):e18035. doi: 10.1371/journal.pone.0018035 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Khan WA, Moinuddin AAS (2011) Immunochemical studies on catechol-estrogen modified plasmid: possible role in rheumatoid arthritis. J Clin Immunol 31(1):22–29PubMedCrossRefGoogle Scholar
  93. Khan WA, Uddin M, Khan MWA, Chabbra H (2009) Catecholestrogens: possible role in systemic lupus erythematosus. Rheumatology 48(11):1345–1351PubMedCrossRefGoogle Scholar
  94. Kilford EJ, Dumontheil I, Wood NW, Blakemore SJ (2015) Influence of COMT genotype and affective distractors on the processing of self-generated thought. Cognit Affect Neurosci 10(6):777–782CrossRefGoogle Scholar
  95. Klebe S, Golmard JL, Nalls MA, Saad M, Singleton AB, Bras JM, Hardy J, Simon-Sanchez J, Heutink P, Kuhlenbaumer G, Charfi R, Klein C, Hagenah J, Gasser T, Wurster I, Lesage S, Lorenz D, Deuschl G, Durif F, Pollak P, Damier P, Tison F, Durr A, Amouyel P, Lambert JC, Tzourio C, Maubaret C, Charbonnier-Beaupel F, Tahiri K, Vidailhet M, Martinez M, Brice A, Corvol JC, French Parkinson’s Disease Genetics Study G, International Parkinson’s Disease Genomics C (2013) The Val158Met COMT polymorphism is a modifier of the age at onset in Parkinson’s disease with a sexual dimorphism. J Neurol Neurosurg Psychiatry 84(6):666–673. doi: 10.1136/jnnp-2012-304475 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kline RH, Exposto FG, O'Buckley SC, Westlund KN, Nackley AG (2015) Catechol-O-methyltransferase inhibition alters pain and anxiety-related volitional behaviors through activation of β-adrenergic receptors in the rat. Neuroscience 290:561–569PubMedPubMedCentralCrossRefGoogle Scholar
  97. Ko MKC, Ikeda S, Mieno-Naka M, Arai T, Zaidi SAH, Sato N, Muramatsu M, Sawabe M (2012) Association of COMT gene polymorphisms with systemic atherosclerosis in elderly Japanese. J Atheroscler Thromb 19(6):552–558PubMedCrossRefGoogle Scholar
  98. Kuo KL, Lin WC, Ho IL, Chang HC, Lee PY, Chung YT, Hsieh JT, Pu YS, Shi CS, Huang KH (2013) 2-Methoxyestradiol induces mitotic arrest, apoptosis, and synergistic cytotoxicity with arsenic trioxide in human urothelial carcinoma cells. PLoS One 8(8):e68703PubMedPubMedCentralCrossRefGoogle Scholar
  99. Kuroko Y, Fujii T, Yamazaki T, Akiyama T, Ishino K, Sano S, Mori H (2005) Contribution of catechol O-methyltransferase to the removal of accumulated interstitial catecholamines evoked by myocardial ischemia. Neurosci Lett 388(2):61–64PubMedCrossRefGoogle Scholar
  100. Kvetnansky R, Sabban EL, Palkovits M (2009) Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev 89(2):535–606PubMedCrossRefGoogle Scholar
  101. Laatikainen LM, Sharp T, Harrison PJ, Tunbridge EM (2013) Sexually dimorphic effects of catechol-O-methyltransferase (COMT) inhibition on dopamine metabolism in multiple brain regions. PLoS One 8(4):e61839. doi: 10.1371/journal.pone.0061839 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM (1996) Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6(3):243–250PubMedCrossRefGoogle Scholar
  103. Lautala P, Ulmanen I, Taskinen J (2001) Molecular mechanisms controlling the rate and specificity of catechol O-methylation by human soluble catechol O-methyltransferase. Mol Pharmacol 59(2):393–402PubMedGoogle Scholar
  104. Lee LO, Prescott CA (2014) Association of the catechol-O-methyltransferase val158met polymorphism and anxiety-related traits: a meta-analysis. Psychiatr Genet 24(2):52–69PubMedPubMedCentralCrossRefGoogle Scholar
  105. Lee YH, Song GG (2014) COMT Val158Met and PPARγ Pro12Ala polymorphisms and susceptibility to Alzheimer’s disease: a meta-analysis. Neurol Sci 35(5):643–651PubMedCrossRefGoogle Scholar
  106. Lee YH, Kim JH, Song GG (2015) Association between the COMT Val158Met polymorphism and fibromyalgia susceptibility and fibromyalgia impact questionnaire score: a meta-analysis. Rheumatol Int 35(1):159–166PubMedCrossRefGoogle Scholar
  107. Li K, Li W, Zou H (2014a) Catechol-O-methyltransferase Val158Met polymorphism and breast cancer risk in Asian population. Tumour Biol 35(3):2343–2350PubMedCrossRefGoogle Scholar
  108. Li W, Chen Y, Yin B, Zhang L (2014b) Pain in Parkinson’s disease associated with COMT gene polymorphisms. Behav Neurol 2014:304203. doi: 10.1155/2014/304203 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Light AR, White AT, Hughen RW, Light KC (2009) Moderate exercise increases expression for sensory, adrenergic and immune genes in chronic fatigue syndrome patients, but not in normal subjects. J Pain 10(10):1099–1112. doi: 10.1016/j.jpain.2009.06.003 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Liu Z, Luo X, Liu L, Zhao W, Guo S, Guo Y, Wang N, He H, Liao X, Ma W, Zhou H, Zhang T (2013) Histone acetyltransferase p300 promotes MKL1-mediated transactivation of catechol-O-methyltransferase gene. Acta Biochim Biophys Sin Shanghai 45(12):1002–1010PubMedCrossRefGoogle Scholar
  111. Liu C, Kraja AT, Smith JA, Brody JA, Franceschini N, Bis JC, Rice K, Morrison AC, Lu Y, Weiss S, Guo X, Palmas W, Martin LW, Chen Y-DI, Surendran P, Drenos F, Cook JP, Auer PL, Chu AY, Giri A, Zhao W, Jakobsdottir J, Lin L-A, Stafford JM, Amin N, Mei H, Yao J, Voorman A, Consortium CHDE, Exome BPC, Go TDC, Consortium TDG, Larson MG, Grove ML, Smith AV, Hwang S-J, Chen H, Huan T, Kosova G, Stitziel NO, Kathiresan S, Samani N, Schunkert H, Deloukas P, Myocardial Infarction G, Consortia CAE, Li M, Fuchsberger C, Pattaro C, Gorski M, Consortium CK, Kooperberg C, Papanicolaou GJ, Rossouw JE, Faul JD, Kardia SLR, Bouchard C, Raffel LJ, Uitterlinden AG, Franco OH, Vasan RS, O'Donnell CJ, Taylor KD, Liu K, Bottinger EP, Gottesman O, Daw EW, Giulianini F, Ganesh S, Salfati E, Harris TB, Launer LJ, Dorr M, Felix SB, Rettig R, Volzke H, Kim E, Lee W-J, Lee IT, Sheu WHH, Tsosie KS, Edwards DRV, Liu Y, Correa A, Weir DR, Volker U, Ridker PM, Boerwinkle E, Gudnason V, Reiner AP, van Duijn CM, Borecki IB, Edwards TL, Chakravarti A, Rotter JI, Psaty BM, Loos RJF, Fornage M, Ehret GB, Newton-Cheh C, Levy D, Chasman DI (2016) Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat Genet 48(10):1162–1170. doi: 10.1038/ng.3660 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Löbel M, Mooslechner AA, Bauer S, Günther S, Letsch A, Hanitsch LG, Grabowski P, Meisel C, Volk H-D, Scheibenbogen C (2015) Polymorphism in COMT is associated with IgG3 subclass level and susceptibility to infection in patients with chronic fatigue syndrome. J Transl Med 13(1):264. doi: 10.1186/s12967-015-0628-4 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Loggia ML, Jensen K, Gollub RL, Wasan AD, Edwards RR, Kong J (2011) The catechol-O-methyltransferase (COMT) val158met polymorphism affects brain responses to repeated painful stimuli. PLoS One 6(11):e27764. doi: 10.1371/journal.pone.0027764 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Lott SA, Burghardt PR, Burghardt KJ, Bly MJ, Grove TB, Ellingrod VL (2013) The influence of metabolic syndrome, physical activity and genotype on catechol-O-methyl transferase promoter-region methylation in schizophrenia. Pharmacogenomics J 13(3):264–271PubMedCrossRefGoogle Scholar
  115. Loughead J, Wileyto EP, Valdez JN, Sanborn P, Tang K, Strasser AA, Ruparel K, Ray R, Gur RC, Lerman C (2009) Effect of abstinence challenge on brain function and cognition in smokers differs by COMT genotype. Mol Psychiatry 14(8):820–826. doi: 10.1038/mp.2008.132 PubMedCrossRefGoogle Scholar
  116. Lundström K, Tenhunen J, Tilgmann C, Karhunen T, Panula P, Ulmanen I (1995) Cloning, expression and structure of catechol-O-methyltransferase. Biochim Biophys Acta 1251(1):1–10PubMedCrossRefGoogle Scholar
  117. Magina S, Moura E, Serrão MP, Moura D, Vieira-Coelho MA (2013) Catechol-O-methyltransferase activity is higher in psoriasis patients and is down–regulated by narrowband ultraviolet B treatment. Eur J Dermatol 23(1):49–52PubMedGoogle Scholar
  118. Mailander PC, Meza JL, Higginbotham S, Chakravarti D (2006) Induction of A·T to G·C mutations by erroneous repair of depurinated DNA following estrogen treatment of the mammary gland of ACI rats. J Steroid Biochem Mol Biol 101(4–5):204–215PubMedCrossRefGoogle Scholar
  119. Männistö PT, Kaakkola S (1999) Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev 51(4):593–628PubMedGoogle Scholar
  120. Martínez-Jauand M, Sitges C, Rodríguez V, Picornell A, Ramon M, Buskila D, Montoya P (2013) Pain sensitivity in fibromyalgia is associated with catechol-O-methyltransferase (COMT) gene. Eur J Pain 17(1):16–27PubMedCrossRefGoogle Scholar
  121. Masuda M, Tsunoda M, Imai K (2006) Low catechol-O-methyltransferase activity in the brain and blood pressure regulation. Biol Pharm Bull 29(2):202–205PubMedCrossRefGoogle Scholar
  122. Matsumoto M, Weickert CS, Akil M, Lipska B, Hyde T, Herman M, Kleinman J, Weinberger D (2003) Catechol O-methyltransferase mRNA expression in human and rat brain: evidence for a role in cortical neuronal function. Neuroscience 116(1):127–137PubMedCrossRefGoogle Scholar
  123. McCane AM, Czachowski CL, Lapish CC (2014) Tolcapone suppresses ethanol intake in alcohol-preferring rats performing a novel cued access protocol. Alcohol Clin Exp Res 38(9):2468–2478. doi: 10.1111/acer.12515 PubMedPubMedCentralCrossRefGoogle Scholar
  124. McLeod HL, Fang L, Luo X, Scott EP, Evans WE (1994) Ethnic differences in erythrocyte catechol-O-methyltransferase activity in black and white Americans. J Pharmacol Exp Ther 270(1):26PubMedGoogle Scholar
  125. Meister B, Bean AJ, Aperia A (1993) Catechol-O-methyltransferase mRNA in the kidney and its appearance during ontogeny. Kidney Int 44:726–733PubMedCrossRefGoogle Scholar
  126. Mier D, Kirsch P, Meyer-Lindenberg A (2010) Neural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis. Mol Psychiatry 15(9):918–927PubMedCrossRefGoogle Scholar
  127. Mione V, Canterini S, Brunamonti E, Pani P, Donno F, Fiorenza MT, Ferraina S (2015) Both the COMT Val158Met single-nucleotide polymorphism and sex-dependent differences influence response inhibition. Front Behav Neurosci 9:127. doi: 10.3389/fnbeh.2015.00127 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Miyaki K, Htun NC, Song Y, Ikeda S, Muramatsu M, Shimbo T (2012) The combined impact of 12 common variants on hypertension in Japanese men, considering GWAS results. J Hum Hypertens 26(7):430–436PubMedCrossRefGoogle Scholar
  129. Muellner J, Gharrad I, Habert MO, Kas A, Martini JB, Cormier-Dequaire F, Tahiri K, Vidailhet M, Meier N, Brice A, Schuepbach M, Mallet A, Hartmann A, Corvol JC (2015) Dopaminergic denervation severity depends on COMT Val158Met polymorphism in Parkinson’s disease. Parkinsonism Relat Disord 21(5):471–476. doi: 10.1016/j.parkreldis.2015.02.009 PubMedCrossRefGoogle Scholar
  130. Myöhänen TT, Schendzielorz N, Männistö PT (2010) Distribution of catechol-O-methyltransferase (COMT) proteins and enzymatic activities in wild-type and soluble COMT deficient mice. J Neurochem 113(6):1632–1643PubMedGoogle Scholar
  131. Nackley AG, Shabalina SA, Tchivileva IE, Satterfield SK, Korchynskyi O, Makarov S, Maixner W, Diatchenko LB (2006) Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314(5807):1930–1933PubMedCrossRefGoogle Scholar
  132. Nackley AG, Tan KS, Fecho K, Flood P, Diatchenko L, Maixner W (2007) Catechol-O-methyltransferase inhibition increases pain sensitivity through activation of both beta2- and beta3-adrenergic receptors. Pain 128(3):199–208PubMedCrossRefGoogle Scholar
  133. Nagai M, Conney AH, Zhu BT (2004) Strong inhibitory effects of common tea catechins and bioflavonoids on the O-methylation of catechol estrogens catalyzed by human liver cytosolic catechol-O-methyltransferase. Drug Metab Dispos 32(5):497–504PubMedCrossRefGoogle Scholar
  134. Nakazato T, Akiyama A (2002) Behavioral activity and stereotypy in rats induced by L-DOPA metabolites: a possible role in the adverse effects of chronic L-DOPA treatment of Parkinson’s disease. Brain Res 930(1–2):134–142PubMedCrossRefGoogle Scholar
  135. Nedic G, Nikolac M, Borovecki F, Hajnsek S, Muck-Seler D, Pivac N (2010) Association study of a functional catechol-O-methyltransferase polymorphism and smoking in healthy Caucasian subjects. Neurosci Lett 473(3):216–219. doi: 10.1016/j.neulet.2010.02.050 PubMedCrossRefGoogle Scholar
  136. Nedic G, Nikolac M, Sviglin KN, Muck-Seler D, Borovecki F, Pivac N (2011) Association study of a functional catechol-O-methyltransferase (COMT) Val108/158Met polymorphism and suicide attempts in patients with alcohol dependence. Int J Neuropsychopharmacol 14(3):377–388. doi: 10.1017/S1461145710001057 PubMedCrossRefGoogle Scholar
  137. Nissinen E, Männistö PT (2010) Biochemistry and pharmacology of catechol-O-methyltransferase inhibitors. Int Rev Neurobiol 95:73–118PubMedCrossRefGoogle Scholar
  138. Nohesara S, Ghadirivasfi M, Mostafavi S, Eskandari MR, Ahmadkhaniha H, Thiagalingam S, Abdolmaleky HM (2011) DNA hypomethylation of MB-COMT promoter in the DNA derived from saliva in schizophrenia and bipolar disorder. J Psychiatr Res 45(11):1432–1438PubMedCrossRefGoogle Scholar
  139. Nomura T, Inoue K, Creveling CR, Komatsu F, Ohta N, Chino T, Karasawa N, Nagatsu I (1996) Immunocytochemical localization of aromatic L-amino acid decarboxylase and catechol-O-methyltransferase in blood vessel wall of the human dental pulp. Brain Res 735(2):314–316PubMedCrossRefGoogle Scholar
  140. Odlind C, Reenilä I, Männistö PT, Ekblom J, Hansell P (2001) The role of dopamine-metabolizing enzymes in the regulation of renal sodium excretion in the rat. Pflugers Arch 442(4):505–510PubMedCrossRefGoogle Scholar
  141. Odlind C, Reenilä I, Männistö PT, Juvonen R, Uhlén S, Gogos JA, Karayiorgou M, Hansell P (2002) Reduced natriuretic response to acute sodium loading in COMT gene deleted mice. BMC Physiol 2:14. doi: 10.1186/1472-6793-2-14 PubMedPubMedCentralCrossRefGoogle Scholar
  142. Ooshima K, Ozaki S, Tabuchi M, Higashino H, Honda E, Park A, Arima S, Munakata H (2009) Decreased expression of catechol-O-methyltransferase in the renal cortex of malignant spontaneously hypertensive rats. Tohoku J Exp Med 219(4):331–336PubMedCrossRefGoogle Scholar
  143. Opmeer EM, Kortekaas R, van Tol MJ, van der Wee NJ, Woudstra S, van Buchem MA, Penninx BW, Veltman DJ, Aleman A (2013) Influence of COMT val158met genotype on the depressed brain during emotional processing and working memory. PLoS One 8(9):e73290PubMedPubMedCentralCrossRefGoogle Scholar
  144. Oster M, Muráni E, Ponsuksili S, D'Eath RB, Turner SP, Evans G, Thölking L, Kurt E, Klont R, Foury A, Mormède P, Wimmers K (2014) Hepatic expression patterns in psychosocially high-stressed pigs suggest mechanisms following allostatic principles. Physiol Behav 10(128):159–165CrossRefGoogle Scholar
  145. Øverbye A, Seglen PO (2009) Phosphorylated and non-phosphorylated forms of catechol O-methyltransferases in rat liver, brain and other tissues. Biochem J 417(2):535–545PubMedCrossRefGoogle Scholar
  146. Pap D, Gonda X, Molnar E, Lazary J, Benko A, Downey D, Thomas E, Chase D, Toth ZG, Mekli Z, Platt H, Payton A, Elliot R, Anderson IM, Deakin JF, Bagdy G, Juhasz G (2012) Genetic variants in the catechol-O-methyltransferase gene are associated with impulsivity and executive function: relevance for major depression. Am J Med Genet B 159B(8):928–940CrossRefGoogle Scholar
  147. Papaleo F, Crawley JN, Song J, Lipska BK, Pickel J, Weinberger DR, Chen J (2008) Genetic dissection of the role of catechol-O-methyltransferase in cognition and stress reactivity in mice. J Neurosci 28(35):8709–8723PubMedPubMedCentralCrossRefGoogle Scholar
  148. Peerbooms O, Rutten BP, Collip D, Lardinois M, Lataster T, Thewissen V, Rad SM, Drukker M, Kenis G, van Os J, Myin-Germeys I, van Winkel R (2012) Evidence that interactive effects of COMT and MTHFR moderate psychotic response to environmental stress. Acta Psychiatr Scand 125(3):247–256. doi: 10.1111/j.1600-0447.2011.01806.x PubMedCrossRefGoogle Scholar
  149. Pérez-Sepúlveda A, Torres MJ, Valenzuela FJ, Larraín R, Figueroa-Diesel H, Galaz J, Nien JK, Serra R, Michea L, Illanes SE (2012) Low 2-methoxyestradiol levels at the first trimester of pregnancy are associated with the development of pre-eclampsia. Prenat Diagn 32(11):1053–1058PubMedCrossRefGoogle Scholar
  150. Pihlavisto P, Reenilä I (2002) Separation methods for catechol O-methyltransferase activity assay; physiological and pathophysiological relevance. J Chromatogr B 781(1–2):359–372CrossRefGoogle Scholar
  151. Prasad P, Kumar KM, Ammini AC, Gupta A, Gupta R, Thelma BK (2008) Association of dopaminergic pathway gene polymorphisms with chronic renal insufficiency among Asian Indians with type-2 diabetes. BMC Genet 9:26. doi: 10.1186/1471-2156-9-26 PubMedPubMedCentralCrossRefGoogle Scholar
  152. Quezada M, Alvarez M, Peña OA, Henríquez S, d’Alençon CA, Lange S, Oliva B, Owen GI, Allende MI (2013) Antiangiogenic, antimigratory and antiinflammatory effects of 2-methoxyestradiol in zebrafish larvae. Comp Biochem Physiol 157(2):141–149Google Scholar
  153. Rakvåg TT, Ross JR, Sato H, Skorpen F, Kaasa S, Klepstad P (2008) Genetic variation in the catechol-O-methyltransferase (COMT) gene and morphine requirements in cancer patients with pain. Mol Pain 4:64. doi: 10.1186/1744-8069-4-64 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Redell JB, Dash PK (2007) Traumatic brain injury stimulates hippocampal catechol-O-methyltransferase expression in microglia. Neurosci Lett 413(1):36–41PubMedCrossRefGoogle Scholar
  155. Reenilä I, Männistö PT (2001) Catecholamine metabolism in the brain by membrane-bound and soluble catechol-O-methyltransferase (COMT) estimated by enzyme kinectic values. Med Hypotheses 57(5):628–632PubMedCrossRefGoogle Scholar
  156. Reenilä I, Tuomainen P, Soinila S, Männistö PT (1997) Increase of catechol-O-methyltransferase activity in rat brain microglia after intrastriatal infusion of luorocitrate, a glial toxin. Neurosci Lett 230(3):155–158PubMedCrossRefGoogle Scholar
  157. Reyes-Gibby CC, Shete S, Rakvåg T, Bhat SV, Skorpen F, Bruera E, Kaasa S, Klepstad P (2007) Exploring joint effects of genes and the clinical efficacy of morphine for cancer pain: OPRM1 and COMT gene. Pain 130(1–2):25–30PubMedCrossRefGoogle Scholar
  158. Rivest J, Barclay CL, Suchowersky O (1999) COMT inhibitors in Parkinson’s disease. Can J Neurol Sci 26:S34–S38PubMedCrossRefGoogle Scholar
  159. Roten LT, Fenstad MH, Forsmo S, Johnson MP, Moses EK, Austgulen R, Skorpen F (2011) A low COMT activity haplotype is associated with recurrent preeclampsia in a Norwegian population cohort (HUNT2). Mol Hum Reprod 17(7):439–446PubMedPubMedCentralCrossRefGoogle Scholar
  160. Rutherford KJ, Dagget V (2009) A hotspot of inactivation: the A22S and V108M polymorphisms individually destabilize the active site structure of catechol O-methyltransferase. Biochemistry 48(27):6450–6460PubMedPubMedCentralCrossRefGoogle Scholar
  161. Rutherford KJ, Alphandéry E, McMillan A, Dagget V, Parson WW (2008) The V108M mutation decreases the structural stability of catechol-O-methyltransferase. Biochim Biophys Acta 1784(7-8):1098–1105PubMedCrossRefGoogle Scholar
  162. Sadhasivam S, Chidambaran V, Olbrecht VA, Esslinger HR, Zhang K, Zhang X, Martin LJ (2014) Genetics of pain perception, COMT and postoperative pain management in children. Pharmacogenomics 15(3):277–284. doi: 10.2217/pgs.13.248 PubMedPubMedCentralCrossRefGoogle Scholar
  163. Salama S, Ho S-L, Wang H-Q, Tenhunen J, Tilgmann C, Al-Hendy A (2006a) Hormonal regulation of catechol-O-methyl transferase activity in women with uterine leiomyomas. Fertil Steril 86(1):259–262PubMedCrossRefGoogle Scholar
  164. Salama SA, Nasr AB, Dubey RK, Al-Hendy A (2006b) Estrogen metabolite 2-methoxyestradiol induces apoptosis and inhibits cell proliferation and collagen production in rat and human leiomyoma cells: a potential medicinal treatment for uterine fibroids. J Soc Gynecol Investig 13(8):542–550PubMedCrossRefGoogle Scholar
  165. Salama SA, Jamaluddin M, Kumar R, Hassan MH, Al-Hendy A (2007) Progesterone regulates catechol-O-methyl transferase gene expression in breast cancer cells: distinct effect of progesterone receptor isoforms. J Steroid Biochem Mol Biol 107(3–5):253–261PubMedPubMedCentralCrossRefGoogle Scholar
  166. Salama SA, Kamel MW, Botting S, Salih SM, Borahay MA, Hamed AA, Kilic GS, Saeed M, Williams MY, Diaz-Arrastia CR (2009) Catechol-O-methyltransferase expression and 2-methoxyestradiol affect microtubule dynamics and modify steroid receptor signaling in leiomyoma cells. PLoS One 4(10):e7356PubMedPubMedCentralCrossRefGoogle Scholar
  167. Salih SM, Jamaluddin M, Salama S, Fadl AA, Nagamani M, Al-Hendy A (2008a) Regulation of catechol O-methyltransferase expression in granulosa cells: a potential role for follicular arrest in polycistic ovary syndrome. Fertil Steril 89(3):1414–1421PubMedCrossRefGoogle Scholar
  168. Salih SM, Salama SA, Fadl AA, Nagamani M, Al-Hendy A (2008b) Expression and cyclic variations of catechol-O-methyl transferase in human endometrial stroma. Fertil Steril 90(3):789–797PubMedCrossRefGoogle Scholar
  169. Sannino S, Gozzi A, Cerasa A, Piras F, Scheggia D, Managò F, Damiano M, Galbusera A, Erickson LC, De Pietri Tonelli D, Bifone A, Tsaftaris SA, Caltagirone C, Weinberger DR, Spalletta G, Papaleo F (2015) COMT genetic reduction produces sexually divergent effects on cortical anatomy and working memory in mice and humans. Cereb Cortex 25(9):2529–2541PubMedCrossRefGoogle Scholar
  170. Sasaki M, Kaneuchi M, Sakuragi N, Dahiya R (2003) Multiple promoters of catechol-O-methyltransferase gene are selectively inactivated by CpG hypermethylation in endometrial cancer. Cancer Res 63(12):3101–3106PubMedGoogle Scholar
  171. Schendzielorz N, Rysa A, Reenilä I, Raasmaja A, Mannisto PT (2011) Complex estrogenic regulation of catechol-O-methyltransferase (COMT) in rats. J Physiol Pharmacol 62(4):483–490PubMedGoogle Scholar
  172. Shand FHW, Langenbach SY, Keenan CR, Ma SP, Wheaton BJ, Schuliga MJ, Ziogas J, Stewart AG (2011) In vitro and in vivo evidence for anti-inflammatory properties of 2-methoxyestradiol. J Pharmacol Exp Ther 336(3):962–972PubMedCrossRefGoogle Scholar
  173. Shen X, Wu Y, Guan T, Wang X, Qian M, Lin M, Shen Z, Sun J, Zhong H, Yang J, Li L, Yuan Y (2014a) Association analysis of COMT/MTHFR polymorphisms and major depressive disorder in Chinese Han population. J Affect Disord 161:73–78. doi: 10.1016/j.jad.2014.03.008 PubMedCrossRefGoogle Scholar
  174. Shen Z, Wu Y, Chen X, Chang X, Zhou Q, Zhou J, Ying H, Zheng J, Duan T, Wang K (2014b) Decreased maternal serum 2-methoxyestradiol levels are associated with the development of preeclampsia. Cell Physiol Biochem 34(6):2189–2199PubMedCrossRefGoogle Scholar
  175. Shield AJ, Thomae BA, Eckloff BW, Wieben ED, Weinshilboum RM (2004) Human catechol O-methyltransferase genetic variation: gene resequencing and functional characterization of variant allozymes. Mol Psychiatry 9(2):151–160PubMedCrossRefGoogle Scholar
  176. Siebert AE, Sanchez AL, Dinda S, Moudgil VK (2011) Effects of estrogen metabolite 2-methoxyestradiol on tumor suppressor protein p53 and proliferation of breast cancer cells. Syst Biol Reprod Med 57(6):279–287PubMedCrossRefGoogle Scholar
  177. Singh JP, Volavka J, Czobor P, Van Dorn RA (2012) A meta-analysis of the Val158Met COMT polymorphism and violent behavior in schizophrenia. PLoS One 7(8):e43423PubMedPubMedCentralCrossRefGoogle Scholar
  178. Smit NPM, Pavel S (1995) Induction of cytotoxicity in melanoma cells through inhibition of catechol-O-methyltransferase. Biochem Pharmacol 50(12):1955–1962PubMedCrossRefGoogle Scholar
  179. Smith CT, Swift-Scanlan T, Boettiger CA (2014a) Genetic polymorphisms regulating dopamine signaling in the frontal cortex interact to affect target detection under high working memory load. J Cogn Neurosci 26(2):395–407PubMedCrossRefGoogle Scholar
  180. Smith SB, Reenilä I, Männistö PT, Slade GD, Maixner W, Diatchenko L, Nackley AG (2014b) Epistasis between polymorphisms in COMT, ESR1, and GCH1 influences COMT enzyme activity and pain. Pain 155(11):2390–2399PubMedPubMedCentralCrossRefGoogle Scholar
  181. Soeiro-de-Souza MG, Bio DS, David DP, Rodrigues dos Santos DJ, Kerr DS, Gattaz WF, Machado-Vieira R, Moreno RA (2012) COMT Met (158) modulates facial emotion recognition in bipolar I disorder mood episodes. J Affect Disord 136(3):370–376PubMedCrossRefGoogle Scholar
  182. Soeiro-De-Souza MG, Stanford MS, Bio DS, Machado-Vieira R, Moreno RA (2013) Association of the COMT Met158 allele with trait impulsivity in healthy young adults. Mol Med Rep 7(4):1067–1072PubMedGoogle Scholar
  183. Sofuoglu M, DeVito EE, Waters AJ, Carroll KM (2013) Cognitive enhancement as a treatment for drug addictions. Neuropharmacology 64:452–463. doi: 10.1016/j.neuropharm.2012.06.021 PubMedCrossRefGoogle Scholar
  184. Souteiro P, Vieira-Coelho MA, Serrão MP, Magina S (2013) Catechol-O-methyltransferase activity in psoriasis patients treated with psoralen plus ultraviolet A therapy. Photodermatol Photoimmunol Photomed 29(5):227–232PubMedCrossRefGoogle Scholar
  185. Sozio P, Cerasa LS, Abbadessa A, Di Stefano A (2012) Designing prodrugs for the treatment of Parkinson’s disease. Expert Opin Drug Discovery 7(5):385–406. doi: 10.1517/17460441.2012.677025 CrossRefGoogle Scholar
  186. Sparta M, Alexandrova AN (2012) How metal substitution affects the enzymatic activity of catechol-O-methyltransferase. PLoS One 7(10):e47172. doi: 10.1371/journal.pone.0047172 PubMedPubMedCentralCrossRefGoogle Scholar
  187. Stabile LP, Davis AL, Gubish CT, Hopkins TM, Luketich JD, Christie N, Finkelstein S, Siegfried JM (2002) Human non-small cell lung tumors and cells derived from normal lung express both estrogen receptor alpha and beta and show biological responses to estrogen. Cancer Res 62(7):2141–2150PubMedGoogle Scholar
  188. Stubelius A, Andréasson E, Karlsson A, Ohlsson C, Tivesten A, Islander U, Carlsten H (2011) Role of 2-methoxyestradiol as inhibitor of arthritis and osteoporosis in a model of postmenopausal rheumatoid arthritis. Clin Immunol 140(1):37–46PubMedCrossRefGoogle Scholar
  189. Sun WP, Li D, Lun YZ, Gong XJ, Sun SX, Guo M, Jing LX, Zhang LB, Xiao FC, Zhou SS (2012) Excess nicotinamide inhibits methylation-mediated degradation of catecholamines in normotensives and hypertensives. Hypertens Res 35(2):180–185PubMedCrossRefGoogle Scholar
  190. Sundermann EE, Bishop JR, Rubin LH, Little DM, Meyer VJ, Martin E, Weber K, Cohen M, Maki PM (2015) Genetic predictor of working memory and prefrontal function in women with HIV. J Neurovirol 21(1):81–91. doi: 10.1007/s13365-014-0305-z PubMedCrossRefGoogle Scholar
  191. Suriyaprom K, Tungtrongchitr R, Harnroongroj T (2013) Impact of COMT Val 108/158 Met and DRD2 Taq1B gene polymorphisms on vulnerability to cigarette smoking of Thai males. J Mol Neurosci 49(3):544–549. doi: 10.1007/s12031-012-9844-z PubMedCrossRefGoogle Scholar
  192. Tammimäki A, Männistö PT (2012) Catechol-O-methyltransferase gene polymorphism and chronic human pain: a systematic review and meta-analysis. Pharmacogenet Genomics 22(9):673–691. doi: 10.1097/FPC.0b013e3283560c46 PubMedCrossRefGoogle Scholar
  193. Tammimaki A, Kaenmaki M, Kambur O, Kulesskaya N, Keisala T, Karvonen E, Garcia-Horsman JA, Rauvala H, Mannisto PT (2010) Effect of S-COMT deficiency on behavior and extracellular brain dopamine concentrations in mice. Psychopharmacology 211(4):389–401. doi: 10.1007/s00213-010-1944-2 PubMedCrossRefGoogle Scholar
  194. Tan X, Chen M (2014) Association between catechol-O-methyltransferase rs4680 (G>A) polymorphism and lung cancer risk. Diagn Pathol 9:192. doi: 10.1186/s13000-014-0192-x PubMedPubMedCentralCrossRefGoogle Scholar
  195. Tan HY, Chen Q, Sust S, Buckholtz JW, Meyers JD, Egan MF, Mattay VS, Meyer-Lindenberg A, Weinberger DR, Callicott JH (2007) Epistasis between catechol-O-methyltransferase and type II metabotropic glutamate receptor 3 genes on working memory brain function. Proc Natl Acad Sci U S A 104(30):12536–12541. doi: 10.1073/pnas.0610125104 PubMedPubMedCentralCrossRefGoogle Scholar
  196. Tanaka Y, Sasaki M, Shiina H, Tokizane T, Deguchi M, Hirata H, Hinoda Y, Okayama N, Suehiro Y, Urakami S, Kawakami T, Kaneuchi M, Pookot D, Igawa M, Okuyama A, Ishii N, Dahiya R (2006) Catechol-O-methyltransferase gene polymorphisms in benign prostatic hyperplasia and sporadic prostate cancer. Cancer Epidemiol Biomark Prev 15(2):238–244CrossRefGoogle Scholar
  197. Tchivileva IE, Nackley AG, Qian L, Wentworth S, Conrad M, Diatchenko LB (2009) Characterization of NF-kB-mediated inhibition of catechol-O-methyltransferase. Mol Pain 5(13):13. doi: 10.1186/1744-8069-5-13 PubMedPubMedCentralGoogle Scholar
  198. Teng Y, He C, Zuo X, Li X (2013) Catechol-O-methyltransferase and cytochrome P-450 1B1 polymorphisms and endometrial cancer risk: a meta-analysis. Int J Gynecol Cancer 23(3):422–430PubMedCrossRefGoogle Scholar
  199. Tenhunen J, Ulmanen I (1993) Production of rat soluble and membrane-bound catechol O-methyltransferase isoforms from bifunctional mRNAs. Biochem J 296(3):595–600PubMedPubMedCentralCrossRefGoogle Scholar
  200. Tenhunen J, Salminen M, Lundstrom K, Kiviluoto T, Savolainen R, Ulmanen I (1994) Genomic organization of the human catechol O-methyltransferase gene and its expression from two distinct promoters. Eur J Biochem 223(3):1049–1059PubMedCrossRefGoogle Scholar
  201. Tenorio-Laranga J, Männistö PT, Karayiorgou M, Gogos J, García-Horsman J (2009) Sex-dependent compensated oxidative stress in the mouse liver upon deletion of catechol O-methyltransferase. Biochem Pharmacol 77(9):1541–1552PubMedCrossRefGoogle Scholar
  202. Tian T, Qin W, Liu B, Wang D, Wang J, Jiang T, Yu C (2013) Catechol-O-methyltransferase Val158Met polymorphism modulates gray matter volume and functional connectivity of the default mode network. PLoS One 8(10):e78697PubMedPubMedCentralCrossRefGoogle Scholar
  203. Tong X, Li Z, Wu Y, Fu X, Zhang Y, Fan H (2014) COMT 158G/A and CYP1B1 432C/G polymorphisms increase the risk of endometriosis and adenomyosis: a meta-analysis. Eur J Obstet Gynecol Reprod Biol 179:17–21PubMedCrossRefGoogle Scholar
  204. Tsao D, Shabalina SA, Gauthier J, Dokholyan NV, Diatchenko L (2011) Disruptive mRNA folding increases translational efficiency of catechol-O-methyltransferase variant. Nucleic Acids Res 39(14):6201–6212PubMedPubMedCentralCrossRefGoogle Scholar
  205. Tsuji E, Okazaji K, Isaji M, Takeda K (2009) Crystal structures of the apo and holo form of rat catechol-O-methyltransferase. J Struct Biol 165(3):133–139PubMedCrossRefGoogle Scholar
  206. Tsunoda M, Takezawa K, Masuda M, Imai K (2002) Rat liver and kidney catechol-O-methyltransferase activity measured by high-performance liquid chromatography with fluorescence detection. Biomed Chromatogr 16(8):536–541PubMedCrossRefGoogle Scholar
  207. Tsunoda M, Tenhunen J, Tilgmann C, Arai H, Imai K (2003) Reduced membrane-bound catechol-O-methyltransferase in the liver of spontaneosly hypertensive rats. Hypertens Res 26(11):923–927PubMedCrossRefGoogle Scholar
  208. Tunbridge EM, Weinberger DR, Harrison PJ (2006) A novel protein isoform of catechol O-methyltransferase (COMT): brain expression analysis in schizophrenia and bipolar disorder and effect of Val158Met genotype. Mol Psychiatry 11(2):116–117PubMedCrossRefGoogle Scholar
  209. Tunbridge EM, Lane TA, Harrison PJ (2007) Expression of multiple catechol-o-methyltransferase (COMT) mRNA variants in human brain. Am J Med Genet B Neuropsychiatr Genet 144B(6):834–839PubMedCrossRefGoogle Scholar
  210. Tunbridge EM, Farrell SM, Harrison PJ, Mackay CE (2013) Catechol-O-methyltransferase (COMT) influences the connectivity of the prefrontal cortex at rest. NeuroImage 68(C):49–54PubMedPubMedCentralCrossRefGoogle Scholar
  211. Ulmanen I, Peränen J, Tenhunen J, Tilgmann C, Karhunen T, Panula P, Bernasconi L, Aubry J-P, Lundstrom K (1997) Expression and intracellular localization of catechol O-methyltransferase in transfected mammalian cells. Eur J Biochem 243(1–2):452–459PubMedCrossRefGoogle Scholar
  212. Ursini G, Bollati V, Fazio L, Porcelli A, Iacovelli L, Catalani A, Sinibaldi L, Gelao B, Romano R, Rampino A, Taurisano P, Mancini M, Di Giorgio A, Popolizio T, Baccarelli A, De Blasi A, Blasi G, Bertolino A (2011) Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity. J Neurosci 31(18):6692–6698PubMedCrossRefGoogle Scholar
  213. Valomon A, Holst SC, Bachmann V, Viola AU, Schmidt C, Zürcher J, Berger W, Cajochen C, Landolt HP (2014) Genetic polymorphisms of DAT1 and COMT differentially associate with actigraphy-derived sleep-wake cycles in young adults. Chronobiol Int 31(5):705–714PubMedCrossRefGoogle Scholar
  214. van Winkel R, Stefanis NC, Myin-Germeys I (2008) Psychosocial stress and psychosis. A review of the neurobiological mechanisms and the evidence for gene-stress interaction. Schizophr Bull 34(6):1095–1105. doi: 10.1093/schbul/sbn101 PubMedPubMedCentralCrossRefGoogle Scholar
  215. Vazquez-Alaniz F, Lumbreras-Márquez MI, Sandoval-Carrillo AA, Aguilar-Durá M, Méndez-Hernández EM, Barraza-Salas M, Castellanos-Juárez FX, Salas-Pacheco JM (2014) Association of COMT G675A and MTHFR C677T polymorphisms with hypertensive disorders of pregnancy in Mexican mestizo population. Pregnancy Hypertens 4(1):59–64PubMedGoogle Scholar
  216. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F (2011) Addiction: beyond dopamine reward circuitry. Proc Natl Acad Sci U S A 108(37):15037–15042. doi: 10.1073/pnas.1010654108 PubMedPubMedCentralCrossRefGoogle Scholar
  217. Voutilainen S, Tuomainen TP, Korhonen M, Mursu J, Virtanen JK, Happonen P, Alfthan G, Erlund I, North KE, Mosher MJ, Kauhanen J, Tiihonen J, Kaplan GA, Salonen JT (2007) Functional COMT Val158Met polymorphism, risk of acute coronary events and serum homocysteine: the Kuopio ischaemic heart disease risk factor study. PLoS One 2(1):e181PubMedPubMedCentralCrossRefGoogle Scholar
  218. Walton E, Liu J, Hass J, White T, Scholz M, Roessner V, Gollub R, Calhoun VD, Ehrlich S (2014) MB-COMT promoter DNA methylation is associated with working-memory processing in schizophrenia patients and healthy controls. Epigenetics 9:8CrossRefGoogle Scholar
  219. Wang L, Wu Q, Qiu P, Mirza A, McGuirk M, Kirschmeier P, Greene JR, Wang Y, Pickett CB, Liu S (2001) Analyses of p53 target genes in the human genome by bioinformatic and microarray approaches. J Biol Chem 276(47):43604–43610PubMedCrossRefGoogle Scholar
  220. Wang Y, Fang Y, Shen Y, Xu Q (2010) Analysis of association between the catechol-O-methyltransferase (COMT) gene and negative symptoms in chronic schizophrenia. Psychiatry Res 179(2):147–150. doi: 10.1016/j.psychres.2009.03.029 PubMedCrossRefGoogle Scholar
  221. Wang X, Wang Z, Wu Y, Yuan Y, Hou Z, Hou G (2014a) Association analysis of the catechol-O-methyltransferase/methylenetetrahydrofolate reductase genes and cognition in late-onset depression. Psychiatry Clin Neurosci 68(5):344–352PubMedCrossRefGoogle Scholar
  222. Wang Y, Wu Z, Qiao H, Zhang Y (2014b) A genetic association study of single nucleotide polymorphisms in GNbeta3 and COMT in elderly patients with irritable bowel syndrome. Med Sci Monit 20:1246–1254. doi: 10.12659/MSM.890315 PubMedPubMedCentralCrossRefGoogle Scholar
  223. Wardle MC, de Wit H, Penton-Voak I, Lewis G, Munafo MR (2013) Lack of association between COMT and working memory in a population-based cohort of healthy young adults. Neuropsychopharmacology 38(7):1253–1263. doi: 10.1038/npp.2013.24 PubMedPubMedCentralCrossRefGoogle Scholar
  224. Weisz J, Fritz-Wolz G, Clawson GA, Benedict CM, Abendroth C, Creveling CR (1998) Induction of nuclear catechol-O-methyltransferase by estrogens in hamster kidney: implications for estrogen-induced cancer. Carcinogenesis 19(7):1307–1312PubMedCrossRefGoogle Scholar
  225. Weisz J, Fritz-Wolz G, Gestl S, Clawson GA, Creveling CR, Liehr JG, Dabbs D (2000) Nuclear localization of catechol-O-methyltransferase in neoplastic and nonneoplastic mammary epithelial cells. Am J Pathol 156(6):1841–1848PubMedPubMedCentralCrossRefGoogle Scholar
  226. White TP, Loth E, Rubia K, Krabbendam L, Whelan R, Banaschewski T, Barker GJ, Bokde AL, Büchel C, Conrod P, Fauth-Bühler M, Flor H, Frouin V, Gallinat J, Garavan H, Gowland P, Heinz A, Ittermann B, Lawrence C, Mann K, Paillère ML, Nees F, Paus T, Pausova Z, Rietschel M, Robbins T, Smolka MN, Shergil LSS, Schumann G (2014) Sex differences in COMT polymorphism effects on prefrontal inhibitory control in adolescence. Neuropsychopharmacology 39(11):2560–2569. doi: 10.1038/npp.2014.107 PubMedPubMedCentralCrossRefGoogle Scholar
  227. Worda C, Sator MO, Schneeberger C, Jantschev T, Ferlitsch K, Huber JC (2003) Influence of the catechol-O-methyltransferase (COMT) codon 158 polymorphism on estrogen levels in women. Hum Reprod 18(2):262–266PubMedCrossRefGoogle Scholar
  228. Wu K, O'Keeffe D, Politis M, O'Keeffe G, Robbins T, Bose S, Brooks D, Piccini P, Barker R (2012) The catechol-O-methyltransferase Val(158)Met polymorphism modulates fronto-cortical dopamine turnover in early Parkinson’s disease: a PET study. Brain 135(Pt 8):2449–2457PubMedCrossRefGoogle Scholar
  229. Wu W, Wu Q, Hong X, Xiong G, Xiao Y, Zhou J, Wang W, Wu H, Zhou L, Song W, Dai H, Qiu H, Zhao Y (2015a) Catechol-O-methyltransferase inhibits colorectal cancer cell proliferation and invasion. Arch Med Res 46(1):17–23PubMedCrossRefGoogle Scholar
  230. Wu W, Wu Q, Hong X, Zhou L, Zhang J, You L, Wang W, Wu H, Dai H, Zhao Y (2015b) Catechol-O-methyltransferase, a new target for pancreatic cancer therapy. Cancer Sci 106(5):576–583PubMedPubMedCentralCrossRefGoogle Scholar
  231. Xia Y, Ma D, Hu J, Tang C, Wu Z, Liu L, Xin F (2012) Effect of metabotropic glutamate receptor 3 genotype on N-acetylaspartate levels and neurocognition in non-smoking, active alcoholics. Behav Brain Funct 8:42. doi: 10.1186/1744-9081-8-42 PubMedPubMedCentralCrossRefGoogle Scholar
  232. Xiao L, Tong M, Jin Y, Huang W, Li Z (2013) The l58Val/Met polymorphism of catechol-O-methyl transferase gene and prostate cancer risk: a meta-analysis. Mol Biol Rep 40(2):1835–1841PubMedCrossRefGoogle Scholar
  233. Xie T, Ho S-L, Ramsden D (1999) Characterization and implications of estrogenic down-regulation of human catechol-O-methyltransferase gene transcription. Mol Pharmacol 56(1):31–38PubMedGoogle Scholar
  234. Xing Y, Jia JP, Ji XJ, Tian T (2013) Estrogen associated gene polymorphisms and their interactions in the progress of Alzheimer’s disease. Prog Neurobiol 111:53–74. doi: 10.1016/j.pneurobio.2013.09.006 PubMedCrossRefGoogle Scholar
  235. Yager JD (2012) Catechol-O-methyltransferase: characteristics, polymorphisms and role in breast cancer. Drug Discov Today Dis Mech 9(1–2):41–46CrossRefGoogle Scholar
  236. Yager JD, Davidson NE (2006) Estrogen carcinogenesis in breast cancer. N Engl J Med 354(3):270–282PubMedCrossRefGoogle Scholar
  237. Yamazaki S, Sakakibara H, Takemura H, Shimoi K (2012) 4-Hydroxyestradiol induces γ-H2AX in the presence of an inhibitor of catechol-O-methyltransferase in human breast cancer MCF-7 cells. Genes Environ 34(3):129–135CrossRefGoogle Scholar
  238. Yang H, Ahn C, Jeung EB (2015) Differential expression of calcium transport genes caused by COMT inhibition in the duodenum, kidney and placenta of pregnant mice. Mol Cell Endocrinol 401:45–55. doi: 10.1016/j.mce.2014.11.020 PubMedCrossRefGoogle Scholar
  239. Zahid M, Kohli E, Saeed M, Rogan EG, Cavalieiri EL (2006) The greater reactivity of estradiol-3,4-quinone vs estradiol-2,3-quinone with DNA in the formation of depurinating adducts: implications for tumor-initiating activity. Chem Res Toxicol 19(1):164–172PubMedCrossRefGoogle Scholar
  240. Zahid M, Saeed M, Lu F, Gaikwad N, Rogan EG, Cavalieiri EL (2007) Inhibition of catechol-O-methyltransferase increases estrogen-DNA adduct formation. Free Radic Biol Med 43(11):1534–1540PubMedPubMedCentralCrossRefGoogle Scholar
  241. Zhang Y, Gaikwad N, Olson K, Zahid M, Cavalieiri EL, Rogan EG (2007) Cytochrome P450 isoforms catalyze formation of catechol estrogen quinones that react with DNA. Metab Clin Exp 56(7):887–894PubMedCrossRefGoogle Scholar
  242. Zhang MZ, Yao B, Fang X, Wang S, Smith JP, Harris RC (2009) Intrarenal dopaminergic system regulates renin expression. Hypertension 53(3):564–570PubMedPubMedCentralCrossRefGoogle Scholar
  243. Zhang L, Jin Y, Chen M, Huang M, Harvey RG, Blair IA, Penning TM (2011) Detoxication of structurally diverse polycyclic aromatic hydrocarbon (PAH) o-quinones by human recombinant catechol-O-methyltransferase (COMT) via O-methylation of PAH cathecols. J Biol Chem 286(29):25644–25654PubMedPubMedCentralCrossRefGoogle Scholar
  244. Zhang S, Zhang M, Zhang J (2014) Association of COMT and COMT-DRD2 interaction with creative potential. Front Hum Neurosci 8:216PubMedPubMedCentralGoogle Scholar
  245. Zhang X, Li J, Qin W, Yu C, Liu B, Jiang T (2015) The catechol-o-methyltransferase Val(158)Met polymorphism modulates the intrinsic functional network centrality of the parahippocampal cortex in healthy subjects. Sci Rep 5:10105. doi: 10.1038/srep10105 PubMedPubMedCentralCrossRefGoogle Scholar
  246. Zhao A, Cheng Y, Li X, Li Q, Wang L, Xu J, Xiang Y, Xing Q, He L, Zhao X (2011) Promoter hypomethylation of COMT in human placenta is not associated with the development of pre-eclampsia. Mol Hum Reprod 17(3):199–206PubMedCrossRefGoogle Scholar
  247. Zhu BT, Ezell E, Liehr JG (1994) Catechol-O-methyltransferase catalyzed rapid O-methylation of mutagenic flavonoids. J Biol Chem 269(1):292–299PubMedGoogle Scholar
  248. Zhu BT, Patel UK, Cai XC, Conney AH (2000) O-methylation of tea polyphenols catalyzed by human placental cytosolic catechol-O-methyltransferase. Drug Metab Dispos 28(9):1024–1030PubMedGoogle Scholar
  249. Zhu BT, Patel UK, Cai XM, Lee AJ, Conney AH (2001) Rapid conversion of tea catechins to monomethylated products by rat liver cytosolic catechol-O-methyltransferase. Xenobiotica 31(21):879–890PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Molecular Biology Center, Blood Bank and Transfusion DepartmentS. João HospitalPortoPortugal
  2. 2.Department of NeurologyS. João HospitalPortoPortugal
  3. 3.Department of Biomedicine, Faculty of MedicineUniversity of PortoPortoPortugal
  4. 4.Department of Public Health and Forensic Sciences, and Medical Education, Faculty of MedicineUniversity of PortoPortoPortugal
  5. 5.I3S – Instituto de Investigação e Inovação em SaúdeUniversity of PortoPortoPortugal

Personalised recommendations