Skip to main content

The Zebrafish Heart as a Model of Mammalian Cardiac Function

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Vol. 171

Abstract

Zebrafish (Danio rerio) are widely used as vertebrate model in developmental genetics and functional genomics as well as in cardiac structure-function studies. The zebrafish heart has been increasingly used as a model of human cardiac function, in part, due to the similarities in heart rate and action potential duration and morphology with respect to humans. The teleostian zebrafish is in many ways a compelling model of human cardiac function due to the clarity afforded by its ease of genetic manipulation, the wealth of developmental biological information, and inherent suitability to a variety of experimental techniques. However, in addition to the numerous advantages of the zebrafish system are also caveats related to gene duplication (resulting in paralogs not present in human or other mammals) and fundamental differences in how zebrafish hearts function. In this review, we discuss the use of zebrafish as a cardiac function model through the use of techniques such as echocardiography, optical mapping, electrocardiography, molecular investigations of excitation-contraction coupling, and their physiological implications relative to that of the human heart. While some of these techniques (e.g., echocardiography) are particularly challenging in the zebrafish because of diminutive size of the heart (~1.5 mm in diameter) critical information can be derived from these approaches and are discussed in detail in this article.

CE Genge, E Lin and L. Lee contributed equally to the paper

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelfattah AS, Farhi SL, Zhao Y, Brinks D, Zou P, Ruangkittisakul A, Platisa J, Pieribone VA, Ballanyi K, Cohen AE, Campbell RE (2016) A bright and fast red fluorescent protein voltage indicator that reports neuronal activity in organotypic brain slices. J Neurosci 36(8):2458–2472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abi-Gerges N, Holkham H, Jones EM, Pollard CE, Valentin JP, Robertson GA (2011) hERG subunit composition determines differential drug sensitivity. Br J Pharmacol 164(2b):419–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alday A, Alonso H, Gallego M, Urrutia J, Letamendia A, Callol C, Casis O (2014) Ionic channels underlying the ventricular action potential in zebrafish embryo. Pharmacol Res 84:26–31

    Article  CAS  PubMed  Google Scholar 

  • Alderman SL, Klaiman JM, Deck CA, Gillis TE (2012) Effect of cold acclimation on troponin I isoform expression in striated muscle of rainbow trout. Am J Physiol Regul Integr Comp Physiol 303(2):R168–R176

    Article  CAS  PubMed  Google Scholar 

  • Allen DG, Kurihara S (1979) Calcium transients at different muscle lengths in rat ventricular muscle [proceedings]. J Physiol 292:68P–69P

    CAS  PubMed  Google Scholar 

  • Altringham JD, Johnston IA (1982) The pCa-tension and force-velocity characteristics of skinned fibres isolated from fish fast and slow muscles. J Physiol 333:421–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson PA, Malouf NN, Oakeley AE, Pagani ED, Allen PD (1991) Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. Circ Res 69(5):1226–1233

    Article  CAS  PubMed  Google Scholar 

  • Arnaout R, Ferrer T, Huisken J, Spitzer K, Stainier DY, Tristani-Firouzi M, Chi NC (2007) Zebrafish model for human long QT syndrome. Proc Natl Acad Sci U S A 104(27):11316–11321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asnani A, Peterson RT (2014) The zebrafish as a tool to identify novel therapies for human cardiovascular disease. Dis Model Mech 7(7):763–767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bakkers J (2011) Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 91(2):279–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bill BR, Petzold AM, Clark KJ, Schimmenti LA, Ekker SC (2009) A primer for morpholino use in zebrafish. Zebrafish 6(1):69–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birkedal R, Shiels HA (2007) High [Na+]i in cardiomyocytes from rainbow trout. Am J Physiol Regul Integr Comp Physiol 293(2):R861–R866

    Article  CAS  PubMed  Google Scholar 

  • Blatter LA, Kockskamper J, Sheehan KA, Zima AV, Huser J, Lipsius SL (2003) Local calcium gradients during excitation-contraction coupling and alternans in atrial myocytes. J Physiol 546(Pt 1):19–31

    Article  CAS  PubMed  Google Scholar 

  • Bovo E, Dvornikov AV, Mazurek SR, de Tombe PP, Zima AV (2013) Mechanisms of Ca2+ handling in zebrafish ventricular myocytes. Pflugers Arch 465(12):1775–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brette F, Luxan G, Cros C, Dixey H, Wilson C, Shiels HA (2008) Characterization of isolated ventricular myocytes from adult zebrafish (Danio rerio). Biochem Biophys Res Commun 374(1):143–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broussard GJ, Liang R, Tian L (2014) Monitoring activity in neural circuits with genetically encoded indicators. Front Mol Neurosci 7:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaudhari GH, Chennubhotla KS, Chatti K, Kulkarni P (2013) Optimization of the adult zebrafish ECG method for assessment of drug-induced QTc prolongation. J Pharmacol Toxicol Methods 67(2):115–120

    Article  CAS  PubMed  Google Scholar 

  • Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi BR, Salama G (2000) Simultaneous maps of optical action potentials and calcium transients in guinea-pig hearts: mechanisms underlying concordant alternans. J Physiol 529(Pt 1):171–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chopra SS, Stroud DM, Watanabe H, Bennett JS, Burns CG, Wells KS, Yang T, Zhong TP, Roden DM (2010) Voltage-gated sodium channels are required for heart development in zebrafish. Circ Res 106(8):1342–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cingolani HE, Ennis IL, Aiello EA, Perez NG (2011) Role of autocrine/paracrine mechanisms in response to myocardial strain. Pflugers Arch 462(1):29–38

    Article  CAS  PubMed  Google Scholar 

  • Cohen AE (2016) Optogenetics: turning the microscope on its head. Biophys J 110(5):997–1003

    Article  CAS  PubMed  Google Scholar 

  • Collins JE, White S, Searle SM, Stemple DL (2012) Incorporating RNA-seq data into the zebrafish Ensembl genebuild. Genome Res 22(10):2067–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotter PA, Han AJ, Everson JJ, Rodnick KJ (2008) Cardiac hemodynamics of the rainbow trout (Oncorhynchus mykiss) using simultaneous Doppler echocardiography and electrocardiography. J Exp Zool A Ecol Genet Physiol 309(5):243–254

    Article  PubMed  Google Scholar 

  • Coucelo J, Joaquim N, Coucelo J (2000) Calculation of volumes and systolic indices of heart ventricle from Halobatrachus didactylus: echocardiographic noninvasive method. J Exp Zool 286(6):585–595

    Article  CAS  PubMed  Google Scholar 

  • Dahme T, Katus HA, Rottbauer W (2009) Fishing for the genetic basis of cardiovascular disease. Dis Model Mech 2(1-2):18–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Tombe PP, ter Keurs HE (1991) Sarcomere dynamics in cat cardiac trabeculae. Circ Res 68(2):588–596

    Article  PubMed  Google Scholar 

  • de Tombe PP, Mateja RD, Tachampa K, Ait Mou Y, Farman GP, Irving TC (2010) Myofilament length dependent activation. J Mol Cell Cardiol 48(5):851–858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhillon SS, Doro E, Magyary I, Egginton S, Sik A, Muller F (2013) Optimisation of embryonic and larval ECG measurement in zebrafish for quantifying the effect of QT prolonging drugs. PLoS One 8(4), e60552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Maio A, Block BA (2008) Ultrastructure of the sarcoplasmic reticulum in cardiac myocytes from Pacific bluefin tuna. Cell Tissue Res 334(1):121–134

    Article  PubMed  Google Scholar 

  • Ding W, Lin E, Ribeiro A, Sarunic MV, Tibbits GF, Beg MF (2014) Automatic cycle averaging for denoising approximately periodic spatiotemporal signals. IEEE Trans Med Imaging 33(8):1749–1759

    Article  PubMed  Google Scholar 

  • Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z, Belak J, Boggs C (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46

    CAS  PubMed  Google Scholar 

  • Dvornikov AV, Dewan S, Alekhina OV, Pickett FB, de Tombe PP (2014) Novel approaches to determine contractile function of the isolated adult zebrafish ventricular cardiac myocyte. J Physiol 592(9):1949–1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebert AM, Hume GL, Warren KS, Cook NP, Burns CG, Mohideen MA, Siegal G, Yelon D, Fishman MC, Garrity DM (2005) Calcium extrusion is critical for cardiac morphogenesis and rhythm in embryonic zebrafish hearts. Proc Natl Acad Sci U S A 102(49):17705–17710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edman KA (2005) Contractile properties of mouse single muscle fibers, a comparison with amphibian muscle fibers. J Exp Biol 208(Pt 10):1905–1913

    Article  CAS  PubMed  Google Scholar 

  • Efimov IR, Nikolski VP, Salama G (2004) Optical imaging of the heart. Circ Res 95(1):21–33

    Article  CAS  PubMed  Google Scholar 

  • Farrell AP, Jones DR (1992) The heart. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish physiology. Academic, San Diego

    Google Scholar 

  • Fast VG (2005) Simultaneous optical imaging of membrane potential and intracellular calcium. J Electrocardiol 38(4 Suppl):107–112

    Article  PubMed  Google Scholar 

  • Fentzke RC, Buck SH, Patel JR, Lin H, Wolska BM, Stojanovic MO, Martin AF, Solaro RJ, Moss RL, Leiden JM (1999) Impaired cardiomyocyte relaxation and diastolic function in transgenic mice expressing slow skeletal troponin I in the heart. J Physiol 517(Pt 1):143–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fields PA, Somero GN (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A(4) orthologs of Antarctic notothenioid fishes. Proc Natl Acad Sci U S A 95(19):11476–11481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu CY, Lee HC, Tsai HJ (2009) The molecular structures and expression patterns of zebrafish troponin I genes. Gene Expr Patterns 9(5):348–356

    Article  CAS  PubMed  Google Scholar 

  • Gagne SM, Tsuda S, Li MX, Smillie LB, Sykes BD (1995) Structures of the troponin C regulatory domains in the apo and calcium-saturated states. Nat Struct Biol 2(9):784–789

    Article  CAS  PubMed  Google Scholar 

  • Gemberling M, Karra R, Dickson AL, Poss KD (2015) Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish. Elife 4

    Google Scholar 

  • Genge CE, Davidson WS, Tibbits GF (2013) Adult teleost heart expresses two distinct troponin C paralogs: cardiac TnC and a novel and teleost-specific ssTnC in a chamber- and temperature-dependent manner. Physiol Genomics 45(18):866–875

    Article  CAS  PubMed  Google Scholar 

  • Genge CE, Stevens CM, Davidson WS, Singh G, Peter Tieleman D, Tibbits GF (2016) Functional divergence in teleost cardiac troponin paralogs guides variation in the interaction of TnI switch region with TnC. Genome Biol Evol 8(4):994–1011

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerger CJ, Thomas JK, Janz DM, Weber LP (2015) Acute effects of beta-naphthoflavone on cardiorespiratory function and metabolism in adult zebrafish (Danio rerio). Fish Physiol Biochem 41(1):289–298

    Article  CAS  PubMed  Google Scholar 

  • Gillis TE, Tibbits GF (2002) Beating the cold: the functional evolution of troponin C in teleost fish. Comp Biochem Physiol A Mol Integr Physiol 132(4):763–772

    Article  PubMed  Google Scholar 

  • Gillis TE, Liang B, Chung F, Tibbits GF (2005) Increasing mammalian cardiomyocyte contractility with residues identified in trout troponin C. Physiol Genomics 22(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Gillis TE, Marshall CR, Tibbits GF (2007) Functional and evolutionary relationships of troponin C. Physiol Genomics 32(1):16–27

    Article  CAS  PubMed  Google Scholar 

  • Granato M, van Eeden FJ, Schach U, Trowe T, Brand M, Furutani-Seiki M, Haffter P, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Nusslein-Volhard C (1996) Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 123:399–413

    CAS  PubMed  Google Scholar 

  • Granzier HL, Akster HA, Ter Keurs HE (1991) Effect of thin filament length on the force-sarcomere length relation of skeletal muscle. Am J Physiol 260(5 Pt 1):C1060–C1070

    CAS  PubMed  Google Scholar 

  • Guharoy M, Chakrabarti P (2005) Conservation and relative importance of residues across protein-protein interfaces. Proc Natl Acad Sci U S A 102(43):15447–15452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanft LM, McDonald KS (2010) Length dependence of force generation exhibit similarities between rat cardiac myocytes and skeletal muscle fibres. J Physiol 588(Pt 15):2891–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison SM, Bers DM (1989) Influence of temperature on the calcium sensitivity of the myofilaments of skinned ventricular muscle from the rabbit. J Gen Physiol 93(3):411–428

    Article  CAS  PubMed  Google Scholar 

  • Hassinen M, Haverinen J, Hardy ME, Shiels HA, Vornanen M (2015) Inward rectifier potassium current (I K1) and Kir2 composition of the zebrafish (Danio rerio) heart. Pflugers Arch 467(12):2437–2446

    Article  CAS  PubMed  Google Scholar 

  • Haverinen J, Vornanen M (2007) Temperature acclimation modifies sinoatrial pacemaker mechanism of the rainbow trout heart. Am J Physiol Regul Integr Comp Physiol 292(2):R1023–R1032

    Article  CAS  PubMed  Google Scholar 

  • Hein SJ, Lehmann LH, Kossack M, Juergensen L, Fuchs D, Katus HA, Hassel D (2015) Advanced echocardiography in adult zebrafish reveals delayed recovery of heart function after myocardial cryoinjury. PLoS One 10(4), e0122665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herron TJ, Lee P, Jalife J (2012) Optical imaging of voltage and calcium in cardiac cells & tissues. Circ Res 110(4):609–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho YL, Shau YW, Tsai HJ, Lin LC, Huang PJ, Hsieh FJ (2002) Assessment of zebrafish cardiac performance using Doppler echocardiography and power angiography. Ultrasound Med Biol 28(9):1137–1143

    Article  PubMed  Google Scholar 

  • Hou JH, Kralj JM, Douglass AD, Engert F, Cohen AE (2014) Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents. Front Physiol 5:344

    Article  PubMed  PubMed Central  Google Scholar 

  • Hove-Madsen L, Llach A, Tort L (2000) Na(+)/Ca(2+)-exchange activity regulates contraction and SR Ca(2+) content in rainbow trout atrial myocytes. Am J Physiol Regul Integr Comp Physiol 279(5):R1856–R1864

    CAS  PubMed  Google Scholar 

  • Hove-Madsen L, Llach A, Tibbits GF, Tort L (2003) Triggering of sarcoplasmic reticulum Ca2+ release and contraction by reverse mode Na+/Ca2+ exchange in trout atrial myocytes. Am J Physiol Regul Integr Comp Physiol 284(5):R1330–R1339

    Article  CAS  PubMed  Google Scholar 

  • Howe DG, Bradford YM, Conlin T, Eagle AE, Fashena D, Frazer K, Knight J, Mani P, Martin R, Moxon SA, Paddock H, Pich C, Ramachandran S, Ruef BJ, Ruzicka L, Schaper K, Shao X, Singer A, Sprunger B, Van Slyke CE, Westerfield M (2013) ZFIN, the Zebrafish Model Organism Database: increased support for mutants and transgenics. Nucleic Acids Res 41(Database issue):D854–D860

    Article  CAS  PubMed  Google Scholar 

  • Hu N, Yost HJ, Clark EB (2001) Cardiac morphology and blood pressure in the adult zebrafish. Anat Rec 264(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Huang QQ, Jin JP (1999) Preserved close linkage between the genes encoding troponin I and troponin T, reflecting an evolution of adapter proteins coupling the Ca(2+) signaling of contractility. J Mol Evol 49(6):780–788

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Hove-Madsen L, Tibbits GF (2005) Na+/Ca2+ exchange activity in neonatal rabbit ventricular myocytes. Am J Physiol Cell Physiol 288(1):C195–C203

    CAS  PubMed  Google Scholar 

  • Huang WC, Hsieh YS, Chen IH, Wang CH, Chang HW, Yang CC, Ku TH, Yeh SR, Chuang YJ (2010) Combined use of MS-222 (tricaine) and isoflurane extends anesthesia time and minimizes cardiac rhythm side effects in adult zebrafish. Zebrafish 7(3):297–304

    Article  CAS  PubMed  Google Scholar 

  • Huang CC, Su TH, Shih CC (2015) High-resolution tissue Doppler imaging of the zebrafish heart during its regeneration. Zebrafish 12(1):48–57

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iorga B, Blaudeck N, Solzin J, Neulen A, Stehle I, Lopez Davila AJ, Pfitzer G, Stehle R (2008) Lys184 deletion in troponin I impairs relaxation kinetics and induces hypercontractility in murine cardiac myofibrils. Cardiovasc Res 77(4):676–686

    Article  CAS  PubMed  Google Scholar 

  • Iorga B, Neacsu CD, Neiss WF, Wagener R, Paulsson M, Stehle R, Pfitzer G (2011) Micromechanical function of myofibrils isolated from skeletal and cardiac muscles of the zebrafish. J Gen Physiol 137(3):255–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaimes R 3rd, Walton RD, Pasdois P, Bernus O, Efimov IR, Kay MW (2016) A technical review of optical mapping of intracellular calcium within myocardial tissue. Am J Physiol Heart Circ Physiol 310(11):H1388–H1401

    Article  PubMed  Google Scholar 

  • Janssen PM, de Tombe PP (1997) Uncontrolled sarcomere shortening increases intracellular Ca2+ transient in rat cardiac trabeculae. Am J Physiol 272(4 Pt 2):H1892–H1897

    CAS  PubMed  Google Scholar 

  • Jin JP, Zhang Z, Bautista JA (2008) Isoform diversity, regulation, and functional adaptation of troponin and calponin. Crit Rev Eukaryot Gene Expr 18(2):93–124

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Han Z, Platisa J, Wooltorton JR, Cohen LB, Pieribone VA (2012) Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 75(5):779–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson AC, Turko AJ, Klaiman JM, Johnston EF, Gillis TE (2014) Cold acclimation alters the connective tissue content of the zebrafish (Danio rerio) heart. J Exp Biol 217(Pt 11):1868–1875

    Article  CAS  PubMed  Google Scholar 

  • Kane DA, Maischein HM, Brand M, van Eeden FJ, Furutani-Seiki M, Granato M, Haffter P, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kelsh RN, Mullins MC, Odenthal J, Warga RM, Nusslein-Volhard C (1996) The zebrafish early arrest mutants. Development 123:57–66

    CAS  PubMed  Google Scholar 

  • Karasinski J, Sokalski A, Kilarski W (2001) Correlation of myofibrillar ATPase activity and myosin heavy chain content in ventricular and atrial myocardium of fish heart. Folia Histochem Cytobiol 39(1):23–28

    CAS  PubMed  Google Scholar 

  • Kentish JC, ter Keurs HE, Ricciardi L, Bucx JJ, Noble MI (1986) Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Influence of calcium concentrations on these relations. Circ Res 58(6):755–768

    Article  CAS  PubMed  Google Scholar 

  • Kok FO, Shin M, Ni CW, Gupta A, Grosse AS, van Impel A, Kirchmaier BC, Peterson-Maduro J, Kourkoulis G, Male I, DeSantis DF, Sheppard-Tindell S, Ebarasi L, Betsholtz C, Schulte-Merker S, Wolfe SA, Lawson ND (2015) Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell 32(1):97–108

    Article  CAS  PubMed  Google Scholar 

  • Langenbacher AD, Dong Y, Shu X, Choi J, Nicoll DA, Goldhaber JI, Philipson KD, Chen JN (2005) Mutation in sodium-calcium exchanger 1 (NCX1) causes cardiac fibrillation in zebrafish. Proc Natl Acad Sci U S A 102(49):17699–17704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langheinrich U, Vacun G, Wagner T (2003) Zebrafish embryos express an orthologue of HERG and are sensitive toward a range of QT-prolonging drugs inducing severe arrhythmia. Toxicol Appl Pharmacol 193(3):370–382

    Article  CAS  PubMed  Google Scholar 

  • Laughner JI, Ng FS, Sulkin MS, Arthur RM, Efimov IR (2012) Processing and analysis of cardiac optical mapping data obtained with potentiometric dyes. Am J Physiol Heart Circ Physiol 303(7):H753–H765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law SH, Sargent TD (2014) The serine-threonine protein kinase PAK4 is dispensable in zebrafish: identification of a morpholino-generated pseudophenotype. PLoS One 9(6), e100268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee J, Cao H, Kang BJ, Jen N, Yu F, Lee CA, Fei P, Park J, Bohlool S, Lash-Rosenberg L, Shung KK, Hsiai TK (2014) Hemodynamics and ventricular function in a zebrafish model of injury and repair. Zebrafish 11(5):447–454

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee L, Genge CE, Cua M, Sheng X, Rayani K, Beg MF, Sarunic MV, Tibbits GF (2016) Functional assessment of cardiac responses of adult zebrafish (Danio rerio) to acute and chronic temperature change using high-resolution echocardiography. PLoS One 11(1), e0145163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leong IU, Skinner JR, Shelling AN, Love DR (2010a) Identification and expression analysis of kcnh2 genes in the zebrafish. Biochem Biophys Res Commun 396(4):817–824

    Article  CAS  PubMed  Google Scholar 

  • Leong IU, Skinner JR, Shelling AN, Love DR (2010b) Zebrafish as a model for long QT syndrome: the evidence and the means of manipulating zebrafish gene expression. Acta Physiol (Oxf) 199(3):257–276

    CAS  Google Scholar 

  • Li MX, Spyracopoulos L, Sykes BD (1999) Binding of cardiac troponin-I147-163 induces a structural opening in human cardiac troponin-C. Biochemistry 38(26):8289–8298

    Article  CAS  PubMed  Google Scholar 

  • Lin E, Ribeiro A, Ding W, Hove-Madsen L, Sarunic MV, Beg MF, Tibbits GF (2014) Optical mapping of the electrical activity of isolated adult zebrafish hearts: acute effects of temperature. Am J Physiol Regul Integr Comp Physiol 306(11):R823–R836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin E, Craig C, Lamothe M, Sarunic MV, Beg MF, Tibbits GF (2015) Construction and use of a zebrafish heart voltage and calcium optical mapping system, with integrated electrocardiogram and programmable electrical stimulation. Am J Physiol Regul Integr Comp Physiol 308(9):R755–R768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lionne C, Iorga B, Candau R, Travers F (2003) Why choose myofibrils to study muscle myosin ATPase? J Muscle Res Cell Motil 24(2-3):139–148

    Article  CAS  PubMed  Google Scholar 

  • Little AG, Seebacher F (2013) Thyroid hormone regulates cardiac performance during cold acclimation in Zebrafish (Danio rerio). J Exp Biol

    Google Scholar 

  • Liu B, Wohlfart B, Johansson BW (1990) Effects of low temperature on contraction in papillary muscles from rabbit, rat, and hedgehog. Cryobiology 27(5):539–546

    Article  CAS  PubMed  Google Scholar 

  • Liu TY, Lee PY, Huang CC, Sun L, Shung KK (2013) A study of the adult zebrafish ventricular function by retrospective Doppler-gated ultrahigh-frame-rate echocardiography. IEEE Trans Ultrason Ferroelectr Freq Control 60(9):1827–1837

    Article  PubMed  PubMed Central  Google Scholar 

  • Llach A, Molina CE, Alvarez-Lacalle E, Tort L, Benitez R, Hove-Madsen L (2011) Detection, properties, and frequency of local calcium release from the sarcoplasmic reticulum in teleost cardiomyocytes. PLoS One 6(8), e23708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Looger LL (2012) Running in reverse: rhodopsins sense voltage. Nat Methods 9(1):43–44

    Article  CAS  Google Scholar 

  • Lutcke H, Murayama M, Hahn T, Margolis DJ, Astori S, Zum Alten Borgloh SM, Gobel W, Yang Y, Tang W, Kugler S, Sprengel R, Nagai T, Miyawaki A, Larkum ME, Helmchen F, Hasan MT (2010) Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice. Front Neural Circuits 4:9

    PubMed  PubMed Central  Google Scholar 

  • Mateja RD, de Tombe PP (2012) Myofilament length-dependent activation develops within 5 ms in guinea-pig myocardium. Biophys J 103(1):L13–L15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesirca P, Torrente AG, Mangoni ME (2014) T-type channels in the sino-atrial and atrioventricular pacemaker mechanism. Pflugers Arch 466(4):791–799

    Article  CAS  PubMed  Google Scholar 

  • Meyer A, Schartl M (1999) Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11(6):699–704

    Article  CAS  PubMed  Google Scholar 

  • Milan DJ, Peterson TA, Ruskin JN, Peterson RT, MacRae CA (2003) Drugs that induce repolarization abnormalities cause bradycardia in zebrafish. Circulation 107(10):1355–1358

    Article  PubMed  Google Scholar 

  • Milan DJ, Jones IL, Ellinor PT, MacRae CA (2006) In vivo recording of adult zebrafish electrocardiogram and assessment of drug-induced QT prolongation. Am J Physiol Heart Circ Physiol 291(1):H269–H273

    Article  CAS  PubMed  Google Scholar 

  • Mironov SF, Vetter FJ, Pertsov AM (2006) Fluorescence imaging of cardiac propagation: spectral properties and filtering of optical action potentials. Am J Physiol Heart Circ Physiol 291(1):H327–H335

    Article  CAS  PubMed  Google Scholar 

  • Mittelstadt SW, Hemenway CL, Craig MP, Hove JR (2008) Evaluation of zebrafish embryos as a model for assessing inhibition of hERG. J Pharmacol Toxicol Methods 57(2):100–105

    Article  CAS  PubMed  Google Scholar 

  • Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelisa A, Echocardiography AS (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 10(2):165–193

    Article  PubMed  Google Scholar 

  • Nair N, Gerger C, Hatef A, Weber LP, Unniappan S (2016) Ultrasonography reveals in vivo dose-dependent inhibition of end systolic and diastolic volumes, heart rate and cardiac output by nesfatin-1 in zebrafish. Gen Comp Endocrinol

    Google Scholar 

  • Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26(2):216–220

    Article  CAS  PubMed  Google Scholar 

  • Nemtsas P, Wettwer E, Christ T, Weidinger G, Ravens U (2010) Adult zebrafish heart as a model for human heart? An electrophysiological study. J Mol Cell Cardiol 48(1):161–171

    Article  CAS  PubMed  Google Scholar 

  • Novak AE, Jost MC, Lu Y, Taylor AD, Zakon HH, Ribera AB (2006) Gene duplications and evolution of vertebrate voltage-gated sodium channels. J Mol Evol 63(2):208–221

    Article  CAS  PubMed  Google Scholar 

  • Nygren A, Kondo C, Clark RB, Giles WR (2003) Voltage-sensitive dye mapping in Langendorff-perfused rat hearts. Am J Physiol Heart Circ Physiol 284(3):H892–H902

    Article  CAS  PubMed  Google Scholar 

  • Ohno S (1993) Patterns in genome evolution. Curr Opin Genet Dev 3(6):911–914

    Article  CAS  PubMed  Google Scholar 

  • Ohte N, Miyoshi I, Sane DC, Little WC (2009) Zebrafish with antisense-knockdown of cardiac troponin C as a model of hereditary dilated cardiomyopathy. Circulation 73(9):1595–1596

    Article  CAS  Google Scholar 

  • Ovchinnikov S, Kamisetty H, Baker D (2014) Robust and accurate prediction of residue-residue interactions across protein interfaces using evolutionary information. Elife 3, e02030

    Article  PubMed  PubMed Central  Google Scholar 

  • Palpant NJ, Houang EM, Delport W, Hastings KE, Onufriev AV, Sham YY, Metzger JM (2010) Pathogenic peptide deviations support a model of adaptive evolution of chordate cardiac performance by troponin mutations. Physiol Genomics 42(2):287–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parmacek MS, Solaro RJ (2004) Biology of the troponin complex in cardiac myocytes. Prog Cardiovasc Dis 47(3):159–176

    Article  CAS  PubMed  Google Scholar 

  • Patrick SM, Hoskins AC, Kentish JC, White E, Shiels HA, Cazorla O (2010) Enhanced length-dependent Ca2+ activation in fish cardiomyocytes permits a large operating range of sarcomere lengths. J Mol Cell Cardiol 48(5):917–924

    Article  CAS  PubMed  Google Scholar 

  • Patrick SM, White E, Shiels HA (2011) Rainbow trout myocardium does not exhibit a slow inotropic response to stretch. J Exp Biol 214(Pt 7):1118–1122

    Article  PubMed  Google Scholar 

  • Poggesi C, Tesi C, Stehle R (2005) Sarcomeric determinants of striated muscle relaxation kinetics. Pflugers Arch 449(6):505–517

    Article  CAS  PubMed  Google Scholar 

  • Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298(5601):2188–2190

    Article  CAS  PubMed  Google Scholar 

  • Pugsley MK, Curtis MJ, Hayes ES (2015) Biophysics and molecular biology of cardiac ion channels for the safety pharmacologist. Handb Exp Pharmacol 229:149–203

    Article  PubMed  Google Scholar 

  • Qian X, Ba Y, Zhuang Q, Zhong G (2014) RNA-Seq technology and its application in fish transcriptomics. OMICS 18(2):98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose T, Goltstein PM, Portugues R, Griesbeck O (2014) Putting a finishing touch on GECIs. Front Mol Neurosci 7:88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rottbauer W, Baker K, Wo ZG, Mohideen MAPK, Cantiello HF, Fishman MC (2001) Growth and function of the embryonic heart depend upon the cardiac-specific L-type calcium channel alpha 1 subunit. Dev Cell 1(2):265–275

    Article  CAS  PubMed  Google Scholar 

  • Rottbauer W, Wessels G, Dahme T, Just S, Trano N, Hassel D, Burns CG, Katus HA, Fishman MC (2006) Cardiac myosin light chain-2: a novel essential component of thick-myofilament assembly and contractility of the heart. Circ Res 99(3):323–331

    Article  CAS  PubMed  Google Scholar 

  • Schmitt N, Grunnet M, Olesen SP (2014) Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev 94(2):609–653

    Article  CAS  PubMed  Google Scholar 

  • Scholz EP, Niemer N, Hassel D, Zitron E, Burgers HF, Bloehs R, Seyler C, Scherer D, Thomas D, Kathofer S, Katus HA, Rottbauer WA, Karle CA (2009) Biophysical properties of zebrafish ether-a-go-go related gene potassium channels. Biochem Biophys Res Commun 381(2):159–164

    Article  CAS  PubMed  Google Scholar 

  • Sedmera D, Reckova M, deAlmeida A, Sedmerova M, Biermann M, Volejnik J, Sarre A, Raddatz E, McCarthy RA, Gourdie RG, Thompson RP (2003) Functional and morphological evidence for a ventricular conduction system in zebrafish and Xenopus hearts. Am J Physiol Heart Circ Physiol 284(4):H1152–H1160

    Article  CAS  PubMed  Google Scholar 

  • Seeley M, Huang W, Chen Z, Wolff WO, Lin X, Xu X (2007) Depletion of zebrafish titin reduces cardiac contractility by disrupting the assembly of Z-discs and A-bands. Circ Res 100(2):238–245

    Article  CAS  PubMed  Google Scholar 

  • Sehnert AJ, Huq A, Weinstein BM, Walker C, Fishman M, Stainier DYR (2002) Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nat Genet 31(1):106–110

    Article  CAS  PubMed  Google Scholar 

  • Shah AN, Davey CF, Whitebirch AC, Miller AC, Moens CB (2015) Rapid reverse genetic screening using CRISPR in zebrafish. Nat Methods 12(6):535–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shattock MJ, Bers DM (1987) Inotropic response to hypothermia and the temperature-dependence of ryanodine action in isolated rabbit and rat ventricular muscle: implications for excitation-contraction coupling. Circ Res 61(6):761–771

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Lai T, Campbell RE (2015) Red fluorescent proteins (RFPs) and RFP-based biosensors for neuronal imaging applications. Neurophotonics 2(3):031203

    Article  PubMed  PubMed Central  Google Scholar 

  • Shiels HA, Calaghan SC, White E (2006) The cellular basis for enhanced volume-modulated cardiac output in fish hearts. J Gen Physiol 128(1):37–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shih YH, Zhang Y, Ding Y, Ross CA, Li H, Olson TM, Xu X (2015) Cardiac transcriptome and dilated cardiomyopathy genes in zebrafish. Circ Cardiovasc Genet 8(2):261–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidhu R, Anttila K, Farrell AP (2014) Upper thermal tolerance of closely related Danio species. J Fish Biol 84(4):982–995

    Article  CAS  PubMed  Google Scholar 

  • Sidi S, Busch-Nentwich E, Friedrich R, Schoenberger U, Nicolson T (2004) gemini encodes a zebrafish L-type calcium channel that localizes at sensory hair cell ribbon synapses. J Neurosci 24(17):4213–4223

    Article  CAS  PubMed  Google Scholar 

  • Singh AR, Sivadas A, Sabharwal A, Vellarikal SK, Jayarajan R, Verma A, Kapoor S, Joshi A, Scaria V, Sivasubbu S (2016) Chamber specific gene expression landscape of the zebrafish heart. PLoS One 11(1), e0147823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sogah VM, Serluca FC, Fishman MC, Yelon DL, Macrae CA, Mably JD (2010) Distinct troponin C isoform requirements in cardiac and skeletal muscle. Dev Dyn 239(11):3115–3123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somero GN (2005) Linking biogeography to physiology: evolutionary and acclimatory adjustments of thermal limits. Front Zool 2(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Somero GN, Hochachka PW (1969) Isoenzymes and short-term temperature compensation in poikilotherms: activation of lactate dehydrogenase isoenzymes by temperature decreases. Nature 223(5202):194–195

    Article  CAS  PubMed  Google Scholar 

  • Spence R, Gerlach G, Lawrence C, Smith C (2008) The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev Camb Philos Soc 83(1):13–34

    Article  PubMed  Google Scholar 

  • Steffen LS, Guyon JR, Vogel ED, Beltre R, Pusack TJ, Zhou Y, Zon LI, Kunkel LM (2007) Zebrafish orthologs of human muscular dystrophy genes. BMC Genomics 8:79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stehle R, Kruger M, Scherer P, Brixius K, Schwinger RH, Pfitzer G (2002) Isometric force kinetics upon rapid activation and relaxation of mouse, guinea pig and human heart muscle studied on the subcellular myofibrillar level. Basic Res Cardiol 97(Suppl 1):I127–I135

    PubMed  Google Scholar 

  • Stehle R, Solzin J, Iorga B, Poggesi C (2009) Insights into the kinetics of Ca2+-regulated contraction and relaxation from myofibril studies. Pflugers Arch 458(2):337–357

    Article  CAS  PubMed  Google Scholar 

  • Stevens CM, Rayani K, Genge CE, Liang B, Roller JM, Li C, Singh G, Li YA, Tieleman DP, van Petegem F, Tibbits GF (2016) Functional characterization of cardiac and slow skeletal troponin C paralogs in zebrafish by MD simulation and isothermal titration calorimetry. Biophys J 111:38–49

    Article  CAS  PubMed  Google Scholar 

  • St-Pierre F, Marshall JD, Yang Y, Gong Y, Schnitzer MJ, Lin MZ (2014) High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat Neurosci 17(6):884–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Lien CL, Xu X, Shung KK (2008) In vivo cardiac imaging of adult zebrafish using high frequency ultrasound (45–75 MHz). Ultrasound Med Biol 34(1):31–39

    Article  CAS  PubMed  Google Scholar 

  • Szuts V, Menesi D, Varga-Orvos Z, Zvara A, Houshmand N, Bitay M, Bogats G, Virag L, Baczko I, Szalontai B, Geramipoor A, Cotella D, Wettwer E, Ravens U, Deak F, Puskas LG, Papp JG, Kiss I, Varro A, Jost N (2013) Altered expression of genes for Kir ion channels in dilated cardiomyopathy. Can J Physiol Pharmacol 91(8):648–656

    Article  CAS  PubMed  Google Scholar 

  • ter Keurs HE, Rijnsburger WH, van Heuningen R, Nagelsmit MJ (1980) Tension development and sarcomere length in rat cardiac trabeculae. Evidence of length-dependent activation. Circ Res 46(5):703–714

    Article  PubMed  Google Scholar 

  • Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6(12):875–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai CT, Wu CK, Chiang FT, Tseng CD, Lee JK, Yu CC, Wang YC, Lai LP, Lin JL, Hwang JJ (2011) In-vitro recording of adult zebrafish heart electrocardiogram – a platform for pharmacological testing. Clin Chim Acta 412(21-22):1963–1967

    Article  CAS  PubMed  Google Scholar 

  • Verkerk AO, Remme CA (2012) Zebrafish: a novel research tool for cardiac (patho)electrophysiology and ion channel disorders. Front Physiol 3:255

    PubMed  PubMed Central  Google Scholar 

  • Vornanen M (1998) L-type Ca2+ current in fish cardiac myocytes: effects of thermal acclimation and beta-adrenergic stimulation. J Exp Biol 201(Pt 4):533–547

    CAS  PubMed  Google Scholar 

  • Vornanen M (1999) Na+/Ca2+ exchange current in ventricular myocytes of fish heart: contribution to sarcolemmal Ca2+ influx. J Exp Biol 202(Pt 13):1763–1775

    CAS  PubMed  Google Scholar 

  • Vornanen M, Hassinen M (2016) Zebrafish heart as a model for human cardiac electrophysiology. Channels 10(2):101–110

    Article  PubMed  Google Scholar 

  • Wang SQ, Huang YH, Liu KS, Zhou ZQ (1997) Dependence of myocardial hypothermia tolerance on sources of activator calcium. Cryobiology 35(3):193–200

    Article  CAS  PubMed  Google Scholar 

  • Warren KS, Baker K, Fishman MC (2001) The slow mo mutation reduces pacemaker current and heart rate in adult zebrafish. Am J Physiol Heart Circ Physiol 281(4):H1711–H1719

    CAS  PubMed  Google Scholar 

  • Wei B, Jin JP (2011) Troponin T isoforms and posttranscriptional modifications: evolution, regulation and function. Arch Biochem Biophys 505(2):144–154

    Article  CAS  PubMed  Google Scholar 

  • Wood T, Thoresen M (2015) Physiological responses to hypothermia. Semin Fetal Neonatal Med 20(2):87–96

    Article  PubMed  Google Scholar 

  • Wu C, Sharma K, Laster K, Hersi M, Torres C, Lukas TJ, Moore EJ (2014a) Kcnq1-5 (Kv7.1-5) potassium channel expression in the adult zebrafish. BMC Physiol 14:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Prole DL, Shen Y, Lin Z, Gnanasekaran A, Liu Y, Chen L, Zhou H, Chen SR, Usachev YM, Taylor CW, Campbell RE (2014b) Red fluorescent genetically encoded Ca2+ indicators for use in mitochondria and endoplasmic reticulum. Biochem J 464(1):13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Z, Ren J, Guo W (2015) Sarcomeric protein isoform transitions in cardiac muscle: a journey to heart failure. Biochim Biophys Acta 1852(1):47–52

    Article  CAS  PubMed  Google Scholar 

  • Zhang PC, Llach A, Sheng XY, Hove-Madsen L, Tibbits GF (2011) Calcium handling in zebrafish ventricular myocytes. Am J Physiol Regul Integr Comp Physiol 300(1):R56–R66

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Zhao XY, Tian T, Lu QL, Skrbo-Larssen N, Wu D, Kuang Z, Zheng XF, Han YC, Yang SY, Zhang CM, Meng AM (2008) Heart-specific isoform of tropomyosin4 is essential for heartbeat in zebrafish embryos. Cardiovasc Res 80(2):200–208

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Abdelfattah AS, Zhao Y, Ruangkittisakul A, Ballanyi K, Campbell RE, Harrison DJ (2014) Microfluidic cell sorter-aided directed evolution of a protein-based calcium ion indicator with an inverted fluorescent response. Integr Biol (Camb) 6(7):714–725

    Article  CAS  Google Scholar 

  • Zhou W, Horstick EJ, Hirata H, Kuwada JY (2008) Identification and expression of voltage-gated calcium channel beta subunits in Zebrafish. Dev Dyn 237(12):3842–3852

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Tran D, Baalbaki M, Tang LF, Poon A, Pelonero A, Titus EW, Yuan C, Shi C, Patchava S, Halper E, Garg J, Movsesyan I, Yin C, Wu R, Wilsbacher LD, Liu J, Hager RL, Coughlin SR, Jinek M, Pullinger CR, Kane JP, Hart DO, Kwok PY, Deo RC (2015) An internal promoter underlies the difference in disease severity between N- and C-terminal truncation mutations of Titin in zebrafish. Elife 4, e09406

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen F. Tibbits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Genge, C.E. et al. (2016). The Zebrafish Heart as a Model of Mammalian Cardiac Function. In: Nilius, B., de Tombe, P., Gudermann, T., Jahn, R., Lill, R., Petersen, O. (eds) Reviews of Physiology, Biochemistry and Pharmacology, Vol. 171. Reviews of Physiology, Biochemistry and Pharmacology, vol 171. Springer, Cham. https://doi.org/10.1007/112_2016_5

Download citation

Publish with us

Policies and ethics