Induced Pluripotent Stem Cells in Cardiovascular Research

  • Daniel Sinnecker
  • Ralf J. Dirschinger
  • Alexander Goedel
  • Alessandra Moretti
  • Peter Lipp
  • Karl-Ludwig Laugwitz
Chapter
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 163)

Abstract

The discovery that somatic cells can be reprogrammed to induced pluripotent stem cells (iPSC) by overexpression of a combination of transcription factors bears the potential to spawn a wealth of new applications in both preclinical and clinical cardiovascular research. Disease modeling, which is accomplished by deriving iPSC lines from patients affected by heritable diseases and then studying the pathophysiology of the diseases in somatic cells differentiated from these patient-specific iPSC lines, is the so far most advanced of these applications. Long-QT syndrome and catecholaminergic polymorphic ventricular tachycardia are two heart rhythm disorders that have been already successfully modeled by several groups using this approach, which will likely serve to model other mono- or polygenetic cardiovascular disorders in the future. Test systems based on cells derived from iPSC might prove beneficial to screen for novel cardiovascular drugs or unwanted drug side effects and to individualize medical therapy. The application of iPSC for cell therapy of cardiovascular disorders, albeit promising, will only become feasible if the problem of biological safety of these cells will be mastered.

References

  1. Antzelevitch C (2005) Role of transmural dispersion of repolarization in the genesis of drug-induced torsades de pointes. Heart Rhythm 2(2 Suppl):S9–S15PubMedCrossRefGoogle Scholar
  2. Antzelevitch C, Brugada P, Borggrefe M, Brugada J, Brugada R, Corrado D, Gussak I, LeMarec H, Nademanee K, Perez Riera AR, Shimizu W, Schulze-Bahr E, Tan H, Wilde A (2005) Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation 111(5):659PubMedCrossRefGoogle Scholar
  3. Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC, Aizawa Y, Guerchicoff A, Pfeiffer R, Oliva A, Wollnik B, Gelber P, Bonaros EP Jr, Burashnikov E, Wu Y, Sargent JD, Schickel S, Oberheiden R, Bhatia A, Hsu LF, Haïssaguerre M, Schimpf R, Borggrefe M, Wolpert C (2007) Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation 115(4):442PubMedCrossRefGoogle Scholar
  4. Ashrafian H, Redwood C, Blair E, Watkins H (2003) Hypertrophic cardiomyopathy: a paradigm for myocardial energy depletion. Trends Genet 19:263–268PubMedCrossRefGoogle Scholar
  5. Ashrafian H, McKenna WJ, Watkins H (2011) Disease pathways and novel therapeutic targets in hypertrophic cardiomyopathy. Circ Res 109:86–96PubMedCrossRefGoogle Scholar
  6. Azaouagh A, Churzidse S, Konorza T, Erbel R (2011) Arrhythmogenic right ventricular cardiomyopathy/dysplasia: a review and update. Clin Res Cardiol 100:383–394PubMedCrossRefGoogle Scholar
  7. Beffagna G, Occhi G, Nava A, Vitiello L, Ditadi A, Basso C, Bauce B, Carraro G, Thiene G, Towbin JA, Danieli GA, Rampazzo A (2005) Regulatory mutations in transforming growth factor-beta3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc Res 65:366–373PubMedCrossRefGoogle Scholar
  8. Benito B, Sarkozy A, Mont L, Henkens S, Berruezo A, Tamborero D, Arzamendi D, Berne P, Brugada R, Brugada P, Brugada J (2008) Gender differences in clinical manifestations of Brugada syndrome. J Am Coll Cardiol 52(19):1567PubMedCrossRefGoogle Scholar
  9. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nature Rev Mol Cell Biol 1:11–21CrossRefGoogle Scholar
  10. Brown ME, Rondon E, Rajesh D, Mack A, Lewis R, Feng X, Zitur LJ, Learish RD, Nuwaysir EF (2010) Derivation of induced pluripotent stem cells from human peripheral blood T lymphocytes. PLoS One 5(6):e11373PubMedCrossRefGoogle Scholar
  11. Carter N, Snieder H, Jeffery S, Saumarez R, Varma C, Antoniades L, Spector TD (2000) QT intervals in twins. J Hum Hypertens 14:389–390PubMedCrossRefGoogle Scholar
  12. Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A, Yankelson L, Aronson D, Beyar R, Gepstein L (2007) Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 50(19):1884–1893PubMedCrossRefGoogle Scholar
  13. Dessertenne F (1966) La tachycardie ventriculaire à deux foyers opposés variables. Arch Mal Coeur 59:263–272PubMedGoogle Scholar
  14. Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457:277–280PubMedCrossRefGoogle Scholar
  15. Eckardt L, Haverkamp W, Borggrefe M, Breithardt G (1998) Experimental models of torsade de pointes. Cardiovasc Res 39:178–193PubMedCrossRefGoogle Scholar
  16. Fatima A, Xu G, Shao K, Papadopoulos S, Lehmann M, Arnáiz-Cot JJ, Rossa AO, Filomain N, Matzkies M, Dittmann S, Stone SL, Linke M, Zechner U, Beyer V, Hennies HC, Rosenkranz S, Klauke B, Parwani AS, Haverkamp W, Pfitzer G, Farr M, Cleemann L, Morad M, Milting H, Hescheler J, Saric T (2011) In vitro modeling of ryanodine receptor 2 dysfunction using human induced pluripotent stem cells. Cell Physiol Biochem 28:597–592Google Scholar
  17. Fujiwara M, Yan P, Otsuji TG, Narazaki G, Uosaki H, Fukushima H, Kuwahara K, Harada M, Matsuda H, Matsuoka S, Okita K, Takahashi K, Nakagawa M, Ikeda T, Sakata R, Mummery CL, Nakatsuji N, Yamanaka S, Nakao K, Yamashita JK (2011) Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with cyclosporin-A. PLoS One 6(2):e16734PubMedCrossRefGoogle Scholar
  18. Gaita F, Giustetto C, Bianchi F, Wolpert C, Schimpf R, Riccardi R, Grossi S, Richiardi E, Borggrefe M (2003) Short QT syndrome: a familial cause of sudden death. Circulation 108(8):965–970PubMedCrossRefGoogle Scholar
  19. Gallagher MM, Magliano G, Yap YG, Padula M, Morgia V, Postorino C, Di Liberato F, Leo R, Borzi M, Romeo F (2006) Distribution and prognostic significance of QT intervals in the lowest half centile in 12,012 apparently healthy persons. Am J Cardiol 98(7):933PubMedCrossRefGoogle Scholar
  20. Giorgi MA, Bolanos R, Gonzalez CD, Di Girolamo G (2010) QT interval prolongation: preclinical and clinical testing arrhythmogenesis in drugs and regulatory implications. Curr Drug Safety 5:54–57CrossRefGoogle Scholar
  21. Giustetto C, Di Monte F, Wolpert C, Borggrefe M, Schimpf R, Sbragia P, Leone G, Maury P, Anttonen O, Haissaguerre M, Gaita F (2006) Short QT syndrome: clinical findings and diagnostic-therapeutic implications. Eur Heart 27(20):2440CrossRefGoogle Scholar
  22. Gore A, Li Z, Fung H-L, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E, Lee J-H, Loh Y-H, Manos PD, Montserrat N, Panopoulos AD, Ruiz S, Wilbert ML, Yu J, Kirkness EF, Belmonte JCI, Rossi DJ, Thomson JA, Eggan K, Daley JQ, Goldstein LSB, Zhang K (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471:63–67PubMedCrossRefGoogle Scholar
  23. Harvey W (1628) Exercitatio de Motu Cordis et Sanguinis in Animalibus. Francofurti, Sumptibus Guilielmi FitzeriGoogle Scholar
  24. Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600PubMedCrossRefGoogle Scholar
  25. Hussein SM, Batada NN, Vuoristo S, Ching RW, Auito R, Närvä E, Ng S, Sourour M, Hämäläinen R, Olsson C, Lundin K, Mikkola M, Trokovic R, Peitz M, Brüstle O, Bazett-Jones DP, Alitalo K, Lahesmaa R, Nagy A, Otonkoski T (2011) Copy number variation and selection during reprogramming to pluripotency. Nature 471:58–62PubMedCrossRefGoogle Scholar
  26. Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, Feldman O, Gepstein A, Arbel G, Hammerman H, Boulos M, Gepstein L (2011) Modelling the long-QT syndrome with induced pluripotent stem cells. Nature 471(7337):225–229PubMedCrossRefGoogle Scholar
  27. Jones KA, Garbati N, Zhang H, Large CH (2009) Automated patch clamping using the QPatch. Methods Mol Biol 565:209–223PubMedCrossRefGoogle Scholar
  28. Jung CB, Moretti A, Mederos Y Schnitzler M, Iop L, Storch U, Bellin M, Dorn T, Ruppenthal S, Pfeiffer S, Goedel A, Dirschinger RJ, Seyfarth M, Lam JT, Sinnecker D, Gudermann T, Lipp P, Laugwitz K-L (2011) EMBO Mol Med. doi: 10.1002/emmm.201100194
  29. Kannankeril PJ, Roden DM, Norris KJ, Whalen SP, George AL Jr, Murray KT (2005) Genetic susceptibility to acquired long QT syndrome: pharmacologic challenge in first-degree relatives. Heart Rhythm 2(2):134–140PubMedCrossRefGoogle Scholar
  30. Keller GM (1995) In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 7(6):862–869PubMedCrossRefGoogle Scholar
  31. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024PubMedCrossRefGoogle Scholar
  32. Lasser KE, Allen PD, Woolhandler SJ, Himmelstein DU, Wolfe SM, Bor DH (2002) Timing of new black box warnings and withdrawals for prescription medications. JAMA 287:2215–2220PubMedCrossRefGoogle Scholar
  33. Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA, Ganat YM, Menon J, Shimizu F, Viale A, Tabar V, Sadelain M, Studer L (2009) Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461:402–406PubMedCrossRefGoogle Scholar
  34. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471:68–73PubMedCrossRefGoogle Scholar
  35. Lombardi R, da Graca Cabreira-Hansen M, Bell A, Fromm RR, Willerson JT, Marian AJ (2011) Nuclear plakoglobin is essential for differentiation of cardiac progenitor cells to adipocytes in arrhythmogenic right ventricular cardiomyopathy. Circ Res doi: 10.1161/CIRCRESAHA.111.255075Google Scholar
  36. London B (2001) Cardiac arrhythmias: from (transgenic) mice to men. J Cardiovasc Electrophysiol 12(9):1089–1091PubMedCrossRefGoogle Scholar
  37. Maron BJ, Thompson PD, Puffer JC, McGrew CA, StrongWB DPS, Clark LT, Mitten MJ, Crawford MH, Atkins DL, Driscoll DJ, Epstein AE (1996) Cardiovascular preparticipation screening of competitive athletes. a statement for Health Professionals from the Sudden Death Committee (Clinical Cardiology) and Congenital Cardiac Defects Committee (Cardiovascular Disease in the Young), American Heart Association. Circulation 94:850–856PubMedCrossRefGoogle Scholar
  38. Matsa E, Rajamohan D, Dick E, Young L, Mellor I, Stainforth A, Denning C (2011) Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long-QT syndrome type 2 mutation. Eur Heart J 32(8):952–962PubMedCrossRefGoogle Scholar
  39. McCauley MD, Wehrens XHT (2009) Animal models of arrhythmogenic cardiomyopathy. Dis Model Mech 2:563–570PubMedCrossRefGoogle Scholar
  40. Merner ND, Hodgkinson KA, Haywood AF, Connors S, French VM, Drenckhahn JD, Kupprion C, Ramadanova K, Thierfelder L, McKenna W, Gallagher B, Morris-Larkin L, Bassett AS, Parfrey PS, Young TL (2008) Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene. Am J Hum Genet 82:809–821PubMedCrossRefGoogle Scholar
  41. Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, Qyang Y, Bu L, Sasaki M, Martin-Puig S, Sun Y, Evans SM, Laugwitz KL, Chien KR (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127:1151–1165PubMedCrossRefGoogle Scholar
  42. Moretti A, Bellin M, Jung CB, Thies TM, Takashima Y, Bernshausen A, Schiemann M, Fischer S, Moosmang S, Smith AG, Lam JT, Laugwitz K-L (2010a) Mouse and human induced pluripotent stem cells as a source for multipotent Isl1+ cardiovascular progenitors. FASEB J 24:700–711PubMedCrossRefGoogle Scholar
  43. Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flügel L, Dorn T, Goedel A, Höhnke C, Hofmann F, Seyfarth M, Sinnecker D, Schömig A, Laugwitz K-L (2010b) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363(15):1397–1409PubMedCrossRefGoogle Scholar
  44. Nerbonne JM, Nichols CG, Schwarz TL, Escande D (2001) Genetic manipulation of cardiac K+ channel function in mice. What we have learned, and where do we go from here? Circ Res 89:944–956PubMedCrossRefGoogle Scholar
  45. Niehans P (1952) 20 Jahre Zellulartherapie. Beihefte zur Medizinischen Klinik 47, Berlin, München, Wien: Urban & SchwarzenbergGoogle Scholar
  46. Novak A, Shtrichman R, Germanguz I, Segev H, Zeevi-Levin N, Fishman B, Mandel YE, Barad L, Domev H, Kotton D, Mostoslavsky G, Binah O, Itskovitz-Eldor J (2010) Enhanced reprogramming and cardiac differentiation of human keratinocytes derived from plucked hair follicles, using a single excisable lentivirus. Cell Reprogram 12(6):665–678PubMedCrossRefGoogle Scholar
  47. Novak A, Barad L, Zeevi-Levin N, Shick R, Shtreichman R, Lorber A, Itskovitz-Eldor J, Binah O (2011) J Cell Mol Med doi: 10.1111/j.1582-4934.2011.01476.x
  48. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317PubMedCrossRefGoogle Scholar
  49. Peal DS, Mills RW, Lynch SN, Mosley JM, Lim E, Ellinor PT, January CT, Peterson RT, Milan DJ (2011) Novel chemical suppressors of long QT syndrome identified by an in vivo functional screen. Circulation doi:10.1161/CIRCULATIONAHA.110.003731Google Scholar
  50. Poon E, Kong C-W, Li RA (2011) Human Pluripotent Stem Cell-Based Approaches for Myocardial Repair: From the Electrophysiological Perspective. Mol Pharmaceutics 8:1495–1504CrossRefGoogle Scholar
  51. Priori S, Chen SRW (2011) Inherited dysfunction of sarcoplasmic reticulum Ca2+ handling and arrhythmogenesis. Circ Res 108:871–883PubMedCrossRefGoogle Scholar
  52. Priori SG, Napolitano C, Gasparini M, Pappone C, Della Bella P, Giordano U, Bloise R, Giustetto C, De Nardis R, Grillo M, Ronchetti E, Faggiano G, Nastoli J (2002) Natural history of Brugada syndrome: insights for risk stratification and management. Circulation 105(11):1342PubMedCrossRefGoogle Scholar
  53. Probst V, Veltmann C, Eckardt L, Meregalli PG, Gaita F, Tan HL, Babuty D, Sacher F, Giustetto C, Schulze-Bahr E, Borggrefe M, Haissaguerre M, Mabo P, Le Marec H, Wolpert C, Wilde AA (2010) Long-term prognosis of patients diagnosed with Brugada syndrome: results from the FINGER Brugada Syndrome Registry. Circulation 121(5):635PubMedCrossRefGoogle Scholar
  54. Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C, Benaiche A, Isnard R, Dubourg O, Burban M, Gueffet J-P, Millaire A, Desnos M, Schwartz K, Hainque B, Komajda M, EUROGENE Heart Failure Project (2003) Hypertrophic cardiomyopathy. Distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 107:2227–2232PubMedCrossRefGoogle Scholar
  55. Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81:299–307PubMedCrossRefGoogle Scholar
  56. Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G, Gabbarini F, Goulene K, Insolia R, Mannarino S, Mosca F, Nespoli L, Rimini A, Rosati E, Salice P, Spazzolini C (2009) Prevalence of the congenital long-QT syndrome. Circulation 120:1761–1767PubMedCrossRefGoogle Scholar
  57. Shafa M, Sjonesen K, Yamashita A, Liu S, Michalak M, Kallos MS, Rancourt DE (2011) Expansion and long-term maintenance of induced pluripotent stem cells in stirred suspension bioreactors. J Tissue Eng Regen Med doi:10.1002/term.450Google Scholar
  58. Sidhu KS (2011) New approaches for the generation of induced pluripotent stem cells. Expert Opin Biol Ther 11(5):569–579PubMedCrossRefGoogle Scholar
  59. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRefGoogle Scholar
  60. Takahashi T, Lord B, Schulze PC, Fryer RM, Sarang SS, Gullans SR, Lee RT (2003) Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107:1912–1916PubMedCrossRefGoogle Scholar
  61. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedCrossRefGoogle Scholar
  62. Tiburcy M, Didié M, Boy O, Christalla P. Doeker S, Naito H, Karikkineth BC, El-Armouche A, Grimm M, Nose M, Eschenhagen T, Zieseniss A, Katschinski D, Hamdani N, Linke WA, Yin X, Mayr M, Zimmermann W-H (2011) Circ Res doi:10.1161/CIRCRESAHA.111.251843
  63. Tiso N, Stephan DA, Nava A, Bagattin A, Devaney JM, Stanchi F, Larderet G, Brahmbhatt B, Brown K, Bauce B, Muriago M, Basso C, Thiene G, Danieli GA, Rampazzo A (2001) Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet 10:189–194PubMedCrossRefGoogle Scholar
  64. Tran TH, Wang X, Browne C, Zang Y, Schinke M, Izumo S, Burcin M (2009) Wnt3a-induced mesoderm formation and cardiomyogenesis in human embryonic stem cells. Stem Cells 27:1869–1878PubMedCrossRefGoogle Scholar
  65. Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, Pabon L, Reinecke H, Murry CE (2011) Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109:47–59Google Scholar
  66. van Tintelen JP, Entius MM, Bhuiyan ZA, Jongbloed R, Wiesfeld ACP, Wilde AAM, van der Smagt J, Boven LG, Mannens MMAN, van Langen IM, Hofstra RMW, Otterspoor LC, Doevedans PAFM, Rodriguez L-M, van Gelder IC, Hauwe RNW (2006) Plakophilin-2 mutations are the major determinant of familial arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation 113:1650–1658PubMedCrossRefGoogle Scholar
  67. Vatta M, Dumaine R, Varghese G, Richard TA, Shimizu W, Aihara N, Nademanee K, Brugada R, Brugada J, Veerakul G, Li H, Bowles NE, Brugada P, Antzelevitch C, Towbin JA (2002) Genetic and biophysical basis of sudden unexplained nocturnal death syndrome (SUNDS), a disease allelic to Brugada syndrome. Hum Mol Genet 11(3):337PubMedCrossRefGoogle Scholar
  68. Watanabe H, Koopmann TT, Le Scouarnec S, Yang T, Ingram CR, Schott JJ, Demolombe S, Probst V, Anselme F, Escande D, Wiesfeld AC, Pfeufer A, Kääb S, Wichmann HE, Hasdemir C, Aizawa Y, Wilde AA, Roden DM, Bezzina CR (2008) Sodium channel beta1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest 118(6):226Google Scholar
  69. Watkins H, Ashrafian H, Redwood C (2011) Inherited cardiomyopathies. N Engl J Med 364:1643–1656PubMedCrossRefGoogle Scholar
  70. Weiss R, Barmada MM, Nguyen T, Seibel JS, Cavlovich D, Kornblit CA, Angelilli A, Villanueva F, McNamara DM, London B (2002) Clinical and molecular heterogeneity in the Brugada syndrome: a novel gene locus on chromosome 3. Circulation 105(6):707PubMedCrossRefGoogle Scholar
  71. Wilde AA, Antzelevitch C, Borggrefe M, Brugada J, Brugada R, Brugada P, Corrado D, Hauer RN, Kass RS, Nademanee K, Priori SG, Towbin JA, Study Group on the Molecular Basis of Arrhythmias of the European Society of Cardiology (2002) Proposed diagnostic criteria for the Brugada syndrome. Eur Heart J 23(21):1648PubMedGoogle Scholar
  72. Yang P, Kanki H, Drolet B, Yang T, Wei J, Viswanathan PC, Hohnloser SH, Shimizu W, Schwartz PJ, Stanton M, Murray KT, Norris K, George AL Jr, Roden DM (2002) Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation 105(16):1943–1948PubMedCrossRefGoogle Scholar
  73. Yazawa M, Hsue B, Jia X, Pasca A, Bernstein JA, Hallmayer J, Dolmetsch RE (2011) Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471(7337):230–234PubMedCrossRefGoogle Scholar
  74. Ye L, Chang JC, Lin C, Sun X, Yu J, Kan YW (2009) Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc Natl Acad Sci USA 106(24):9826–9830PubMedCrossRefGoogle Scholar
  75. Yu J, Vodyanìk MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920PubMedCrossRefGoogle Scholar
  76. Zhang Y, Wang D, Chen M, Yang B, Zhang F, Cao K (2011) Intramyocardial transplantation of undifferentiated rat induced pluripotent stem cells causes tumorigenesis in the heart. PLoS One 6(4):e19012. doi:10.1371/journal.pone.0019012 PubMedCrossRefGoogle Scholar
  77. Zlotogora J (2003) Penetrance and expressivity in the molecular age. Genet Med 5(5):347–352PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniel Sinnecker
    • 1
  • Ralf J. Dirschinger
    • 1
  • Alexander Goedel
    • 1
  • Alessandra Moretti
    • 1
  • Peter Lipp
    • 2
  • Karl-Ludwig Laugwitz
    • 1
  1. 1.I. Medizinische Klinik – KardiologieKlinikum rechts der Isar – Technische Universität MünchenMunichGermany
  2. 2.Institut für Molekulare Zellbiologie, Medizinische FakultätUniversitätsklinikum Homburg/Saar, Universität des SaarlandesHomburg/SaarGermany

Personalised recommendations