Physical Geology of Shallow-Level Magmatic Systems—An Introduction

  • Sergio RocchiEmail author
  • Christoph Breitkreuz
Part of the Advances in Volcanology book series (VOLCAN)


The fate of magma is commonly seen as either eruption from volcanic vents or emplacement at depth into the crust. However, magmas often solidify in the very shallow crust (i.e. less than ca. 3 km deep), as either subhorizontal intrusions such as sills and laccoliths, or as frozen vertical conduits, i.e. dykes. Which of these processes will prevail is controlled by intrinsic parameters like magma density, viscosity, volume and ascent rate. Among external parameters, far field stress, as well as variations of density and strength in the host rock, are significant.


  1. Anderson EM (1936) Dynamics of formation of cone-sheets, ring-dykes, and cauldron subsidence. Proc Royal Soc Edinb 56:128–157CrossRefGoogle Scholar
  2. Annen C, Pichavant M, Bachmann O, Burgisser A (2008) Conditions for the growth of a long-lived shallow crustal magma chamber below Mount Pelée volcano (Martinique, Lesser Antilles Arc). J Geophys Res 113:B07209CrossRefGoogle Scholar
  3. Awdankiewicz M, Breitkreuz C, Ehling B-C (2004) Emplacement textures in Late Palaeozoic andesite sills of the Flechtingen-Roßlau Block, north of Magdeburg (Germany). In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems. Geological Society, London, Special Publication, 234, pp 51–66CrossRefGoogle Scholar
  4. Baer G, Reches Z (1991) Mechanics of emplacement and tectonic implications of the Ramon dike systems, Israel. J Geophys Res 96:11, 895–811, 910CrossRefGoogle Scholar
  5. Breitkreuz C, Mock A (2004) Are laccolith complexes characteristic of transtensional basin systems?—Examples from Permocarboniferous Central Europe. In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems. Geological Society, London, Special Publication, 234, pp 13–32Google Scholar
  6. Bunger AP, Cruden AR (2011) Modeling the growth of laccoliths and large mafic sills: role of magma body forces. J Geophys Res 116(B2):B02203CrossRefGoogle Scholar
  7. Cloos H (1927) Die Quellkuppe des Drachenfels am Rhein. Ihre Tektonik und Bildungsweise: Zeitschr. Vulkanologie 11:33–40Google Scholar
  8. Corry CE (1988) Laccoliths—mechanics of emplacement and growth. Geol Soc Am Spec Pap 220:110Google Scholar
  9. Dill HG (2010) The “chessboard” classification scheme of mineral deposits: mineralogy and geology from aluminum to zirconium. Earth Sci Rev 100(1–4):1–420CrossRefGoogle Scholar
  10. Elliot DH, Fleming TH, Kyle PR, Foland KA (1999) Long-distance transport of magmas in the Jurassic Ferrar Large Igneous Province, Antarctica. Earth Planet Sci Lett 167:89–104CrossRefGoogle Scholar
  11. Francis EH (1982) Magma and sediment-I. Emplacement mechanism of late Carboniferous tholeiite sills in northern Britain. J Geol Soc London 139:1–20CrossRefGoogle Scholar
  12. Galland O, Burchardt S, Hallot E, Mourgues R, Bulois C (2014) Dynamics of dikes versus cone sheets in volcanic systems. J Geophys Res Solid Earth 119(8):6178–6192CrossRefGoogle Scholar
  13. Gilbert GK (1877) Report on the geology of Henry Mountains. In: Department of the Interior, U.S. Geographical and Geological Survey of the Rocky Mountain Region. Washington D.C. Government Printing Office, p 160Google Scholar
  14. Glazner AF, Bartley JM, Coleman DS, Gray W, Taylor RZ (2004) Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14(4/5):4–11CrossRefGoogle Scholar
  15. Grocott J, Arevalo C, Welkner D, Cruden A (2009) Fault-assisted vertical pluton growth: Coastal Cordillera, north Chilean Andes. J Geol Soc London 166:295–301CrossRefGoogle Scholar
  16. Hacker DB, Biek RF, Rowley PD (2014) Catastrophic emplacement of the gigantic Markagunt gravity slide, southwest Utah (USA): implications for hazards associated with sector collapse of volcanic fields. Geology 42(11):943–946CrossRefGoogle Scholar
  17. Hogan JP, Gilbert MC (1995) The A-type Mount Scott Granite sheet: importance of crustal magma traps. J Geophys Res B8:15, 779–715, 792Google Scholar
  18. Hogan JP, Price JD, Gilbert MC (1998) Magma traps and driving pressure: consequences for pluton shape and emplacement in an extensional regime. J Struct Geol 20(9/10):1155–1168CrossRefGoogle Scholar
  19. Horsman E, Morgan S, Saint-Blanquat Md, Habert G, Hunter R, Nugent A, Tikoff B (2009) Emplacement and assembly of shallow plutons through multiple magma pulses, Henry Mountains, Utah. Earth Environm Sci Trans Royal Soc Edinb 100:1–16CrossRefGoogle Scholar
  20. Hunt CB (1953) Geology and geography of the Henry Mountains region. Utah, U S Geol Survey Prof Paper, p 228Google Scholar
  21. Hutton D (2009) Insights into magmatism in volcanic margins: bridge structures and a new mechanism of basic sill emplacement—Theron Mountains, Antarctica. Petrol Geosci 15:269–278CrossRefGoogle Scholar
  22. Jamtveit B, Svensen H, Podladchikov YY, Planke S (2004) Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems. Geological Society, London, Special Publication 234, pp 229–232CrossRefGoogle Scholar
  23. LeCheminant AN, Heaman LM (1989) Mackenzie igneous events, Canada: middle Proterozoic hotspot magmatism associated with ocean opening. Earth Planet Sci Lett 96:38–48CrossRefGoogle Scholar
  24. Lorenz V, Haneke J (2004) Relationship between diatremes, dykes, sills, laccoliths, intrusive-extrusive domes, lava flows, and tephra deposits with unconsolidated water-saturated sediments in the late Variscan intermontane Saar-Nahe basin, SW Germany. In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems. Geological Society, Special Publication 234, pp 75–124CrossRefGoogle Scholar
  25. Magee C, Stevenson C, O’Driscoll B, Schofield N, McDermott K (2012) An alternative emplacement model for the classic Ardnamurchan cone sheet swarm, NW Scotland, involving lateral magma supply via regional dykes. J Struct Geol 43:73–91CrossRefGoogle Scholar
  26. Mahan KH, Bartley JM, Coleman DS, Glazner AF, Carl BS (2003) Sheeted intrusion of the synkinematic McDoogle pluton, Sierra Nevada, California. Geol Soc Am Bull 115(12):1570–1582CrossRefGoogle Scholar
  27. Malone DH, Craddock JP, Anders MH, Wulff A (2014) Constraints on the emplacement age of the heart mountain slide, Northwestern Wyoming. J Geol 122(6):671–685CrossRefGoogle Scholar
  28. Malthe-Sørenssen A, Planke S, Svensen H, Jamtveit B (2004) Formation of saucer-shaped sills. In: Breit-kreuz C, Petford N (eds) Physical geology of high-level magmatic systems. Geological Society, London, Special Publication 234, pp 215–227CrossRefGoogle Scholar
  29. Marsh BD (2000) Magma chambers. In: Encyclopedia of Volcanoes. Academic Press, pp 191–206Google Scholar
  30. Menand T (2008) The mechanics and dynamics of sills in layered elastic rocks and their implications for the growth of laccoliths and other igneous complexes. Earth Planet Sci Lett 267(1–2):93–99CrossRefGoogle Scholar
  31. Menand T, de Saint-Blanquat M, Annen C (2011) Emplacement of magma pulses and growth of magma bodies. Tectonophys 500:1–2CrossRefGoogle Scholar
  32. Menand T, Phillips J, Sparks R (2008) Circulation of bubbly magma and gas segregation within tunnels of the potential Yucca Mountain repository. Bull Volc 70(8):947–960CrossRefGoogle Scholar
  33. Mock A, Ehling B-C, Breitkreuz C (2005) Anatomy of a laccolith complex—geometry and texture of porphyritic rhyolites in the Permocarboniferous Halle Volcanic Complex (Germany). N Jahrb Geol Pal Abh 237:211–271CrossRefGoogle Scholar
  34. Mock A, Jerram DA (2005) Crystal size distributions (CSD) in three dimensions: insights from the 3D reconstruction of a highly porphyritic rhyolite. J Petrol 46:1525–1541CrossRefGoogle Scholar
  35. Monreal FR, Villar HJ, Baudino R, Zencich S (2009) Modeling an atypical petroleum system: a case study of hydrocarbon generation, migration and accumulation related to igneous intrusions in the Neuquen Basin, Argentina. Mar Pet Geol 26:590–605CrossRefGoogle Scholar
  36. Morgan S, Stanik A, Horsman E, Tikoff B, de Saint Blanquat M, Habert G (2008) Emplacement of multiple magma sheets and wall rock deformation: Trachyte Mesa intrusion, Henry Mountains. Utah. J Struct Geol 30(4):491–512CrossRefGoogle Scholar
  37. Muirhead JD, Airoldi G, Rowland JV, White JDL (2011) Interconnected sills and inclined sheet intrusions control shallow magma transport in the Ferrar large igneous province. Antarctica, Geol Soc Am Bull 124:162–180Google Scholar
  38. Nicholson R, Pollard DD (1985) Dilation and linkage of echelon cracks. J Struct Geol 7:583–590CrossRefGoogle Scholar
  39. Reches Z, Fink J (1988) The mechanism of intrusion of the Inyo Dike, Long Valley Caldera, California. J Geophys Res 93:4321–4334CrossRefGoogle Scholar
  40. Rocchi S, Mazzotti A, Marroni M, Pandolfi L, Costantini P, Bertozzi G, di Biase D, Federici F, Lô PG (2007) Detection of Miocene saucer-shaped sills (offshore Senegal) via integrated interpretation of seismic, magnetic and gravity data. Terra Nova 19:232–239CrossRefGoogle Scholar
  41. Rocchi S, Westerman DS, Dini A, Farina F (2010) Intrusive sheets and sheeted intrusions at Elba Island (Italy). Geosphere 6(3):225–236CrossRefGoogle Scholar
  42. Rocchi S, Westerman DS, Dini A, Innocenti F, Tonarini S (2002) Two-stage laccolith growth at Elba Island (Italy). Geology 30(11):983–986CrossRefGoogle Scholar
  43. Roni E, Westerman DS, Dini A, Stevenson C, Rocchi S (2014) Feeding and growth of a dyke–laccolith system (Elba Island, Italy) from AMS and mineral fabric data. J Geol Soc 171:413–424CrossRefGoogle Scholar
  44. Saint-Blanquat Md, Habert G, Horsman E, Morgan SS, Tikoff B, Launeau P, Gleizes G (2006) Mechanisms and duration of non-tectonically assisted magma emplacement in the upper crust: the Black Mesa pluton, Henry Mountains, Utah. Tectonophys 428:1–31CrossRefGoogle Scholar
  45. Saint-Blanquat Md, Horsman E, Habert G, Morgan S, Vanderhaeghe O, Law R, Tikoff B (2011) Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophys 500:20–33CrossRefGoogle Scholar
  46. Schirnick C, van den Bogaard P, Schmincke H-U (1999) Cone sheet formation and intrusive growth of an oceanic island—the Miocene Tejeda complex on Gran Canaria (Canary Islands). Geology 27(3):207–210CrossRefGoogle Scholar
  47. Stark M (1912) Beiträge zum geologisch-petrogra-phischen Aufbau der Euganeen und zur Lakkolithenfrage. Mineralog Petrogr Mitteil 31:1–80Google Scholar
  48. Svensen H, Jamtveit B, Planke S, Chevallier L (2006) Structure and evolution of hydrothermal vent complexes in the Karoo Basin, South Africa. J Geol Soc London 163:671–682CrossRefGoogle Scholar
  49. Svensen H, Planke S, Chevallier L, Malthe-Sorenssen A, Corfu F, Jamtveit B (2007) Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth Planet Sci Lett 256(3–4):554–566CrossRefGoogle Scholar
  50. Svensen H, Planke S, Polozov AG, Schmidbauer N, Corfu F, Podladchikov YY, Jamtveit B (2009) Siberian gas venting and the end-Permian environmental crisis. Earth Planet Sci Lett 277(3–4):490–500CrossRefGoogle Scholar
  51. Vezzoni S, Dini A, Rocchi S (2016) Reverse telescoping in a distal skarn system (Campiglia Marittima, Italy). Ore Geol Rev 77:176–193CrossRefGoogle Scholar
  52. Vezzoni S, Rocchi S, Dini A (2017) Lateral extrusion of a thermally weakened pluton overburden (Campiglia Marittima, Tuscany). Int J Earth Sci. doi: CrossRefGoogle Scholar
  53. Westerman DS, Dini A, Innocenti F, Rocchi S (2004) Rise and fall of a nested Christmas-tree laccolith complex, Elba Island, Italy. In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems. Special publication, Geological Society, London, 234:195–213CrossRefGoogle Scholar
  54. Wilson PIR, McCaffrey KJW, Wilson RW, Jarvis I, Holdsworth RE (2016) Deformation structures associated with the Trachyte Mesa intrusion, Henry Mountains, Utah: implications for sill and laccolith emplacement mechanisms. J Struct Geol 87:30–46CrossRefGoogle Scholar
  55. Winter C, Breitkreuz C, Lapp M (2008) Textural analysis of a Late Palaeozoic coherent to pyroclastic rhyolitic dyke system near Burkersdorf (Erzgebirge, Saxony, Germany). In: Thomson K, Petford N (eds) Structure and emplacement of high-level magmatic systems. Special publication, Geological Society, London, 302:197–219CrossRefGoogle Scholar
  56. Zentilli M, Graves MC, Lindsay G, Ossandon G, Camus F (1995) Recurrent mineralization in the Chuquicamata porphyry copper system: restrictions on genesis from mineralogical, geochronological and isotopic studies. Proceedings Second Giant Ore Deposits Workshop, Ontario, pp 90–113 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Università di PisaPisaItaly
  2. 2.TU BergakademieFreibergGermany

Personalised recommendations