Skip to main content

Hepatic Stellate Cells in Liver Fibrosis and siRNA-Based Therapy

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Vol. 172

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 172))

Abstract

Hepatic fibrosis is a reversible wound-healing response to either acute or chronic liver injury caused by hepatitis B or C, alcohol, and toxic agents. Hepatic fibrosis is characterized by excessive accumulation and reduced degradation of extracellular matrix (ECM). Excessive accumulation of ECM alters the hepatic architecture leading to liver fibrosis and cirrhosis. Cirrhosis results in failure of common functions of the liver. Hepatic stellate cells (HSC) play a major role in the development of liver fibrosis as HSC are the main source of the excessive production of ECM in an injured liver. RNA interference (RNAi) is a recently discovered therapeutic tool that may provide a solution to manage multiple diseases including liver fibrosis through silencing of specific gene expression in diseased cells. However, gene silencing using small interfering RNA (siRNA) is encountering many challenges in the body after systemic administration. Efficient and stable siRNA delivery to the target cells is a key issue for the development of siRNA therapeutic. For that reason, various viral and non-viral carriers for liver-targeted siRNA delivery have been developed. This review will cover the current strategies for the treatment of liver fibrosis as well as discussing non-viral approaches such as cationic polymers and lipid-based nanoparticles for targeted delivery of siRNA to the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian JE, Poelstra K, Kamps JA (2007) Addressing liver fibrosis with liposomes targeted to hepatic stellate cells. J Liposome Res 17(3-4):205–218. doi:10.1080/08982100701528047

    Article  CAS  PubMed  Google Scholar 

  • Alameh M, Dejesus D, Jean M, Darras V, Thibault M, Lavertu M, Buschmann MD, Merzouki A (2012) Low molecular weight chitosan nanoparticulate system at low N:P ratio for nontoxic polynucleotide delivery. Int J Nanomedicine 7:1399–1414. doi:10.2147/ijn.s26571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alcolado R, Arthur MJ, Iredale JP (1997) Pathogenesis of liver fibrosis. Clin Sci (Lond) 92(2):103–112

    Article  CAS  Google Scholar 

  • Ameres SL, Martinez J, Schroeder R (2007) Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130(1):101–112. doi:10.1016/j.cell.2007.04.037

    Article  CAS  PubMed  Google Scholar 

  • Arthur MJ (2000) Fibrogenesis II. Metalloproteinases and their inhibitors in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 279(2):G245–G249

    CAS  PubMed  Google Scholar 

  • Arthur MJ, Mann DA, Iredale JP (1998) Tissue inhibitors of metalloproteinases, hepatic stellate cells and liver fibrosis. J Gastroenterol Hepatol 13(Suppl):S33–S38

    CAS  PubMed  Google Scholar 

  • Asahina K, Sato H, Yamasaki C, Kataoka M, Shiokawa M, Katayama S, Tateno C, Yoshizato K (2002) Pleiotrophin/heparin-binding growth-associated molecule as a mitogen of rat hepatocytes and its role in regeneration and development of liver. Am J Pathol 160(6):2191–2205. doi:10.1016/s0002-9440(10)61167-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baba S, Fujii H, Hirose T, Yasuchika K, Azuma H, Hoppo T, Naito M, Machimoto T, Ikai I (2004) Commitment of bone marrow cells to hepatic stellate cells in mouse. J Hepatol 40(2):255–260

    Article  PubMed  Google Scholar 

  • Balazs DA, Godbey W (2011) Liposomes for use in gene delivery. J Drug Del. doi:10.1155/2011/326497

    Google Scholar 

  • Barros SA, Gollob JA (2012) Safety profile of RNAi nanomedicines. Adv Drug Deliv Rev 64(15):1730–1737. doi:10.1016/j.addr.2012.06.007

    Article  CAS  PubMed  Google Scholar 

  • Bartlett DW, Davis ME (2006) Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res 34(1):322–333. doi:10.1093/nar/gkj439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartlett DW, Davis ME (2007) Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconjug Chem 18(2):456–468. doi:10.1021/bc0603539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115(2):209–218. doi:10.1172/jci24282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beljaars L, Meijer DK, Poelstra K (2002) Targeting hepatic stellate cells for cell-specific treatment of liver fibrosis. Front Biosci 7:e214–e222

    Article  CAS  PubMed  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–366. doi:10.1038/35053110

    Article  CAS  PubMed  Google Scholar 

  • Blaner WS, O’Byrne SM, Wongsiriroj N, Kluwe J, D’Ambrosio DM, Jiang H, Schwabe RF, Hillman EM, Piantedosi R, Libien J (2009) Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim Biophys Acta 1791(6):467–473. doi:10.1016/j.bbalip.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  • Blessing T, Kursa M, Holzhauser R, Kircheis R, Wagner E (2001) Different strategies for formation of pegylated EGF-conjugated PEI/DNA complexes for targeted gene delivery. Bioconjug Chem 12(4):529–537

    Article  CAS  PubMed  Google Scholar 

  • Blumberg RS, Chopra S, Ibrahim R, Crawford J, Farraye FA, Zeldis JB, Berman MD (1988) Primary hepatocellular carcinoma in idiopathic hemochromatosis after reversal of cirrhosis. Gastroenterology 95(5):1399–1402

    Article  CAS  PubMed  Google Scholar 

  • Bolcato-Bellemin AL, Bonnet ME, Creusat G, Erbacher P, Behr JP (2007) Sticky overhangs enhance siRNA-mediated gene silencing. Proc Natl Acad Sci U S A 104(41):16050–16055. doi:10.1073/pnas.0707831104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92(16):7297–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breunig M, Hozsa C, Lungwitz U, Watanabe K, Umeda I, Kato H, Goepferich A (2008) Mechanistic investigation of poly(ethylene imine)-based siRNA delivery: disulfide bonds boost intracellular release of the cargo. J Control Release 130(1):57–63. doi:10.1016/j.jconrel.2008.05.016

    Article  CAS  PubMed  Google Scholar 

  • Brun P, Castagliuolo I, Pinzani M, Palu G, Martines D (2005) Exposure to bacterial cell wall products triggers an inflammatory phenotype in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 289(3):G571–G578. doi:10.1152/ajpgi.00537.2004

    Article  CAS  PubMed  Google Scholar 

  • Buckley S, Shi W, Driscoll B, Ferrario A, Anderson K, Warburton D (2004) BMP4 signaling induces senescence and modulates the oncogenic phenotype of A549 lung adenocarcinoma cells. Am J Physiol Lung Cell Mol Physiol 286(1):L81–L86. doi:10.1152/ajplung.00160.2003

    Article  CAS  PubMed  Google Scholar 

  • Bumcrot D, Manoharan M, Koteliansky V, Sah DWY (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2(12):711–719

    Article  CAS  PubMed  Google Scholar 

  • Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19(1):60–71. doi:10.1016/j.chembiol.2011.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Wang GJ, Diao Y, Xu RA, Xie HT, Li XY, Sun JG (2005) Adeno-associated virus mediated interferon-gamma inhibits the progression of hepatic fibrosis in vitro and in vivo. World J Gastroenterol 11(26):4045–4051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SW, Zhang XR, Wang CZ, Chen WZ, Xie WF, Chen YX (2008) RNA interference targeting the platelet-derived growth factor receptor beta subunit ameliorates experimental hepatic fibrosis in rats. Liver Int 28(10):1446–1457. doi:10.1111/j.1478-3231.2008.01759.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng K, Yang N, Mahato RI (2009) TGF-beta1 gene silencing for treating liver fibrosis. Mol Pharm 6(3):772–779. doi:10.1021/mp9000469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu CY, Kuo KK, Kuo TL, Lee KT, Cheng KH (2012) The activation of MEK/ERK signaling pathway by bone morphogenetic protein 4 to increase hepatocellular carcinoma cell proliferation and migration. Mol Cancer Res 10(3):415–427. doi:10.1158/1541-7786.mcr-11-0293

    Article  CAS  PubMed  Google Scholar 

  • Czaja MJ, Geerts A, Xu J, Schmiedeberg P, Ju Y (1994) Monocyte chemoattractant protein 1 (MCP-1) expression occurs in toxic rat liver injury and human liver disease. J Leukoc Biol 55(1):120–126

    CAS  PubMed  Google Scholar 

  • Czochra P, Klopcic B, Meyer E, Herkel J, Garcia-Lazaro JF, Thieringer F, Schirmacher P, Biesterfeld S, Galle PR, Lohse AW, Kanzler S (2006) Liver fibrosis induced by hepatic overexpression of PDGF-B in transgenic mice. J Hepatol 45(3):419–428. doi:10.1016/j.jhep.2006.04.010

    Article  CAS  PubMed  Google Scholar 

  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161(2):505–522. doi:10.1016/j.jconrel.2012.01.043

    Article  CAS  PubMed  Google Scholar 

  • Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3(12):1023–1035. doi:10.1038/nrd1576

    Article  CAS  PubMed  Google Scholar 

  • Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291):1067–1070. doi:10.1038/nature08956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Bleser PJ, Niki T, Rogiers V, Geerts A (1997) Transforming growth factor-beta gene expression in normal and fibrotic rat liver. J Hepatol 26(4):886–893

    Article  PubMed  Google Scholar 

  • de Fougerolles AR (2008) Delivery vehicles for small interfering RNA in vivo. Hum Gene Ther 19(2):125–132. doi:10.1089/hum.2008.928

    Article  PubMed  CAS  Google Scholar 

  • de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6(6):443–453. doi:10.1038/nrd2310

    Article  PubMed  CAS  Google Scholar 

  • Di Campli C, Wu J, Zern MA (1999) Targeting of therapeutics to the liver: liposomes and viral vectors. Alcohol Clin Exp Res 23(5):950–954

    PubMed  Google Scholar 

  • Diebold SS, Kursa M, Wagner E, Cotten M, Zenke M (1999) Mannose polyethylenimine conjugates for targeted DNA delivery into dendritic cells. J Biol Chem 274(27):19087–19094

    Article  CAS  PubMed  Google Scholar 

  • Dokka S, Toledo D, Shi X, Castranova V, Rojanasakul Y (2000) Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm Res 17(5):521–525

    Article  CAS  PubMed  Google Scholar 

  • Dooley S, Hamzavi J, Breitkopf K, Wiercinska E, Said HM, Lorenzen J, Ten Dijke P, Gressner AM (2003) Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology 125(1):178–191

    Article  CAS  PubMed  Google Scholar 

  • Egusquiaguirre SP, Igartua M, Hernandez RM, Pedraz JL (2012) Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin Transl Oncol 14(2):83–93. doi:10.1007/s12094-012-0766-6

    Article  CAS  PubMed  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498. doi:10.1038/35078107

    Article  CAS  PubMed  Google Scholar 

  • Elmen J, Thonberg H, Ljungberg K, Frieden M, Westergaard M, Xu Y, Wahren B, Liang Z, Orum H, Koch T, Wahlestedt C (2005) Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 33(1):439–447. doi:10.1093/nar/gki193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Y, Wu J (2013) Polylipid nanoparticle, a novel lipid-based vector for liver gene transfer. Gene Ther Tools Potential Appl. doi:43167

    Google Scholar 

  • Fan J, Shen H, Sun Y, Li P, Burczynski F, Namaka M, Gong Y (2006) Bone morphogenetic protein 4 mediates bile duct ligation induced liver fibrosis through activation of Smad1 and ERK1/2 in rat hepatic stellate cells. J Cell Physiol 207(2):499–505. doi:10.1002/jcp.20593

    Article  CAS  PubMed  Google Scholar 

  • Farhood H, Gao X, Son K, Yang YY, Lazo JS, Huang L, Barsoum J, Bottega R, Epand RM (1994) Cationic liposomes for direct gene transfer in therapy of cancer and other diseases. Ann N Y Acad Sci 716:23–34, discussion 34-25

    Article  CAS  PubMed  Google Scholar 

  • Fenske DB, Cullis PR (2008) Liposomal nanomedicines. Expert Opin Drug Deliv 5(1):25–44. doi:10.1517/17425247.5.1.25

    Article  CAS  PubMed  Google Scholar 

  • Filion MC, Phillips NC (1997) Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim Biophys Acta 1329(2):345–356

    Article  CAS  PubMed  Google Scholar 

  • Fimmel CJ, Brown KE, O'Neill R, Kladney RD (1996) Complement C4 protein expression by rat hepatic stellate cells. J Immunol 157(6):2601–2609

    CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811. doi:10.1038/35888

    Article  CAS  PubMed  Google Scholar 

  • Friedman SL (2003) Liver fibrosis – from bench to bedside. J Hepatol 38(Suppl 1):S38–S53

    Article  PubMed  Google Scholar 

  • Friedman SL (2004) Mechanisms of disease: mechanisms of hepatic fibrosis and therapeutic implications. Nat Clin Pract Gastroenterol Hepatol 1(2):98–105. doi:10.1038/ncpgasthep0055

    Article  PubMed  Google Scholar 

  • Friedman SL (2008a) Hepatic fibrosis – overview. Toxicology 254(3):120–129. doi:10.1016/j.tox.2008.06.013

    Article  CAS  PubMed  Google Scholar 

  • Friedman SL (2008b) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88(1):125–172. doi:10.1152/physrev.00013.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman SL, Bansal MB (2006) Reversal of hepatic fibrosis – fact or fantasy? Hepatology 43(2 Suppl 1):S82–S88. doi:10.1002/hep.20974

    Article  CAS  PubMed  Google Scholar 

  • Fu R, Wu J, Ding J, Sheng J, Hong L, Sun Q, Fang H, Xiang D (2011) Targeting transforming growth factor betaRII expression inhibits the activation of hepatic stellate cells and reduces collagen synthesis. Exp Biol Med (Maywood, NJ) 236(3):291–297. doi:10.1258/ebm.2010.010231

    Article  CAS  Google Scholar 

  • Gaca MD, Zhou X, Issa R, Kiriella K, Iredale JP, Benyon RC (2003) Basement membrane-like matrix inhibits proliferation and collagen synthesis by activated rat hepatic stellate cells: evidence for matrix-dependent deactivation of stellate cells. Matrix Biol 22(3):229–239

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Yu Y, Zhang Y, Song J, Chen H, Li W, Qian W, Deng L, Kou G, Chen J, Guo Y (2012) EGFR-specific PEGylated immunoliposomes for active siRNA delivery in hepatocellular carcinoma. Biomaterials 33(1):270–282. doi:10.1016/j.biomaterials.2011.09.035

    Article  CAS  PubMed  Google Scholar 

  • Gavrilov K, Saltzman WM (2012) Therapeutic siRNA: principles, challenges, and strategies. Yale J Biol Med 85(2):187–200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geerts A (2001) History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis 21(3):311–335. doi:10.1055/s-2001-17550

    Article  CAS  PubMed  Google Scholar 

  • George J, Tsutsumi M (2007) siRNA-mediated knockdown of connective tissue growth factor prevents N-nitrosodimethylamine-induced hepatic fibrosis in rats. Gene Ther 14(10):790–803. doi:10.1038/sj.gt.3302929

    Article  CAS  PubMed  Google Scholar 

  • Gomes-da-Silva LC, Fonseca NA, Moura V, Pedroso de Lima MC, Simoes S, Moreira JN (2012) Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges. Acc Chem Res 45(7):1163–1171. doi:10.1021/ar300048p

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez H, Hwang SJ, Davis ME (1999) New class of polymers for the delivery of macromolecular therapeutics. Bioconjug Chem 10(6):1068–1074

    Article  CAS  PubMed  Google Scholar 

  • Gosselin MA, Guo W, Lee RJ (2001) Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjug Chem 12(6):989–994

    Article  CAS  PubMed  Google Scholar 

  • Grimm D, Lee JS, Wang L, Desai T, Akache B, Storm TA, Kay MA (2008) In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol 82(12):5887–5911. doi:10.1128/jvi.00254-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadziyannis SJ, Tassopoulos NC, Heathcote EJ, Chang TT, Kitis G, Rizzetto M, Marcellin P, Lim SG, Goodman Z, Wulfsohn MS, Xiong S, Fry J, Brosgart CL (2003) Adefovir dipivoxil for the treatment of hepatitis B e antigen-negative chronic hepatitis B. N Engl J Med 348(9):800–807. doi:10.1056/NEJMoa021812

    Article  CAS  PubMed  Google Scholar 

  • Halder J, Kamat AA, Landen CN Jr, Han LY, Lutgendorf SK, Lin YG, Merritt WM, Jennings NB, Chavez-Reyes A, Coleman RL, Gershenson DM, Schmandt R, Cole SW, Lopez-Berestein G, Sood AK (2006) Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy. Clin Cancer Res 12(16):4916–4924. doi:10.1158/1078-0432.ccr-06-0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammel P, Couvelard A, O'Toole D, Ratouis A, Sauvanet A, Flejou JF, Degott C, Belghiti J, Bernades P, Valla D, Ruszniewski P, Levy P (2001) Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. N Engl J Med 344(6):418–423. doi:10.1056/nejm200102083440604

    Article  CAS  PubMed  Google Scholar 

  • Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404(6775):293–296. doi:10.1038/35005107

    Article  CAS  PubMed  Google Scholar 

  • Harmon AM, Lash MH, Sparks SM, Uhrich KE (2011) Preferential cellular uptake of amphiphilic macromolecule-lipid complexes with enhanced stability and biocompatibility. J Control Release 153(3):233–239. doi:10.1016/j.jconrel.2011.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemmann S, Graf J, Roderfeld M, Roeb E (2007) Expression of MMPs and TIMPs in liver fibrosis – a systematic review with special emphasis on anti-fibrotic strategies. J Hepatol 46(5):955–975. doi:10.1016/j.jhep.2007.02.003

    Article  CAS  PubMed  Google Scholar 

  • Henderson NC, Iredale JP (2007) Liver fibrosis: cellular mechanisms of progression and resolution. Clin Sci 112(5):265–280. doi:10.1042/cs20060242

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Gea V, Friedman SL (2011) Pathogenesis of liver fibrosis. Annu Rev Pathol 6:425–456. doi:10.1146/annurev-pathol-011110-130246

    Article  CAS  PubMed  Google Scholar 

  • Herrera B, Sanchez A, Fabregat I (2012) BMPS and liver: more questions than answers. Curr Pharm Des 18(27):4114–4125

    Article  CAS  PubMed  Google Scholar 

  • Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen MO, Hovgaard MB, Schmitz A, Nyengaard JR, Besenbacher F, Kjems J (2006) RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther 14(4):476–484. doi:10.1016/j.ymthe.2006.04.010

    Article  CAS  PubMed  Google Scholar 

  • Huh MS, Lee SY, Park S, Lee S, Chung H, Lee S, Choi Y, Oh YK, Park JH, Jeong SY, Choi K, Kim K, Kwon IC (2010) Tumor-homing glycol chitosan/polyethylenimine nanoparticles for the systemic delivery of siRNA in tumor-bearing mice. J Control Release 144(2):134–143. doi:10.1016/j.jconrel.2010.02.023

    Article  CAS  PubMed  Google Scholar 

  • Hui AY, Friedman SL (2003) Molecular basis of hepatic fibrosis. Expert Rev Mol Med 5 (5):1–23. doi:10.1017/S1462399403005684

  • Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ (2005) Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res 65(19):8984–8992. doi:10.1158/0008-5472.can-05-0565

    Article  CAS  PubMed  Google Scholar 

  • Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297(5589):2056–2060. doi:10.1126/science.1073827

    Article  CAS  PubMed  Google Scholar 

  • Iimuro Y, Nishio T, Morimoto T, Nitta T, Stefanovic B, Choi SK, Brenner DA, Yamaoka Y (2003) Delivery of matrix metalloproteinase-1 attenuates established liver fibrosis in the rat. Gastroenterology 124(2):445–458. doi:10.1053/gast.2003.50063

    Article  CAS  PubMed  Google Scholar 

  • Ikeda K, Wakahara T, Wang YQ, Kadoya H, Kawada N, Kaneda K (1999) In vitro migratory potential of rat quiescent hepatic stellate cells and its augmentation by cell activation. Hepatology 29(6):1760–1767. doi:10.1002/hep.510290640

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Okada H, Kobayashi T, Watanabe Y, Kanno Y, Kopp JB, Nishida T, Takigawa M, Ueno M, Nakamura T, Suzuki H (2003) Hepatocyte growth factor counteracts transforming growth factor-beta1, through attenuation of connective tissue growth factor induction, and prevents renal fibrogenesis in 5/6 nephrectomized mice. FASEB J 17(2):268–270. doi:10.1096/fj.02-0442fje

    CAS  PubMed  Google Scholar 

  • Iredale JP (2001) Hepatic stellate cell behavior during resolution of liver injury. Semin Liver Dis 21(3):427–436. doi:10.1055/s-2001-17557

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa K, Mochida S, Mashiba S, Inao M, Matsui A, Ikeda H, Ohno A, Shibuya M, Fujiwara K (1999) Expressions of vascular endothelial growth factor in nonparenchymal as well as parenchymal cells in rat liver after necrosis. Biochem Biophys Res Commun 254(3):587–593. doi:10.1006/bbrc.1998.9984

    Article  CAS  PubMed  Google Scholar 

  • Issa R, Williams E, Trim N, Kendall T, Arthur MJ, Reichen J, Benyon RC, Iredale JP (2001) Apoptosis of hepatic stellate cells: involvement in resolution of biliary fibrosis and regulation by soluble growth factors. Gut 48(4):548–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson AL, Burchard J, Leake D, Reynolds A, Schelter J, Guo J, Johnson JM, Lim L, Karpilow J, Nichols K, Marshall W, Khvorova A, Linsley PS (2006) Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 12(7):1197–1205. doi:10.1261/rna.30706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagani HV, Josyula VR, Palanimuthu VR, Hariharapura RC, Gang SS (2013) Improvement of therapeutic efficacy of PLGA nanoformulation of siRNA targeting anti-apoptotic Bcl-2 through chitosan coating. Eur J Pharm Sci 48(4-5):611–618. doi:10.1016/j.ejps.2012.12.017

    Article  CAS  PubMed  Google Scholar 

  • Jiang D, Jiang Z, Han F, Zhang Y, Li Z (2008) HGF suppresses the production of collagen type III and alpha-SMA induced by TGF-beta1 in healing fibroblasts. Eur J Appl Physiol 103(5):489–493. doi:10.1007/s00421-008-0733-7

    Article  CAS  PubMed  Google Scholar 

  • Jokerst JV, Lobovkina T, Zare RN, Gambhir SS (2011) Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond) 6(4):715–728. doi:10.2217/nnm.11.19

    Article  CAS  Google Scholar 

  • Kanemura H, Iimuro Y, Takeuchi M, Ueki T, Hirano T, Horiguchi K, Asano Y, Fujimoto J (2008) Hepatocyte growth factor gene transfer with naked plasmid DNA ameliorates dimethylnitrosamine-induced liver fibrosis in rats. Hepatol Res 38(9):930–939. doi:10.1111/j.1872-034X.2008.00340.x

    Article  CAS  PubMed  Google Scholar 

  • Kang JH, Tachibana Y, Kamata W, Mahara A, Harada-Shiba M, Yamaoka T (2010) Liver-targeted siRNA delivery by polyethylenimine (PEI)-pullulan carrier. Bioorg Med Chem 18(11):3946–3950. doi:10.1016/j.bmc.2010.04.031

    Article  CAS  PubMed  Google Scholar 

  • Kesharwani P, Gajbhiye V, Jain NK (2012) A review of nanocarriers for the delivery of small interfering RNA. Biomaterials 33(29):7138–7150. doi:10.1016/j.biomaterials.2012.06.068

    Article  CAS  PubMed  Google Scholar 

  • Kichler A (2004) Gene transfer with modified polyethylenimines. J Gene Med 6(Suppl 1):S3–S10. doi:10.1002/jgm.507

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8(3):173–184. doi:10.1038/nrg2006

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Rossi J (2008) RNAi mechanisms and applications. Biotechniques 44(5):613–616. doi:10.2144/000112792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DH, Rossi JJ (2009) Overview of gene silencing by RNA interference. Curr Protocols Nucl Acid Chem. doi:10.1002/0471142700.nc1601s36

  • Kim KH, Kim HC, Hwang MY, Oh HK, Lee TS, Chang YC, Song HJ, Won NH, Park KK (2006) The antifibrotic effect of TGF-beta1 siRNAs in murine model of liver cirrhosis. Biochem Biophys Res Commun 343(4):1072–1078. doi:10.1016/j.bbrc.2006.03.087

    Article  CAS  PubMed  Google Scholar 

  • Kim HR, Kim IK, Bae KH, Lee SH, Lee Y, Park TG (2008) Cationic solid lipid nanoparticles reconstituted from low density lipoprotein components for delivery of siRNA. Mol Pharm 5(4):622–631. doi:10.1021/mp8000233

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Cho HJ, Park D, Kim JY, Kim YB, Park TG, Shim CK, Oh YK (2011) Antifibrotic effect of MMP13-encoding plasmid DNA delivered using polyethylenimine shielded with hyaluronic acid. Mol Ther 19(2):355–361. doi:10.1038/mt.2010.262

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Ise H, Kim E, Goto M, Akaike T, Chung BH (2013) Imaging and therapy of liver fibrosis using bioreducible polyethylenimine/siRNA complexes conjugated with N-acetylglucosamine as a targeting moiety. Biomaterials 34(27):6504–6514. doi:10.1016/j.biomaterials.2013.05.013

    Article  CAS  PubMed  Google Scholar 

  • Kinnman N, Hultcrantz R, Barbu V, Rey C, Wendum D, Poupon R, Housset C (2000) PDGF-mediated chemoattraction of hepatic stellate cells by bile duct segments in cholestatic liver injury. Lab investig 80(5):697–707

    Article  CAS  PubMed  Google Scholar 

  • Kircheis R, Kichler A, Wallner G, Kursa M, Ogris M, Felzmann T, Buchberger M, Wagner E (1997) Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery. Gene Ther 4(5):409–418. doi:10.1038/sj.gt.3300418

    Article  CAS  PubMed  Google Scholar 

  • Kircheis R, Wightman L, Wagner E (2001) Design and gene delivery activity of modified polyethylenimines. Adv Drug Deliv Rev 53(3):341–358

    Article  CAS  PubMed  Google Scholar 

  • Knittel T, Dinter C, Kobold D, Neubauer K, Mehde M, Eichhorst S, Ramadori G (1999a) Expression and regulation of cell adhesion molecules by hepatic stellate cells (HSC) of rat liver: involvement of HSC in recruitment of inflammatory cells during hepatic tissue repair. Am J Pathol 154(1):153–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knittel T, Mehde M, Kobold D, Saile B, Dinter C, Ramadori G (1999b) Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal and non-parenchymal cells of rat liver: regulation by TNF-alpha and TGF-beta1. J Hepatol 30(1):48–60

    Article  CAS  PubMed  Google Scholar 

  • Knudsen KB, Northeved H, Kumar Ek P, Permin A, Gjetting T, Andresen TL, Larsen S, Wegener KM, Lykkesfeldt J, Jantzen K, Loft S, Moller P, Roursgaard M (2014) In vivo toxicity of cationic micelles and liposomes. Nanomedicine. doi:10.1016/j.nano.2014.08.004

    PubMed  Google Scholar 

  • Koltover I, Salditt T, Radler JO, Safinya CR (1998) An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 281(5373):78–81

    Article  CAS  PubMed  Google Scholar 

  • Konishi M, Wu CH, Wu GY (2003) Inhibition of HBV replication by siRNA in a stable HBV-producing cell line. Hepatology 38(4):842–850. doi:10.1053/jhep.2003.50416

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni RP, Mishra S, Fraser SE, Davis ME (2005) Single cell kinetics of intracellular, nonviral, nucleic acid delivery vehicle acidification and trafficking. Bioconjug Chem 16(4):986–994. doi:10.1021/bc050081u

    Article  CAS  PubMed  Google Scholar 

  • Lai CL, Chien RN, Leung NW, Chang TT, Guan R, Tai DI, Ng KY, Wu PC, Dent JC, Barber J, Stephenson SL, Gray DF (1998) A one-year trial of lamivudine for chronic hepatitis B. Asia Hepatitis Lamivudine Study Group. N Engl J Med 339(2):61–68. doi:10.1056/nejm199807093390201

    Article  CAS  PubMed  Google Scholar 

  • Landen CN Jr, Chavez-Reyes A, Bucana C, Schmandt R, Deavers MT, Lopez-Berestein G, Sood AK (2005) Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 65(15):6910–6918. doi:10.1158/0008-5472.can-05-0530

    Article  CAS  PubMed  Google Scholar 

  • Lang Q, Liu Q, Xu N, Qian KL, Qi JH, Sun YC, Xiao L, Shi XF (2011) The antifibrotic effects of TGF-beta1 siRNA on hepatic fibrosis in rats. Biochem Biophys Res Commun 409(3):448–453. doi:10.1016/j.bbrc.2011.05.023

    Article  CAS  PubMed  Google Scholar 

  • Lee UE, Friedman SL (2011) Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol 25(2):195–206. doi:10.1016/j.bpg.2011.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Kim SI, Shin D, Yoon Y, Choi TH, Cheon GJ, Kim M (2009) Hepatic siRNA delivery using recombinant human apolipoprotein A-I in mice. Biochem Biophys Res Commun 378(2):192–196. doi:10.1016/j.bbrc.2008.11.029

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Yoon TJ, Cho YS (2013) Recent developments in nanoparticle-based siRNA delivery for cancer therapy. BioMed Res Int 2013:782041. doi:10.1155/2013/782041

    PubMed  PubMed Central  Google Scholar 

  • Leng Q, Woodle MC, Lu PY, Mixson AJ (2009) Advances in systemic siRNA delivery. Drugs Future 34(9):721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Fu X, Chen Y, Hong Y, Tan Y, Cao H, Wu M, Wang H (2005a) Use of adenovirus-delivered siRNA to target oncoprotein p28GANK in hepatocellular carcinoma. Gastroenterology 128(7):2029–2041

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Liu DW, Zhang LM, Zhu B, He YT, Xiao YH (2005b) Effects of augmentation of liver regeneration recombinant plasmid on rat hepatic fibrosis. World J Gastroenterol 11(16):2438–2443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Xie Q, Shi Y, Li D, Zhang M, Jiang S, Zhou H, Lu H, Jin Y (2006) Inhibition of connective tissue growth factor by siRNA prevents liver fibrosis in rats. J Gene Med 8(7):889–900. doi:10.1002/jgm.894

    Article  CAS  PubMed  Google Scholar 

  • Li JT, Liao ZX, Ping J, Xu D, Wang H (2008) Molecular mechanism of hepatic stellate cell activation and antifibrotic therapeutic strategies. J Gastroenterol 43(6):419–428. doi:10.1007/s00535-008-2180-y

    Article  CAS  PubMed  Google Scholar 

  • Li GM, Li DG, Fan JG, Xie Q (2010) Effect of silencing connective tissue growth factor on the liver fibrosis in rats. Chinese J Hepatol 18(11):822–825. doi:10.3760/cma.j.issn.1007-3418.2010.11.008

    CAS  Google Scholar 

  • Lin Q, Chen J, Zhang Z, Zheng G (2014) Lipid-based nanoparticles in the systemic delivery of siRNA. Nanomedicine (Lond) 9(1):105–120. doi:10.2217/nnm.13.192

    Article  CAS  Google Scholar 

  • Luten J, van Nostrum CF, De Smedt SC, Hennink WE (2008) Biodegradable polymers as non-viral carriers for plasmid DNA delivery. J Control Release 126(2):97–110. doi:10.1016/j.jconrel.2007.10.028

    Article  CAS  PubMed  Google Scholar 

  • Madge LA, Sierra-Honigmann MR, Pober JS (1999) Apoptosis-inducing agents cause rapid shedding of tumor necrosis factor receptor 1 (TNFR1). A nonpharmacological explanation for inhibition of TNF-mediated activation. J Biol Chem 274(19):13643–13649

    Article  CAS  PubMed  Google Scholar 

  • Maegdefrau U, Amann T, Winklmeier A, Braig S, Schubert T, Weiss TS, Schardt K, Warnecke C, Hellerbrand C, Bosserhoff AK (2009) Bone morphogenetic protein 4 is induced in hepatocellular carcinoma by hypoxia and promotes tumour progression. J Pathol 218(4):520–529. doi:10.1002/path.2563

    Article  CAS  PubMed  Google Scholar 

  • Maher JJ, McGuire RF (1990) Extracellular matrix gene expression increases preferentially in rat lipocytes and sinusoidal endothelial cells during hepatic fibrosis in vivo. J Clin Invest 86(5):1641–1648. doi:10.1172/jci114886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maher JJ, Lozier JS, Scott MK (1998) Rat hepatic stellate cells produce cytokine-induced neutrophil chemoattractant in culture and in vivo. Am J Physiol 275(4 Pt 1):G847–G853

    CAS  PubMed  Google Scholar 

  • Mallet V, Gilgenkrantz H, Serpaggi J, Verkarre V, Vallet-Pichard A, Fontaine H, Pol S (2008) Brief communication: the relationship of regression of cirrhosis to outcome in chronic hepatitis C. Ann Intern Med 149(6):399–403

    Article  PubMed  Google Scholar 

  • Mao S, Neu M, Germershaus O, Merkel O, Sitterberg J, Bakowsky U, Kissel T (2006) Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/SiRNA polyplexes. Bioconjug Chem 17(5):1209–1218. doi:10.1021/bc060129j

    Article  CAS  PubMed  Google Scholar 

  • Marra F, Pinzani M (2002) Role of hepatic stellate cells in the pathogenesis of portal hypertension. Nefrologia 22(Suppl 5):34–40

    PubMed  Google Scholar 

  • Marra F, Valente AJ, Pinzani M, Abboud HE (1993) Cultured human liver fat-storing cells produce monocyte chemotactic protein-1. Regulation by proinflammatory cytokines. J Clin Invest 92(4):1674–1680. doi:10.1172/jci116753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marra F, Romanelli RG, Giannini C, Failli P, Pastacaldi S, Arrighi MC, Pinzani M, Laffi G, Montalto P, Gentilini P (1999) Monocyte chemotactic protein-1 as a chemoattractant for human hepatic stellate cells. Hepatology 29(1):140–148. doi:10.1002/hep.510290107

    Article  CAS  PubMed  Google Scholar 

  • Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123(4):607–620. doi:10.1016/j.cell.2005.08.044

    Article  CAS  PubMed  Google Scholar 

  • Maxwell PH, Ferguson DJ, Osmond MK, Pugh CW, Heryet A, Doe BG, Johnson MH, Ratcliffe PJ (1994) Expression of a homologously recombined erythopoietin-SV40 T antigen fusion gene in mouse liver: evidence for erythropoietin production by Ito cells. Blood 84(6):1823–1830

    CAS  PubMed  Google Scholar 

  • McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, Kay MA (2002) RNA interference in adult mice. Nature 418(6893):38–39. doi:10.1038/418038a

    Article  CAS  PubMed  Google Scholar 

  • Mehvar R (2003) Recent trends in the use of polysaccharides for improved delivery of therapeutic agents: pharmacokinetic and pharmacodynamic perspectives. Curr Pharm Biotechnol 4(5):283–302

    Article  CAS  PubMed  Google Scholar 

  • Merkel OM, Beyerle A, Beckmann BM, Zheng M, Hartmann RK, Stoger T, Kissel TH (2011) Polymer-related off-target effects in non-viral siRNA delivery. Biomaterials 32(9):2388–2398. doi:10.1016/j.biomaterials.2010.11.081

    Article  CAS  PubMed  Google Scholar 

  • Miller CR, Bondurant B, McLean SD, McGovern KA, O'Brien DF (1998) Liposome-cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry 37(37):12875–12883. doi:10.1021/bi980096y

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Heidel JD, Webster P, Davis ME (2006) Imidazole groups on a linear, cyclodextrin-containing polycation produce enhanced gene delivery via multiple processes. J Control Release 116(2):179–191. doi:10.1016/j.jconrel.2006.06.018

    Article  CAS  PubMed  Google Scholar 

  • Montier T, Benvegnu T, Jaffres PA, Yaouanc JJ, Lehn P (2008) Progress in cationic lipid-mediated gene transfection: a series of bio-inspired lipids as an example. Curr Gene Ther 8(5):296–312

    Article  CAS  PubMed  Google Scholar 

  • Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, Hartsough K, Machemer L, Radka S, Jadhav V, Vaish N, Zinnen S, Vargeese C, Bowman K, Shaffer CS, Jeffs LB, Judge A, MacLachlan I, Polisky B (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23(8):1002–1007. doi:10.1038/nbt1122

    Article  CAS  PubMed  Google Scholar 

  • Muhanna N, Doron S, Wald O, Horani A, Eid A, Pappo O, Friedman SL, Safadi R (2008) Activation of hepatic stellate cells after phagocytosis of lymphocytes: a novel pathway of fibrogenesis. Hepatology 48(3):963–977. doi:10.1002/hep.22413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy FR, Issa R, Zhou X, Ratnarajah S, Nagase H, Arthur MJ, Benyon C, Iredale JP (2002) Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis. J Biol Chem 277(13):11069–11076. doi:10.1074/jbc.M111490200

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Sakata R, Ueno T, Sata M, Ueno H (2000) Inhibition of transforming growth factor beta prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethylnitrosamine-treated rats. Hepatology 32(2):247–255. doi:10.1053/jhep.2000.9109

    Article  CAS  PubMed  Google Scholar 

  • Narmada BC, Kang Y, Venkatraman L, Peng Q, Sakban RB, Nugraha B, Jiang X, Bunte RM, So PT, Tucker-Kellogg L, Mao HQ, Yu H (2013) Hepatic stellate cell-targeted delivery of hepatocyte growth factor transgene via bile duct infusion enhances its expression at fibrotic foci to regress dimethylnitrosamine-induced liver fibrosis. Hum Gene Ther 24(5):508–519. doi:10.1089/hum.2012.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh YK, Park TG (2009) siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev 61(10):850–862. doi:10.1016/j.addr.2009.04.018

    Article  CAS  PubMed  Google Scholar 

  • Okumura A, Pitha PM, Harty RN (2008) ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity. Proc Natl Acad Sci U S A 105(10):3974–3979. doi:10.1073/pnas.0710629105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oskuee RK, Philipp A, Dehshahri A, Wagner E, Ramezani M (2010) The impact of carboxyalkylation of branched polyethylenimine on effectiveness in small interfering RNA delivery. J Gene Med 12(9):729–738. doi:10.1002/jgm.1490

    Article  CAS  PubMed  Google Scholar 

  • Ozpolat B, Sood AK, Lopez-Berestein G (2014) Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev 66:110–116. doi:10.1016/j.addr.2013.12.008

    Article  CAS  PubMed  Google Scholar 

  • Paik YH, Schwabe RF, Bataller R, Russo MP, Jobin C, Brenner DA (2003) Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology 37(5):1043–1055. doi:10.1053/jhep.2003.50182

    Article  CAS  PubMed  Google Scholar 

  • Park K, Hong SW, Hur W, Lee MY, Yang JA, Kim SW, Yoon SK, Hahn SK (2011) Target specific systemic delivery of TGF-beta siRNA/(PEI-SS)-g-HA complex for the treatment of liver cirrhosis. Biomaterials 32(21):4951–4958. doi:10.1016/j.biomaterials.2011.03.044

    Article  CAS  PubMed  Google Scholar 

  • Patil YB, Swaminathan SK, Sadhukha T, Ma L, Panyam J (2010) The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials 31(2):358–365. doi:10.1016/j.biomaterials.2009.09.048

    Article  CAS  PubMed  Google Scholar 

  • Peer D, Lieberman J (2011) Special delivery: targeted therapy with small RNAs. Gene Ther 18(12):1127–1133. doi:10.1038/gt.2011.56

    Article  CAS  PubMed  Google Scholar 

  • Petersen H, Merdan T, Kunath K, Fischer D, Kissel T (2002) Poly(ethylenimine-co-L-lactamide-co-succinamide): a biodegradable polyethylenimine derivative with an advantageous pH-dependent hydrolytic degradation for gene delivery. Bioconjug Chem 13(4):812–821

    Article  CAS  PubMed  Google Scholar 

  • Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627. doi:10.1038/nrd2591

    Article  CAS  PubMed  Google Scholar 

  • Philipp A, Zhao X, Tarcha P, Wagner E, Zintchenko A (2009) Hydrophobically modified oligoethylenimines as highly efficient transfection agents for siRNA delivery. Bioconjug Chem 20(11):2055–2061. doi:10.1021/bc9001536

    Article  CAS  PubMed  Google Scholar 

  • Pinzani M, Marra F (2001) Cytokine receptors and signaling in hepatic stellate cells. Semin Liver Dis 21(3):397–416. doi:10.1055/s-2001-17554

    Article  CAS  PubMed  Google Scholar 

  • Pinzani M, Gesualdo L, Sabbah GM, Abboud HE (1989) Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat-storing cells. J Clin Invest 84(6):1786–1793. doi:10.1172/jci114363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinzani M, Knauss TC, Pierce GF, Hsieh P, Kenney W, Dubyak GR, Abboud HE (1991) Mitogenic signals for platelet-derived growth factor isoforms in liver fat-storing cells. Am J Physiol 260(3 Pt 1):C485–C491

    CAS  PubMed  Google Scholar 

  • Pinzani M, Abboud HE, Gesualdo L, Abboud SL (1992) Regulation of macrophage colony-stimulating factor in liver fat-storing cells by peptide growth factors. Am J Physiol 262(4 Pt 1):C876–C881

    CAS  PubMed  Google Scholar 

  • Pinzani M, Milani S, Grappone C, Weber FL Jr, Gentilini P, Abboud HE (1994) Expression of platelet-derived growth factor in a model of acute liver injury. Hepatology 19(3):701–707

    Article  CAS  PubMed  Google Scholar 

  • Pinzani M, Gentilini A, Caligiuri A, De Franco R, Pellegrini G, Milani S, Marra F, Gentilini P (1995) Transforming growth factor-beta 1 regulates platelet-derived growth factor receptor beta subunit in human liver fat-storing cells. Hepatology 21(1):232–239

    CAS  PubMed  Google Scholar 

  • Ponnappa BC, Israel Y (2002) Targeting Kupffer cells with antisense oligonucleotides. Front Biosci 7:e223–e233

    Article  PubMed  Google Scholar 

  • Powell LW, Kerr JF (1970) Reversal of “cirrhosis” in idiopathic haemochromatosis following long-term intensive venesection therapy. Australas Ann Med 19(1):54–57

    CAS  PubMed  Google Scholar 

  • Poynard T, McHutchison J, Manns M, Trepo C, Lindsay K, Goodman Z, Ling MH, Albrecht J (2002) Impact of pegylated interferon alfa-2b and ribavirin on liver fibrosis in patients with chronic hepatitis C. Gastroenterology 122(5):1303–1313

    Article  CAS  PubMed  Google Scholar 

  • Qi W, Ding D, Zhu H, Lu D, Wang Y, Ding J, Yan W, Jia M, Guo Y (2014) Efficient siRNA transfection to the inner ear through the intact round window by a novel proteidic delivery technology in the chinchilla. Gene Ther 21(1):10–18. doi:10.1038/gt.2013.49

    Article  CAS  PubMed  Google Scholar 

  • Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B (2006) Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 130(2):435–452. doi:10.1053/j.gastro.2005.10.055

    Article  CAS  PubMed  Google Scholar 

  • Ragelle H, Vandermeulen G, Preat V (2013) Chitosan-based siRNA delivery systems. J Control Release 172(1):207–218. doi:10.1016/j.jconrel.2013.08.005

    Article  CAS  PubMed  Google Scholar 

  • Rahoud SA, Mergani A, Khamis AH, Saeed OK, Mohamed-Ali Q, Dessein AJ, Elwali NE (2010) Factors controlling the effect of praziquantel on liver fibrosis in Schistosoma mansoni-infected patients. FEMS Immunol Med Microbiol 58(1):106–112. doi:10.1111/j.1574-695X.2009.00640.x

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran P, Iredale JP (2009) Reversibility of liver fibrosis. Ann Hepatol 8(4):283–291

    PubMed  Google Scholar 

  • Ramadori G, Neubauer K, Odenthal M, Nakamura T, Knittel T, Schwogler S, Meyer zum Buschenfelde KH (1992) The gene of hepatocyte growth factor is expressed in fat-storing cells of rat liver and is downregulated during cell growth and by transforming growth factor-beta. Biochem Biophys Res Commun 183(2):739–742

    Google Scholar 

  • Rand TA, Petersen S, Du F, Wang X (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123(4):621–629. doi:10.1016/j.cell.2005.10.020

    Article  CAS  PubMed  Google Scholar 

  • Raskopf E, Vogt A, Sauerbruch T, Schmitz V (2008) siRNA targeting VEGF inhibits hepatocellular carcinoma growth and tumor angiogenesis in vivo. J Hepatol 49(6):977–984. doi:10.1016/j.jhep.2008.07.022

    Article  CAS  PubMed  Google Scholar 

  • Reynaert H, Thompson MG, Thomas T, Geerts A (2002) Hepatic stellate cells: role in microcirculation and pathophysiology of portal hypertension. Gut 50(4):571–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rockey DC (2001) Hepatic blood flow regulation by stellate cells in normal and injured liver. Semin Liver Dis 21(3):337–349. doi:10.1055/s-2001-17551

    Article  CAS  PubMed  Google Scholar 

  • Rockey DC (2005) Antifibrotic therapy in chronic liver disease. Clin Gastroenterol Hepatol 3(2):95–107

    Article  CAS  PubMed  Google Scholar 

  • Rockey DC, Chung JJ (1995) Inducible nitric oxide synthase in rat hepatic lipocytes and the effect of nitric oxide on lipocyte contractility. J Clin Invest 95(3):1199–1206. doi:10.1172/jci117769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rockey DC, Weisiger RA (1996) Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance. Hepatology 24(1):233–240. doi:10.1002/hep.510240137

    Article  CAS  PubMed  Google Scholar 

  • Rockey DC, Boyles JK, Gabbiani G, Friedman SL (1992) Rat hepatic lipocytes express smooth muscle actin upon activation in vivo and in culture. J Submicrosc Cytol Pathol 24(2):193–203

    CAS  PubMed  Google Scholar 

  • Roderfeld M, Weiskirchen R, Wagner S, Berres ML, Henkel C, Grotzinger J, Gressner AM, Matern S, Roeb E (2006) Inhibition of hepatic fibrogenesis by matrix metalloproteinase-9 mutants in mice. FASEB J 20(3):444–454. doi:10.1096/fj.05-4828com

    Article  CAS  PubMed  Google Scholar 

  • Roger PM, Chaillou S, Breittmayer JP, Dahman M, St Paul MC, Chevallier P, Benzaken S, Ticchioni M, Bernard A, Dellamonica P, Tran A (2005) Intrahepatic CD4 T-Cell apoptosis is related to METAVIR score in patients with chronic hepatitis C virus. Scand J Immunol 62(2):168–175. doi:10.1111/j.1365-3083.2005.01648.x

    Article  PubMed  Google Scholar 

  • Rombouts K, Knittel T, Machesky L, Braet F, Wielant A, Hellemans K, De Bleser P, Gelman I, Ramadori G, Geerts A (2002) Actin filament formation, reorganization and migration are impaired in hepatic stellate cells under influence of trichostatin A, a histone deacetylase inhibitor. J Hepatol 37(6):788–796

    Article  CAS  PubMed  Google Scholar 

  • Saile B, Matthes N, Knittel T, Ramadori G (1999) Transforming growth factor beta and tumor necrosis factor alpha inhibit both apoptosis and proliferation of activated rat hepatic stellate cells. Hepatology 30(1):196–202. doi:10.1002/hep.510300144

    Article  CAS  PubMed  Google Scholar 

  • Sandig V, Strauss M (1996) Liver-directed gene transfer and application to therapy. J Mol Med 74(4):205–212

    Article  CAS  PubMed  Google Scholar 

  • Saranya N, Moorthi A, Saravanan S, Devi MP, Selvamurugan N (2011) Chitosan and its derivatives for gene delivery. Int J Biol Macromol 48(2):234–238. doi:10.1016/j.ijbiomac.2010.11.013

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Murase K, Kato J, Kobune M, Sato T, Kawano Y, Takimoto R, Takada K, Miyanishi K, Matsunaga T, Takayama T, Niitsu Y (2008) Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol 26(4):431–442. doi:10.1038/nbt1396

    Article  CAS  PubMed  Google Scholar 

  • Schwabe RF, Bataller R, Brenner DA (2003) Human hepatic stellate cells express CCR5 and RANTES to induce proliferation and migration. Am J Physiol Gastrointest Liver Physiol 285(5):G949–G958. doi:10.1152/ajpgi.00215.2003

    Article  CAS  PubMed  Google Scholar 

  • Shao R, Rockey DC (2002) Effects of endothelins on hepatic stellate cell synthesis of endothelin-1 during hepatic wound healing. J Cell Physiol 191(3):342–350. doi:10.1002/jcp.10110

    Article  CAS  PubMed  Google Scholar 

  • Shao R, Yan W, Rockey DC (1999) Regulation of endothelin-1 synthesis by endothelin-converting enzyme-1 during wound healing. J Biol Chem 274(5):3228–3234

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Huang GJ, Gong YW (2003) Effect of transforming growth factor beta and bone morphogenetic proteins on rat hepatic stellate cell proliferation and trans-differentiation. World J Gastroenterol 9(4):784–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen H, Fan J, Minuk G, Gong Y (2007) Apoptotic and survival signals in hepatic stellate cells. J Central South Univ Med Sci 32(5):726–734

    CAS  Google Scholar 

  • Shi F, Wasungu L, Nomden A, Stuart MC, Polushkin E, Engberts JB, Hoekstra D (2002) Interference of poly(ethylene glycol)-lipid analogues with cationic-lipid-mediated delivery of oligonucleotides; role of lipid exchangeability and non-lamellar transitions. Biochem J 366(Pt 1):333–341. doi:10.1042/bj20020590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siller-Lopez F, Sandoval A, Salgado S, Salazar A, Bueno M, Garcia J, Vera J, Galvez J, Hernandez I, Ramos M, Aguilar-Cordova E, Armendariz-Borunda J (2004) Treatment with human metalloproteinase-8 gene delivery ameliorates experimental rat liver cirrhosis. Gastroenterology 126(4):1122–1133, discussion 1949

    Article  CAS  PubMed  Google Scholar 

  • Simoes S, Slepushkin V, Gaspar R, de Lima MC, Duzgunes N (1998) Gene delivery by negatively charged ternary complexes of DNA, cationic liposomes and transferrin or fusigenic peptides. Gene Ther 5(7):955–964. doi:10.1038/sj.gt.3300674

    Article  CAS  PubMed  Google Scholar 

  • Simoes S, Filipe A, Faneca H, Mano M, Penacho N, Duzgunes N, de Lima MP (2005) Cationic liposomes for gene delivery. Expert Opin Drug Deliv 2(2):237–254. doi:10.1517/17425247.2.2.237

    Article  CAS  PubMed  Google Scholar 

  • Singha K, Namgung R, Kim WJ (2011) Polymers in small-interfering RNA delivery. Nucl Acid Ther 21(3):133–147. doi:10.1089/nat.2011.0293

    Article  CAS  Google Scholar 

  • Spagnou S, Miller AD, Keller M (2004) Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry 43(42):13348–13356. doi:10.1021/bi048950a

    Article  CAS  PubMed  Google Scholar 

  • Tacke F, Weiskirchen R (2012) Update on hepatic stellate cells: pathogenic role in liver fibrosis and novel isolation techniques. Expert Rev Gastroenterol Hepatol 6(1):67–80. doi:10.1586/egh.11.92

    Article  CAS  PubMed  Google Scholar 

  • Tacke F, Gabele E, Bataille F, Schwabe RF, Hellerbrand C, Klebl F, Straub RH, Luedde T, Manns MP, Trautwein C, Brenner DA, Scholmerich J, Schnabl B (2007) Bone morphogenetic protein 7 is elevated in patients with chronic liver disease and exerts fibrogenic effects on human hepatic stellate cells. Dig Dis Sci 52(12):3404–3415. doi:10.1007/s10620-007-9758-8

    Article  CAS  PubMed  Google Scholar 

  • Thimgan MS, Yee HF Jr (1999) Quantitation of rat hepatic stellate cell contraction: stellate cells' contribution to sinusoidal resistance. Am J Physiol 277(1 Pt 1):G137–G143

    CAS  PubMed  Google Scholar 

  • Tiram G, Scomparin A, Ofek P, Satchi-Fainaro R (2014) Interfering cancer with polymeric siRNA nanomedicines. J Biomed Nanotechnol 10(1):50–66

    Article  CAS  PubMed  Google Scholar 

  • Tros de Ilarduya C, Sun Y, Duzgunes N (2010) Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci 40(3):159–170. doi:10.1016/j.ejps.2010.03.019

    Article  CAS  PubMed  Google Scholar 

  • Verma UN, Surabhi RM, Schmaltieg A, Becerra C, Gaynor RB (2003) Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clin Cancer Res 9(4):1291–1300

    CAS  PubMed  Google Scholar 

  • Vinas O, Bataller R, Sancho-Bru P, Gines P, Berenguer C, Enrich C, Nicolas JM, Ercilla G, Gallart T, Vives J, Arroyo V, Rodes J (2003) Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology 38(4):919–929. doi:10.1053/jhep.2003.50392

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Hirschberg R (2003) BMP7 antagonizes TGF-beta -dependent fibrogenesis in mesangial cells. Am J Physiol Renal Physiol 284(5):F1006–F1013. doi:10.1152/ajprenal.00382.2002

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li Z, Han Y, Liang LH, Ji A (2010) Nanoparticle-based delivery system for application of siRNA in vivo. Curr Drug Metab 11(2):182–196

    Article  CAS  PubMed  Google Scholar 

  • Wells RG (2000) Fibrogenesis V TGF-beta signaling pathways. Am J Phys Gastrointest Liver Physiol 279(5):G845–G850

    CAS  Google Scholar 

  • White PJ (2008) Barriers to successful delivery of short interfering RNA after systemic administration. Clin Exp Pharmacol Physiol 35(11):1371–1376. doi:10.1111/j.1440-1681.2008.04992.x

    Article  CAS  PubMed  Google Scholar 

  • Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8(2):129–138. doi:10.1038/nrd2742

    Article  CAS  PubMed  Google Scholar 

  • Winau F, Hegasy G, Weiskirchen R, Weber S, Cassan C, Sieling PA, Modlin RL, Liblau RS, Gressner AM, Kaufmann SH (2007) Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity 26(1):117–129. doi:10.1016/j.immuni.2006.11.011

    Article  CAS  PubMed  Google Scholar 

  • Wojda U, Miller JL (2000) Targeted transfer of polyethylenimine-avidin-DNA bioconjugates to hematopoietic cells using biotinylated monoclonal antibodies. J Pharm Sci 89(5):674–681. doi:10.1002/(sici)1520-6017(200005)89:5<674::aid-jps13>3.0.co;2-3

    Article  CAS  PubMed  Google Scholar 

  • Wong L, Yamasaki G, Johnson RJ, Friedman SL (1994) Induction of beta-platelet-derived growth factor receptor in rat hepatic lipocytes during cellular activation in vivo and in culture. J Clin Invest 94(4):1563–1569. doi:10.1172/jci117497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Zern MA (1996) Modification of liposomes for liver targeting. J Hepatol 24(6):757–763

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zern MA (2000) Hepatic stellate cells: a target for the treatment of liver fibrosis. J Gastroenterol 35(9):665–672

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Nantz MH, Zern MA (2002) Targeting hepatocytes for drug and gene delivery: emerging novel approaches and applications. Front Biosci 7:d717–d725

    Article  CAS  PubMed  Google Scholar 

  • Wu ZW, Chien CT, Liu CY, Yan JY, Lin SY (2012) Recent progress in copolymer-mediated siRNA delivery. J Drug Target 20(7):551–560. doi:10.3109/1061186x.2012.699057

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Chen Y, Gu K, Dash A, Sayre CL, Davies NM, Ho EA (2013) Novel intravaginal nanomedicine for the targeted delivery of saquinavir to CD4+ immune cells. Int J Nanomedicine 8:2847–2858. doi:10.2147/ijn.s46958

    PubMed  PubMed Central  Google Scholar 

  • Ye Z, Houssein HS, Mahato RI (2007) Bioconjugation of oligonucleotides for treating liver fibrosis. Oligonucleotides 17(4):349–404. doi:10.1089/oli.2007.0097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi HS, Jeong WI (2013) Interaction of hepatic stellate cells with diverse types of immune cells: foe or friend? J Gastroenterol Hepatol 28(Suppl 1):99–104. doi:10.1111/jgh.12017

    Article  CAS  PubMed  Google Scholar 

  • Yi Y, Noh MJ, Lee KH (2011) Current advances in retroviral gene therapy. Curr Gene Ther 11(3):218–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan X, Naguib S, Wu Z (2011) Recent advances of siRNA delivery by nanoparticles. Expert Opin Drug Deliv 8(4):521–536. doi:10.1517/17425247.2011.559223

    Article  CAS  PubMed  Google Scholar 

  • Zanta MA, Boussif O, Adib A, Behr JP (1997) In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. Bioconjug Chem 8(6):839–844. doi:10.1021/bc970098f

    Article  CAS  PubMed  Google Scholar 

  • Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R (2003) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9(7):964–968. doi:10.1038/nm888

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83(5):761–769. doi:10.1038/sj.clpt.6100400

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Hu CH, Cheng SX, Zhuo RX (2010) PEI grafted hyperbranched polymers with polyglycerol as a core for gene delivery. Colloids Surf B Biointerfaces 76(2):427–433. doi:10.1016/j.colsurfb.2009.12.001

    Article  CAS  PubMed  Google Scholar 

  • Zhao ZX, Gao SY, Wang JC, Chen CJ, Zhao EY, Hou WJ, Feng Q, Gao LY, Liu XY, Zhang LR, Zhang Q (2012) Self-assembly nanomicelles based on cationic mPEG-PLA-b-Polyarginine(R15) triblock copolymer for siRNA delivery. Biomaterials 33(28):6793–6807. doi:10.1016/j.biomaterials.2012.05.067

    Article  CAS  PubMed  Google Scholar 

  • Zhong L, Wang X, Wang S, Yang L, Gao H, Yang C (2013) The anti-fibrotic effect of bone morphogenic protein-7(BMP-7) on liver fibrosis. Int J Med Sci 10(4):441–450. doi:10.7150/ijms.5765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, Harborth J, Heyes JA, Jeffs LB, John M, Judge AD, Lam K, McClintock K, Nechev LV, Palmer LR, Racie T, Rohl I, Seiffert S, Shanmugam S, Sood V, Soutschek J, Toudjarska I, Wheat AJ, Yaworski E, Zedalis W, Koteliansky V, Manoharan M, Vornlocher HP, MacLachlan I (2006) RNAi-mediated gene silencing in non-human primates. Nature 441(7089):111–114. doi:10.1038/nature04688

    Article  CAS  PubMed  Google Scholar 

  • Zuhorn IS, Bakowsky U, Polushkin E, Visser WH, Stuart MC, Engberts JB, Hoekstra D (2005) Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency. Mol Ther 11(5):801–810. doi:10.1016/j.ymthe.2004.12.018

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuewen Gong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Omar, R., Yang, J., Liu, H., Davies, N.M., Gong, Y. (2016). Hepatic Stellate Cells in Liver Fibrosis and siRNA-Based Therapy. In: Nilius, B., de Tombe, P., Gudermann, T., Jahn, R., Lill, R., Petersen, O. (eds) Reviews of Physiology, Biochemistry and Pharmacology, Vol. 172. Reviews of Physiology, Biochemistry and Pharmacology, vol 172. Springer, Cham. https://doi.org/10.1007/112_2016_6

Download citation

Publish with us

Policies and ethics