pp 1-68 | Cite as

Laboratory Modelling of Volcano Plumbing Systems: A Review

  • Olivier Galland
  • Eoghan Holohan
  • Benjamin van Wyk de Vries
  • Steffi Burchardt
Part of the Advances in Volcanology book series


We review the numerous experimental studies dedicated to unravelling the physics and dynamics of various parts of a volcanic plumbing system. Section 1 lists the model materials commonly used for model magmas or model rocks. We describe these materials’ mechanical properties and discuss their suitability for modelling sub-volcanic processes. Section 2 examines the fundamental concepts of dimensional analysis and similarity in laboratory modelling. We provide a step-by-step explanation of how to apply dimensional analysis to laboratory models in order to identify fundamental physical laws that govern the modelled processes in dimensionless (i.e. scale independent) form. Section 3 summarises and discusses the past applications of laboratory models to understand numerous features of volcanic plumbing systems. These include: dykes, cone sheets, sills, laccoliths, caldera-related structures, ground deformation, magma/fault interactions, and explosive vents. We outline how laboratory models have yielded insights into the main geometric and mechanical controls on the development of each part of the volcanic plumbing system. We conclude with some perspectives on the limitations of past and current analogue modelling approaches, and on challenges to be addressed by future research.


  1. Aarnes I, Fristad K, Planke S, Svensen H (2011a) The impact of host-rock composition on devolatilization of sedimentary rocks during contact metamorphism around mafic sheet intrusions. G3 12(10):Q10019. doi:10.1029/2011gc003636
  2. Aarnes I, Svensen H, Polteau S, Planke S (2011b) Contact metamorphic devolatilization of shales in the Karoo Basin, South Africa, and the effects of multiple sill intrusions. Chem Geol 281(3–4):181–194. doi:10.1016/j.chemgeo.2010.12.007 Google Scholar
  3. Aarnes I, Podladchikov YY, Svensen H (2012) Devolatilization-induced pressure build-up: implications for reaction front movement and breccia pipe formation. Geofluids 12(4):265–279. doi:10.1111/j.1468-8123.2012.00368.x Google Scholar
  4. Abdelmalak MM, Mourgues R, Galland O, Bureau D (2012) Fracture mode analysis and related surface deformation during dyke intrusion: results from 2D experimental modelling. Earth Planet Sci Lett 359–360:93–105. doi:10.1016/j.epsl.2012.10.008 Google Scholar
  5. Acocella V, Cifelli F, Funiciello R (2000) Analogue models of collapse calderas and resurgent domes. J Volcanol Geotherm Res 104(1–4):81–96ADSGoogle Scholar
  6. Acocella V, Cifelli F, Funiciello R (2001) The control of overburden thickness on resurgent domes: insights from analogue models. J Volcanol Geotherm Res 111(1–4):137–153ADSGoogle Scholar
  7. Acocella V, Funiciello R, Marotta E, Orsi G, de Vita S (2004) The role of extensional structures on experimental calderas and resurgence. J Volcanol Geotherm Res 129(1–3):199–217ADSGoogle Scholar
  8. Adam J, Klinkmüller M, Schreurs G, Wieneke B (2013) Quantitative 3D strain analysis in analogue experiments simulating tectonic deformation: integration of X-ray computed tomography and digital volume correlation techniques. J Struct Geol 55:127–149. doi:10.1016/j.jsg.2013.07.011 ADSGoogle Scholar
  9. Algar CK, Boudreau BP, Barry MA (2011) Initial rise of bubbles in cohesive sediments by a process of viscoelastic fracture. J Geophys Res 116(B4):B04207. doi:10.1029/2010jb008133 ADSGoogle Scholar
  10. Amelung F, Jonsson S, Zebker H, Segall P (2000) Widespread uplift and “trapdoor” faulting on Galápagos volcanoes observed with radar interferometry. Nature 407(6807):993–996. doi:10.1038/35039604 PubMedADSGoogle Scholar
  11. Ancochea E, Brändle JL, Huertas MJ, Cubas CR, Hernan F (2003) The felsic dikes of La Gomera (Canary Islands): identification of cone sheet and radial dike swarms. J Volcanol Geotherm Res 120(3–4):197–206ADSGoogle Scholar
  12. Anderson EM (1936) The dynamics of the formation of cone sheets, ring dykes and cauldron subsidences. Proc R Soc Edin 56:128–163Google Scholar
  13. Barenblatt GI (2003) Scaling. Cambridge University Press, CambridgeMATHGoogle Scholar
  14. Barrier L, Nalpas T, Gapais D, Proust JN, Casas A, Bourquin S (2002) Influence of syntectonic sedimentation on thrust geometry. Field examples from the Iberian Chain (Spain) and analogue modelling. Sediment Geol 146(1–2):91–104Google Scholar
  15. Battaglia J (2001) Quantification sismique des phénomènes magmatiques sur le Piton de la Fournaise entre 1991 et 2000. PhD thesis, Université Paris, 7 Denis Diderot, ParisGoogle Scholar
  16. Beckett FM, Mader HM, Phillips JC, Rust AC, Witham F (2011) An experimental study of low-Reynolds-number exchange flow of two Newtonian fluids in a vertical pipe. J Fluid Mech 682:652–670. doi:10.1017/jfm.2011.264 Google Scholar
  17. Benn K, Odonne F, de Saint Blanquat M (1998) Pluton emplacement during transpression in brittle crust: new views from analogue experiments. Geology 26(12):1079–1082ADSGoogle Scholar
  18. Benn K, Odonne F, Lee SKY, Darcovich K (2000) Analogue scale models of pluton emplacement during transpression in brittle and ductile crust. Trans R Soc Edin Earth Sci 91:111–121Google Scholar
  19. Berndt C, Skogly OP, Planke S, Eldholm O, Mjelde R (2000) High-velocity breakup-related sills in the Vøring Basin, off Norway. J Geophys Res 105(B12):28443–28454ADSGoogle Scholar
  20. Bonini M, Sokoutis D, Mulugeta G, Boccaletti M, Corti G, Innocenti F, Manetti P, Mazzarini F (2001) Dynamics of magma emplacement in centrifuge models of continental extension with implications for flank volcanism. Tectonics 20(6):1053–1065ADSGoogle Scholar
  21. Bons PD, Dougherty-Page J, Elburg MA (2001) Stepwise accumulation and ascent of magmas. J Metamorphic Geol 19(5):625–631Google Scholar
  22. Boutelier D, Schrank C, Cruden A (2008) Power-law viscous materials for analogue experiments: new data on the rheology of highly-filled silicone polymers. J Struct Geol 30(3):341–353. doi:10.1016/j.jsg.2007.10.009 ADSGoogle Scholar
  23. Branney MJ (1995) Downsag and extension at calderas: new perspectives on collapse geometries from ice-melt, mining, and volcanic subsidence. Bull Volcanol 57(5):303–318. doi:10.1007/bf00301290 ADSGoogle Scholar
  24. Breitkreuz C, Mock A (2004) Are laccolith complexes characteristic of transtensional basin systems? Examples from the permo-carboniferous of Central Europe. Geol Soc London Spec Pub 234(1):13–31. doi:10.1144/gsl.sp.2004.234.01.03 Google Scholar
  25. Brèque C, Dupré J-C, Brémand F (2004) Calibration of a system of projection moiré for relief measuring: biomechanical applications. Opt Las Engin 41(2):241–260Google Scholar
  26. Brown RJ, Kavanagh J, Sparks RSJ, Tait M, Field M (2007) Mechanically disrupted and chemically weakened zones in segmented dike systems cause vent localization: evidence from kimberlite volcanic systems. Geology 35(9):815–818ADSGoogle Scholar
  27. Bunger AP, Cruden AR (2011) Modeling the growth of laccoliths and large mafic sills: role of magma body forces. J Geophys Res 116(B2):B02203. doi:10.1029/2010jb007648 ADSGoogle Scholar
  28. Burchardt S, Walter TR (2010) Propagation, linkage, and interaction of caldera ring-faults: comparison between analogue experiments and caldera collapse at Miyakejima, Japan, in 2000. Bull Volcanol 72(3):297–308. doi:10.1007/s00445-009-0321-7 ADSGoogle Scholar
  29. Burchardt S, Tanner DC, Troll VR, Krumbholz M, Gustafsson LE (2011) Three-dimensional geometry of concentric intrusive sheet swarms in the Geitafell and the Dyrföll volcanoes, eastern Iceland. G3 12(7):Q0AB09. doi:10.1029/2011gc003527
  30. Burchardt S, Tanner D, Krumbholz M (2012) The Slaufrudalur pluton, southeast Iceland—an example of shallow magma emplacement by coupled cauldron subsidence and magmatic stoping. Geol Soc Am Bull 124(1–2):213–227. doi:10.1130/b30430.1 Google Scholar
  31. Burchardt S, Troll VR, Mathieu L, Emeleus HC, Donaldson CH (2013) Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber. Sci Rep 3. doi:10.1038/srep02891. http://www.nature.com/srep/2013/131008/srep02891/abs/srep02891.html-supplementary-information
  32. Cagnard F, Brun J-P, Gapais D (2006) Modes of thickening of analogue weak lithospheres. Tectonophysics 421(1–2):145–160ADSGoogle Scholar
  33. Cañón-Tapia E, Merle O (2006) Dyke nucleation and early growth from pressurized magma chambers: insights from analogue models. J Volcanol Geotherm Res 158(3–4):207–220. doi:10.1016/j.jvolgeores.2006.05.003 ADSGoogle Scholar
  34. Carter A, Wyk Van, de Vries B, Bachèlery P, Briole P (2006) Pits, rifts and slumps: the summit structure of Piton de la Fournaise. Bull Volc 67:741–756Google Scholar
  35. Chadwick WWJ, Howard KA (1991) The pattern of circumferential and radial eruptive fissures on the volcanoes of Fernandina and Isabela islands. Galápagos. Bull Volcanol 53(4):259–275. doi:10.1007/bf00414523 ADSGoogle Scholar
  36. Chadwick WWJ, Dieterich JH (1995) Mechanical modeling of cirumferential and radial dike intrusion on Galápagos volcanoes. J Volcanol Geotherm Res 66:37–52ADSGoogle Scholar
  37. Chadwick WWJ, Jonsson S, Geist DJ, Poland M, Johnson DJ, Batt S, Harpp KS, Ruiz A (2011) The May 2005 eruption of Fernandina volcano, Galápagos: the first circumferential dike intrusion observed by GPS and InSAR. Bull Volcanol 73(6):679–697. doi:10.1007/s00445-010-0433-0 ADSGoogle Scholar
  38. Chanceaux L, Menand T (2014) Solidification effects on sill formation: an experimental approach. Earth Planet Sci Lett 403:79–88. doi:10.1016/j.epsl.2014.06.018 ADSGoogle Scholar
  39. Chang W-L, Smith RB, Wicks C, Farrell JM, Puskas CM (2007) Accelerated uplift and magmatic intrusion of the Yellowstone caldera, 2004 to 2006. Science 318(5852):952–956. doi:10.1126/science.1146842 PubMedADSGoogle Scholar
  40. Chevallier L, Woodford A (1999) Morpho-tectonics and mechanism of emplacement of the dolerite rings and sills of the western Karoo, South Africa. South Afr J Geol 102(1):43–54Google Scholar
  41. Clough CT, Maufe HB, Bailey EB (1909) The cauldron subsidence of glencoe and the associated igneous phenomena. J Geol Soc London 65:611–678Google Scholar
  42. Cobbold PR, Jackson MPA (1992) Gum rosin (colophony): a suitable material for thermomechanical modelling of the lithosphere. Tectonophysics 210(3–4):255–271. doi:10.1016/0040-1951(92)90325-Z ADSGoogle Scholar
  43. Cole JW, Milner DM, Spinks KD (2005) Calderas and caldera structures: a review. Earth-Sci Rev 69(1–2):1–26. doi:10.1016/j.earscirev.2004.06.004 ADSGoogle Scholar
  44. Corry CE (1988) Laccoliths; mechanisms of emplacement and growth, vol 220. Geological Society of America Special PaperGoogle Scholar
  45. Corti G, Bonini M, Innocenti F, Manetti P, Mulugeta G (2001) Centrifuge models simulating magma emplacement during oblique rifting. J Geodyn 31:557–576Google Scholar
  46. Corti G, Bonini M, Conticelli S, Innocenti F, Manetti P, Sokoutis D (2003) Analogue modelling of continental extension: a review focused on the relations between the patterns of deformation and the presence of magma. Earth-Sci Rev 63(3–4):169–247ADSGoogle Scholar
  47. Corti G, Moratti G, Sani F (2005) Relations between surface faulting and granite intrusions in analogue models of strike-slip deformation. J Struct Geol 27(9):1547–1562ADSGoogle Scholar
  48. Crumpler LS, Head JW, Aubele JC (1996) Calderas on Mars: characteristics, structure, and associated flank deformation. Geol Soc Lond Spec Pub 110(1):307–348. doi:10.1144/gsl.sp.1996.110.01.24 Google Scholar
  49. Dahm T (2000) Numerical simulations of the propagation path and the arrest of fluid-filled fractures in the Earth. Geophys J Int 141(3):623–638ADSGoogle Scholar
  50. Daniels KA, Menand T (2015) An experimental investigation of dyke injection under regional extensional stress. J Geophys Res: Solid Earth JB011627. doi:10.1002/2014jb011627
  51. Daniels KA, Kavanagh JL, Menand T, R. Stephen JS (2012) The shapes of dikes: evidence for the influence of cooling and inelastic deformation. Geol Soc Am Bull 124(7–8):1102–1112. doi:10.1130/b30537.1
  52. Daubrée A (1891) Recherches expérimentales sur le rôle possible des gaz à hautes températures doués de très fortes pressions et animés d’un mouvement fort rapide dans divers phénomènes géologiques. Bulletin de la Société géologique de France 19:313–354Google Scholar
  53. de Bremond d’Ars J, Arndt NT, Hallot E (2001) Analog experimental insights into the formation of magmatic sulfide deposits. Earth Planet Sci Lett 186(3–4):371–381. doi:10.1016/S0012-821X(01)00254-0 ADSGoogle Scholar
  54. de Saint-Blanquat M, Habert G, Horsman E, Morgan SS, Tikoff B, Launeau P, Gleizes G (2006) Mechanisms and duration of non-tectonically assisted magma emplacement in the upper crust: the Black Mesa pluton, Henry Mountains, Utah. Tectonophysics 428(1–4):1–31. doi:10.1016/j.tecto.2006.07.014 ADSGoogle Scholar
  55. Delaney PT, Pollard DD (1981) Deformation of host rocks and flow of magma during growth of Minette dikes and breccia-bearing intrusions near Ship Rock, New Mexico, vol 1202. U.S. Geological Survey Professional PaperGoogle Scholar
  56. Delcamp A, Troll VR, Wyk de Vries B, Carracedo JC, Petronis MS, Pérez-Torrado FJ, Deegan FM (2012a) Dykes and structures of the NE rift of Tenerife, Canary Islands: a record of stabilisation and destabilisation of ocean island rift zones. Bull Volcanol 74(5):963–980. doi:10.1007/s00445-012-0577-1 ADSGoogle Scholar
  57. Delcamp A, Wyk de Vries B, James MR, Gailler LS, Lebas E (2012b) Relationships between volcano gravitational spreading and magma intrusion. Bull Volcanol 74(3):743–765. doi:10.1007/s00445-011-0558-9 ADSGoogle Scholar
  58. Di Giuseppe E, Funiciello F, Corbi F, Ranalli G, Mojoli G (2009) Gelatins as rock analogs: a systematic study of their rheological and physical properties. Tectonophysics 473(3–4):391–403. doi:10.1016/j.tecto.2009.03.012 ADSGoogle Scholar
  59. Dingwell DB, Bagdassarov NS, Bussov GY, Webb SL (1993) Magma rheology. In: Luth RW (ed) Experiments at high pressure and applications to the Earth’s mantle, vol 21. Mineralogists Association of Canada Short Course Handbook, pp 131–196Google Scholar
  60. Dixon JM, Simpson DG (1987) Centrifuge modelling of laccolith intrusion. J Struct Geol 9:87–103ADSGoogle Scholar
  61. Djabourov M, Leblond J, Papon P (1988a) Gelation of aqueous gelatin solutions. I. Structural investigation. J Phys France 49(2):319–332Google Scholar
  62. Djabourov M, Leblond J, Papon P (1988b) Gelation of aqueous gelatin solutions. II. Rheology of the sol-gel transition. J Phys France 49(2):333–343Google Scholar
  63. Donnadieu F, Kelfoun K, van Wyk de Vries B, Cecchi E, Merle O (2003) Digital photogrammetry as a tool in analogue modelling: applications to volcano instability. J Volcanol Geotherm Res 123(1–2):161–180. doi:10.1016/s0377-0273(03)00034-9
  64. Donnadieu F, Merle O (1998) Experiments on the indentation process during cryptodome intrusions: new insights into Mount St. Helens deformation. Geology 26(1):79–82ADSGoogle Scholar
  65. Donnadieu F, Merle O (2001) Geometrical constraints of the 1980 Mount St. Helens intrusion from analogue models. Geophys Res Lett 28(4):639–642. doi:10.1029/2000gl011869 ADSGoogle Scholar
  66. Druitt TH, Sparks RSJ (1984) On the formation of calderas during ignimbrite eruptions. Nature 310:679–681ADSGoogle Scholar
  67. Dupré JC, Lagarde A (1997) Photoelastic analysis of a three-dimensional specimen by optical slicing and digital image processing. Exp Mech 37(4):393–397. doi:10.1007/bf02317303 Google Scholar
  68. Dupré JC, Valle V, Jarny S, Monnet P (2010) Fringe analysis by phase shifting technique for birefringent fluid studies. Opt Las Engin 48(1):37–42. doi:10.1016/j.optlaseng.2009.07.015 Google Scholar
  69. Einstein A (1906) Eine neue Bestimmung der Moleküldimensionen. Ann Phys 324(2):289–306. doi:10.1002/andp.19063240204 Google Scholar
  70. Ferré E, Galland O, Montanari D, Kalakay T (2012) Granite magma migration and emplacement along thrusts. International J Earth Sci 1–16. doi:10.1007/s00531-012-0747-6
  71. Fiske RS, Jackson ED (1972) Orientation and growth of Hawaiian volcanic rifts: the effect of regional structure and gravitational stresses. Proc R Soc Lond Ser A (Math Phys Sci) 329(1578):299–326Google Scholar
  72. Fouqué F (1879) Santorin et ses éruptions. G. MassonGoogle Scholar
  73. Francis EH (1982) Magma and sediment—I. Emplacement mechanism of late Carboniferous tholeiite sills in northern Britain. J Geol Soc London 139(1):1–20Google Scholar
  74. Fukushima Y, Cayol V, Durand P, Massonnet D (2010) Evolution of magma conduits during the 1998–2000 eruptions of Piton de la Fournaise volcano, Réunion Island. J Geophys Res 115(B10):B10204. doi:10.1029/2009jb007023 ADSGoogle Scholar
  75. Galerne CY, Galland O, Neumann ER, Planke S (2011) 3D relationships between sills and their feeders: evidence from the Golden Valley Sill Complex (Karoo Basin) and experimental modelling. J Volcanol Geotherm Res 202(3–4):189–199. doi:10.1016/j.jvolgeores.2011.02.006 ADSGoogle Scholar
  76. Galland O (2005) Interactions mécaniques entre la tectonique compressive et le magmatisme: expériences analogiques et exemple naturel. PhD thesis, Université de Rennes1, Mémoires de Géosciences-Rennes, n°116Google Scholar
  77. Galland O (2012) Experimental modelling of ground deformation associated with shallow magma intrusions. Earth Planet Sci Lett 317–318:145–156. doi:10.1016/j.epsl.2011.10.017 Google Scholar
  78. Galland O, Scheibert J (2013) Analytical model of surface uplift above axisymmetric flat-lying magma intrusions: implications for sill emplacement and geodesy. J Volcanol Geotherm Res 253:114–130. doi:10.1016/j.jvolgeores.2012.12.006 ADSGoogle Scholar
  79. Galland O, de Bremond d’Ars J, Cobbold PR, Hallot E (2003) Physical models of magmatic intrusion during thrusting. Terra Nova 15:405–409Google Scholar
  80. Galland O, Cobbold PR, Hallot E, de Bremond d’Ars J, Delavaud G (2006) Use of vegetable oil and silica powder for scale modelling of magmatic intrusion in a deforming brittle crust. Earth Planet Sci Lett 243:786–804ADSGoogle Scholar
  81. Galland O, Cobbold PR, de Bremond d’Ars J, Hallot E (2007a) Rise and emplacement of magma during horizontal shortening of the brittle crust: Insights from experimental modeling. J Geophys Res 112. doi:10.1029/2006JB004604
  82. Galland O, Hallot E, Cobbold PR, Ruffet G, de Bremond d’Ars J (2007b) Volcanism in a compressional Andean setting: a structural and geochronological study of Tromen volcano (Neuquén province, Argentina). Tectonics 26:TC4010. doi:10.1029/2006TC002011
  83. Galland O, Cobbold PR, Hallot E, De Bremond d’Ars J (2008) Magma-controlled tectonics in compressional settings: insights from geological examples and experimental modelling. Bolletino della Società Geologica Italiana 127(2):205–208Google Scholar
  84. Galland O, Planke S, Neumann ER, Malthe-Sørenssen A (2009) Experimental modelling of shallow magma emplacement: application to saucer-shaped intrusions. Earth Planet Sci Lett 277(3–4):373–383ADSGoogle Scholar
  85. Galland O, Burchardt S, Troll VR (2013) Volcanic and igneous plumbing systems: state-of-the-art and future developments. Eos, Trans Am Geophys Union 94(18):169. doi:10.1002/2013eo180008 ADSGoogle Scholar
  86. Galland O, Burchardt S, Hallot E, Mourgues R, Bulois C (2014a) Dynamics of dikes versus cone sheets in volcanic systems. J Geophys Res: Solid Earth JB011059. doi:10.1002/2014jb011059
  87. Galland O, Gisler GR, Haug ØT (2014b) Morphology and dynamics of explosive vents through cohesive rock formations. J Geophys Res 119. doi:10.1002/2014JB011050
  88. Gernon TM, Gilbertson MA, Sparks RSJ, Field M (2008) Gas-fluidisation in an experimental tapered bed: insights into processes in diverging volcanic conduits. J Volcanol Geotherm Res 174(1–3):49–56. doi:10.1016/j.jvolgeores.2007.12.034 ADSGoogle Scholar
  89. Gernon TM, Gilbertson MA, Sparks RSJ, Field M (2009) The role of gas-fluidisation in the formation of massive volcaniclastic kimberlite. Lithos 112 Supplement 1(0):439–451. doi:10.1016/j.lithos.2009.04.011
  90. Geshi N, Acocella V, Ruch J (2012) From structure- to erosion-controlled subsiding calderas: evidence thresholds and mechanics. Bull Volcanol 74(6):1553–1567. doi:10.1007/s00445-012-0617-x ADSGoogle Scholar
  91. Geshi N, Shimano T, Chiba T, Nakada S (2002) Caldera collapse during the 2000 eruption of Miyakejima Volcano, Japan. Bull Volcanol 64(1):55–68. doi:10.1007/s00445-001-0184-z ADSGoogle Scholar
  92. Geyer A, Folch A, Martí J (2006) Relationship between caldera collapse and magma chamber withdrawal: an experimental approach. J Volcanol Geotherm Res 157(4):375–386. doi:10.1016/j.jvolgeores.2006.05.001 ADSGoogle Scholar
  93. Geyer A, Martí J (2008) The new worldwide collapse caldera database (CCDB): a tool for studying and understanding caldera processes. J Volcanol Geotherm Res 175(3):334–354. doi:10.1016/j.jvolgeores.2008.03.017 ADSGoogle Scholar
  94. Gilbert GK (1877) Report on the geology of the Henry Mountains. U.S. Geographical and Geological Survey, Rocky Mountain Region (Powel)Google Scholar
  95. Girard G, van Wyk de Vries B (2005) The Managua Graben and Las Sierras-Masaya volcanic complex (Nicaragua); pull-apart localization by an intrusive complex: results from analogue modeling. J Volcanol Geotherm Res 144(1–4):37–57. doi:10.1016/j.jvolgeores.2004.11.016
  96. Goulty NR, Schofield N (2008) Implications of simple flexure theory for the formation of saucer-shaped sills. J Struct Geol 30(7):812–817ADSGoogle Scholar
  97. Gressier JB, Mourgues R, Bodet L, Matthieu JY, Galland O, Cobbold PR (2010) Control of pore fluid pressure on depth of emplacement of magmatic sills: an experimental approach. Tectonophysics 489(1–4):1–13ADSGoogle Scholar
  98. Grosse P, van Wyk de Vries B, Euillades PA, Kervyn M, Petrinovic IA (2012) Systematic morphometric characterization of volcanic edifices using digital elevation models. Geomorphology 136(1):114–131. doi:10.1016/j.geomorph.2011.06.001
  99. Grout FF (1945) Scale models of structures related to batholiths. Am J Sci 243A:260–284Google Scholar
  100. Hailemariam H, Mulugeta G (1998) Temperature-dependent rheology of bouncing putties used as rock analogs. Tectonophysics 294(1–2):131–141. doi:10.1016/S0040-1951(98)00124-3 ADSGoogle Scholar
  101. Hall J (1815) II. On the Vertical Position and Convolutions of certain Strata, and their relation with Granite. Earth Environ Sci Trans R Soc Edinburgh 7(1):79–108. doi:10.1017/S0080456800019268
  102. Hallot E, Auvray B, de Bremond d’Ars J, Martin H, Davy P (1994) New injection experiments in non-Newtonian fluids. Terra Nova 6(3):274–281. doi:10.1111/j.1365-3121.1994.tb00495.x Google Scholar
  103. Hallot E, Davy P, de Bremond d’Ars J, Auvray B, Martin H, Van Damme H (1996) Non-Newtonian effects during injection in partially crystallised magmas. J Volcanol Geotherm Res 71(1):31–44ADSGoogle Scholar
  104. Hansen DM, Cartwright JA (2006a) Saucer-shaped sill with lobate morphology revealed by 3D seismic data: implications for resolving a shallow-level sill emplacement mechanism. J Geol Soc London 163:509–523Google Scholar
  105. Hansen DM, Cartwright JA (2006b) The three-dimensional geometry and growth of forced folds above saucer-shaped igneous sills. J Struct Geol 28(8):1520–1535ADSGoogle Scholar
  106. Hansen DM, Redfern J, Federici F, di Biase D, Bertozzi G (2008) Miocene igneous activity in the Northern Subbasin, offshore Senegal, NW Africa. Mar Pet Geol 25(1):1–15MATHGoogle Scholar
  107. Hansen VL, Olive A (2010) Artemis, Venus: the largest tectonomagmatic feature in the solar system? Geology 38(5):467–470ADSGoogle Scholar
  108. Haug ØT, Galland O, Gisler GR (2013) Experimental modelling of fragmentation applied to volcanic explosions. Earth Planet Sci Lett 384:188–197. doi:10.1016/j.epsl.2013.10.004 ADSGoogle Scholar
  109. Hayashi Y, Morita Y (2003) An image of a magma intrusion process inferred from precise hypocentral migrations of the earthquake swarm east of the Izu Peninsula. Geophys J Int 153(1):159–174. doi:10.1046/j.1365-246X.2003.01892.x ADSGoogle Scholar
  110. Hildreth W, Fierstein J (2000) Katmai volcanic cluster and the great eruption of 1912. Geol Soc Am Bull 112(10):1594–1620. doi:10.1130/0016-7606(2000)112<1594:kvcatg>2.0.co;2 Google Scholar
  111. Hildreth W, Wilson CJN (2007) Compositional Zoning of the Bishop Tuff. J Petrol 48(5):951–999. doi:10.1093/petrology/egm007 Google Scholar
  112. Holland M, Urai JL, Martel S (2006) The internal structure of fault zones in basaltic sequences. Earth Planet Sci Lett 248(1–2):301–315ADSGoogle Scholar
  113. Holohan EP, Troll VR, Walter TR, Munn S, McDonnell S, Shipton ZK (2005) Elliptical calderas in active tectonic settings: an experimental approach. J Volcanol Geotherm Res 144(1–4):119–136ADSGoogle Scholar
  114. Holohan EP, Troll VR, van Wyk de Vries B, Walsh JJ, Walter TR (2008a) Unzipping Long Valley: an explanation for vent migration patterns during an elliptical ring fracture eruption. Geology 36(4):323–326. doi:10.1130/g24329a.1
  115. Holohan EP, Wyk de Vries B, Troll VR (2008b) Analogue models of caldera collapse in strike-slip tectonic regimes. Bull Volcanol 70(7):773–796. doi:10.1007/s00445-007-0166-x ADSGoogle Scholar
  116. Holohan EP, Troll VR, Errington M, Donaldson CH, Nicoll GR, Emeleus CH (2009) The Southern Mountains Zone, Isle of Rum, Scotland: volcanic and sedimentary processes upon an uplifted and subsided magma chamber roof. Geol Mag 146(3):400Google Scholar
  117. Holohan EP, Schöpfer MPJ, Walsh JJ (2011) Mechanical and geometric controls on the structural evolution of pit crater and caldera subsidence. J Geophys Res 116(B7):B07202. doi:10.1029/2010jb008032 ADSGoogle Scholar
  118. Holohan EP, Walter TR, Schöpfer MPJ, Walsh JJ, van Wyk de Vries B, Troll VR (2013) Origins of oblique-slip faulting during caldera subsidence. J Geophys Res 118(4):1778–1794. doi:10.1002/jgrb.50057
  119. Hubbert MK (1937) Theory of scale models as applied to the study of geologic structures. Geol Soc Am Bull 48:1459–1520Google Scholar
  120. Hubbert MK, Willis DG (1957) Mechanics of hydraulic fracturing. In: Hubbert MK (ed) Structural geology. Hafner Publishing Company, New York, pp 175–190Google Scholar
  121. Hyndman DW, Alt D (1987) Radial dikes, laccoliths, and gelatin models. J Geol 95:763–774ADSGoogle Scholar
  122. Ito G, Martel SJ (2002) Focusing of magma in the upper mantle through dike interaction. J Geophys Res 107(B10):2223. doi:10.1029/2001jb000251 Google Scholar
  123. Jackson CAL, Schofield N, Golenkov B (2013) Geometry and controls on the development of igneous sill-related forced-folds: a 2D seismic reflection case study from offshore southern Australia. Geol Soc Am Bull 125(11–12):1874–1890Google Scholar
  124. Jackson MD, Pollard DD (1990) Flexure and faulting of sedimentary host rocks during growth of igneous domes, Henry Mountains, Utah. J Struct Geol 12(2):185–206ADSGoogle Scholar
  125. Jaeger JC, Cook NGW, Zimmerman RW (2009) Fundamentals of rock mechanics. Blackwell Publishing Ltd., OxfordGoogle Scholar
  126. Jamtveit B, Svensen H, Podladchikov YY, Planke S (2004) Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems, vol 234. Geological Society, London, Special Publication, London, pp 233–241Google Scholar
  127. Johnson AM (1970) Physical processes in geology. Freeman, Cooper & Company, San FranciscoGoogle Scholar
  128. Johnson AM, Pollard DD (1973) Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah, I. Field observations, Gilbert’s model, physical properties and flow of the magma. Tectonophysics 18:261–309ADSGoogle Scholar
  129. Kalakay TJ, John BE, Lageson DR (2001) Fault-controlled pluton emplacement in the Sevier fold-and-thrust belt of southern Montana. J Struct Geol 23:1151–1165ADSGoogle Scholar
  130. Kavanagh JL, Menand T, Daniels KA (2013) Gelatine as a crustal analogue: determining elastic properties for modelling magmatic intrusions. Tectonophysics 582:101–111. doi:10.1016/j.tecto.2012.09.032 ADSGoogle Scholar
  131. Kavanagh JL, Menand T, Sparks RSJ (2006) An experimental investigation of sill formation and propagation in layered elastic media. Earth Planet Sci Lett 245(3–4):799–813ADSGoogle Scholar
  132. Kavanagh JL, Sparks RSJ (2011) Insights of dyke emplacement mechanics from detailed 3D dyke thickness datasets. J Geol Soc London 168(4):965–978. doi:10.1144/0016-76492010-137 Google Scholar
  133. Kennedy B, Stix J, Vallance JW, Lavallée Y, Longpré M-A (2004) Controls on caldera structure: results from analogue sandbox modeling. Geol Soc Am Bull 116(5–6):515–524. doi:10.1130/b25228.1 Google Scholar
  134. Kennedy BM, Jellinek AM, Stix J (2008) Coupled caldera subsidence and stirring inferred from analogue models. Nature Geo 1(6):385–389ADSGoogle Scholar
  135. Kennedy B, Wilcock J, Stix J (2012) Caldera resurgence during magma replenishment and rejuvenation at Valles and Lake City calderas. Bull Volcanol 74(8):1833–1847. doi:10.1007/s00445-012-0641-x ADSGoogle Scholar
  136. Kervyn M, Boone MN, van Wyk de Vries B, Lebas E, Cnudde V, Fontijn K, Jacobs P (2010) 3D imaging of volcano gravitational deformation by computerized X-ray micro-tomography. Geosphere 6(5):482–498. doi:10.1130/ges00564.1
  137. Kervyn M, Ernst GGJ, van Wyk de Vries B, Mathieu L, Jacobs P (2009) Volcano load control on dyke propagation and vent distribution: insights from analogue modeling. J Geophys Res 114(B3):B03401. doi:10.1029/2008jb005653
  138. Kettermann M, Urai JL (2015) Changes in structural style of normal faults due to failure mode transition: first results from excavated scale models. J Struct Geol 74:105–116. doi:10.1016/j.jsg.2015.02.013 ADSGoogle Scholar
  139. Klausen MB (2004) Geometry and mode of emplacement of the Thverartindur cone sheet swarm, SE Iceland. J Volcanol Geotherm Res 138(3–4):185–204ADSGoogle Scholar
  140. Komuro H (1987) Experiments on cauldron formation: a polygonal cauldron and ring fractures. J Volcanol Geotherm Res 31(1–2):139–149ADSGoogle Scholar
  141. Komuro H, Fujita Y, Kodama K (1984) Numerical and experimental models on the formation mechanism of collapse basins during the Green Tuff orogenesis of Japan. Bull Volcanol 47(3):649–666. doi:10.1007/bf01961233
  142. Koyaguchi T, Takada A (1994) An experimental study on the formation of composite intrusions from zoned magma chambers. J Volcanol Geotherm Res 59(4):261–267. doi:10.1016/0377-0273(94)90081-7 ADSGoogle Scholar
  143. Lageson DR, Schmitt JG, Horton BK, Kalakay TJ, Burton BR (2001) Influence of Late Cretaceous magmatism on the Sevier orogenic wedge, western Montana. Geology 29:723–726ADSGoogle Scholar
  144. Lavallée Y, Stix J, Kennedy B, Richer M, Longpré M-A (2004) Caldera subsidence in areas of variable topographic relief: results from analogue modeling. J Volcanol Geotherm Res 129(1–3):219–236. doi:10.1016/S0377-0273(03)00241-5 ADSGoogle Scholar
  145. Le Corvec N, Menand T, Lindsay J (2013) Interaction of ascending magma with pre-existing crustal fractures in monogenetic basaltic volcanism: an experimental approach. J Geophys Res: Solid Earth 118(3):968–984. doi:10.1002/jgrb.50142 ADSGoogle Scholar
  146. Leever KA, Gabrielsen RH, Sokoutis D, Willingshofer E (2011) The effect of convergence angle on the kinematic evolution of strain partitioning in transpressional brittle wedges: insight from analog modeling and high-resolution digital image analysis. Tectonics 30(2):TC2013. doi:10.1029/2010tc002823
  147. Leever KA, Galland O, Acocella V (2014) The Science behind laboratory-scale models of the earth. Eos, Trans Am Geophys Union 95(3):30. doi:10.1002/2014eo030008 ADSGoogle Scholar
  148. Legrand D, Calahorrano A, Guillier B, Rivera L, Ruiz M, Villagomez D, Yepes H (2002) Stress tensor analysis of the 1998-1999 tectonic swarm of northern Quito related to the volcanic swarm of Guagua Pichincha volcano, Ecuador. Tectonophysics 344(1–2):15–36ADSGoogle Scholar
  149. Lipman PW (1984) The roots of ash flow calderas in western North America: windows into the tops of granitic batholiths. J Geophys Res 89(B10):8801–8841. doi:10.1029/JB089iB10p08801 ADSGoogle Scholar
  150. Lipman PW (1997) Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry. Bull Volcanol 59(3):198–218. doi:10.1007/s004450050186 ADSGoogle Scholar
  151. Lipman PW, Moore JG, Swanson DA (1981) bulging of the north flank before the May 18 eruption: geodetic data. US Geol Surv Prof Pap 1250:143–156Google Scholar
  152. Lister JR, Kerr RC (1991) Fluid-mechanical models of crack propagation and their application to magma transport in dykes. J Geophys Res 96(B6):10049–10077ADSGoogle Scholar
  153. Llambías EJ, Leanza HA, Galland O (2011) Agrupamiento volcánico Tromen-Tilhue. Paper presented at the Geologia y recursos naturales de la Provincia del Neuquén, XVIII Congreso Geologico Argentino, Relatorio, Neuquén, ArgentinaGoogle Scholar
  154. Lohrmann J, Kukowski N, Adam J, Onken O (2003) The impact of analogue materials properties on the geometry, kinematics, and dynamics of convergent sand wedges. J Struct Geol 25:1691–1711ADSGoogle Scholar
  155. Lorenz V, Kurszlaukis S (2007) Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar-diatreme volcanoes. J Volcanol Geotherm Res 159(1–3):4–32. doi:10.1016/j.jvolgeores.2006.06.019 ADSGoogle Scholar
  156. Maaløe S (1987) The generation and shape of feeder dykes from mantle sources. Contr Mineral and Petrol 96(1):47–55. doi:10.1007/bf00375524 ADSGoogle Scholar
  157. Magee C, Jackson CAL, Schofield N (2014) Diachronous sub-volcanic intrusion along deep-water margins: insights from the Irish Rockall Basin. Basin Res 26(1):85–105. doi:10.1111/bre.12044 Google Scholar
  158. Maillot B (2013) A sedimentation device to produce uniform sand packs. Tectonophysics 593:85–94. doi:10.1016/j.tecto.2013.02.028 ADSGoogle Scholar
  159. Malthe-Sørenssen A, Planke S, Svensen H, Jamtveit B (2004) Formation of saucer-shaped sills. In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems, vol 234. Geological Society of London Special Publication, London, pp 215–227Google Scholar
  160. Marques FO, Cobbold PR (2006) Effects of topography on the curvature of fold-and-thrust belts during shortening of a 2-layer model of continental lithosphere. Tectonophysics 415(1–4):65–80ADSGoogle Scholar
  161. Martí J, Ablay GJ, Redshaw LT, Sparks RSJ (1994) Experimental studies of collapse calderas. J Geol Soc London 151(6):919–929. doi:10.1144/gsjgs.151.6.0919 Google Scholar
  162. Mastin LG, Pollard DD (1988) Surface deformation and shallow dike intrusion processes at Inyo craters, Long Valley, California. J Geophys Res 93(B11):13221–13235ADSGoogle Scholar
  163. Mathieu L, van Wyk de Vries B (2009) Edifice and substrata deformation induced by intrusive complexes and gravitational loading in the Mull volcano (Scotland). Bull Volcanol 71(10):1133–1148. doi:10.1007/s00445-009-0295-5
  164. Mathieu L, van Wyk de Vries B (2011) The impact of strike-slip, transtensional and transpressional fault zones on volcanoes. Part1: scaled experiments. J Struct Geol 33(5):907–917. doi:10.1016/j.jsg.2011.03.002
  165. Mathieu L, van Wyk de Vries B, Holohan EP, Troll VR (2008) Dykes, cups, saucers and sills: analogue experiments on magma intrusion into brittle rocks. Earth Planet Sci Lett 271(1–4):1–13Google Scholar
  166. Mathieu L, van Wyk de Vries B, Pilato M, Troll VR (2011) The interaction between volcanoes and strike-slip, transtensional and transpressional fault zones: analogue models and natural examples. J Struct Geol 33(5):898–906. doi:10.1016/j.jsg.2011.03.003
  167. Mazzarini F, Musumeci G, Montanari D, Corti G (2010) Relations between deformation and upper crustal magma emplacement in laboratory physical models. Tectonophysics 484(1–4):139–146Google Scholar
  168. Mazzini A, Nermoen A, Krotkiewski M, Podladchikov Y, Planke S, Svensen H (2009) Strike-slip faulting as a trigger mechanism for overpressure release through piercement structures. Implications for the Lusi mud volcano, Indonesia. Mar Pet Geol 26(9):1751–1765Google Scholar
  169. McBirney AR (1990) An historical note on the origin of calderas. J Volcanol Geotherm Res 42(3):303–306ADSGoogle Scholar
  170. McCallum ME (1985) Experimental evidence for fluidization processes in breccia pipe formation. Econ Geol 80(6):1523–1543. doi:10.2113/gsecongeo.80.6.1523 Google Scholar
  171. McClay KR (1976) The rheology of plasticine. Tectonophysics 33(1–2):T7–T15. doi:10.1016/0040-1951(76)90047-0 ADSGoogle Scholar
  172. McGuire WJ, Pullen AD (1989) Location and orientation of eruptive fissures and feeder dykes at Mount Etna; influence of gravitational and regional tectonic stress regimes. J Volcanol Geotherm Res 38(3–4):325–344ADSGoogle Scholar
  173. McLeod P, Tait S (1999) The growth of dykes from magma chambers. J Volcanol Geotherm Res 92:231–245ADSGoogle Scholar
  174. Menand T (2008) The mechanics and dynamics of sills in layered elastic rocks and their implications for the growth of laccoliths and other igneous complexes. Earth Planet Sci Lett 267(1–2):93–99ADSGoogle Scholar
  175. Menand T, Daniels KA, Benghiat P (2010) Dyke propagation and sill formation in a compressive tectonic environment. J Geophys Res 115. doi:10.1029/2009JB006791
  176. Menand T, Tait S (2001) A phenomenological model for precursor volcanic eruptions. Nature 411:678–680Google Scholar
  177. Menand T, Tait S (2002) The propagation of a buoyant liquid-filled fissure from a source under constant pressure: an experimental approach. J Geophys Res 107(B11):2306Google Scholar
  178. Merle O, Borgia A (1996) Scaled experiments of volcanic spreading. J Geophys Res 101(B6):13, 805–813, 817Google Scholar
  179. Merle O, Donnadieu F (2000) Indentation of volcanic edifices by the ascending magma. Geol Soc London Spec Pub 174(1):43–53. doi:10.1144/gsl.sp.1999.174.01.03 Google Scholar
  180. Merle O, Vendeville B (1995) Experimental modelling of thin-skinned shortening around magmatic intrusions. Bull Volcanol 57:33–43ADSGoogle Scholar
  181. Michel J, Baumgartner L, Putlitz B, Schaltegger U, Ovtcharova M (2008) Incremental growth of the Patagonian Torres del Paine laccolith over 90 k.y. Geology 36(6):459–462. doi:10.1130/g24546a.1 ADSGoogle Scholar
  182. Michon L, Massin F, Famin V, Ferrazzini V, Roult G (2011) Basaltic calderas: collapse dynamics, edifice deformation, and variations of magma withdrawal. J Geophys Res 116(B3):B03209. doi:10.1029/2010jb007636 ADSGoogle Scholar
  183. Montanari D, Corti G, Sani F, Ventisette CD, Bonini M, Moratti G (2010a) Experimental investigation on granite emplacement during shortening. Tectonophysics 484(1–4):147–155ADSGoogle Scholar
  184. Montanari D, Corti G, Simakin A (2010b) Magma chambers and localization of deformation during thrusting. Terra Nova 22(5):390–395. doi:10.1111/j.1365-3121.2010.00962.x Google Scholar
  185. Moore I, Kokelaar P (1998) Tectonically controlled piecemeal caldera collapse: a case study of Glencoe volcano. Scotland. Geol Soc Am Bull 110(11):1448–1466. doi:10.1130/0016-7606(1998)110<1448:tcpcca>2.3.co;2 Google Scholar
  186. Morgan SS, Stanik A, Horsman E, Tikoff B, de Saint Blanquat M, Habert G (2008) Emplacement of multiple magma sheets and wall rock deformation: Trachyte Mesa intrusion, Henry Mountains, Utah. J Struct Geol 30(4):491–512. doi:10.1016/j.jsg.2008.01.005 ADSGoogle Scholar
  187. Mori J, McKee C (1987) Outward-dipping ring-fault structure at Rabaul Caldera as shown by earthquake locations. Science 235(4785):193–195. doi:10.1126/science.235.4785.193 PubMedADSGoogle Scholar
  188. Mourgues R, Bureau D, Bodet L, Gay A, Gressier JB (2012) Formation of conical fractures in sedimentary basins: experiments involving pore fluids and implications for sandstone intrusion mechanisms. Earth Planet Sci Lett 313–314:67–78. doi:10.1016/j.epsl.2011.10.029 Google Scholar
  189. Mourgues R, Cobbold PR (2003) Some tectonic consequences of fluid overpressures and seepage forces as demonstrated by sandbox modelling. Tectonophysics 376:75–97ADSGoogle Scholar
  190. Muller JR, Ito G, Martel SJ (2001) Effects of volcano loading on propagation in an elastic half-space. J Geophys Res 106:11101–11113ADSGoogle Scholar
  191. Musumeci G, Mazzarini F, Corti G, Barsella M, Montanari D (2005) Magma emplacement in a thrust ramp anticline: the Gavorrano Granite (northern Apennine, Italy). Tectonics 24. doi:10.1029/2005TC001801
  192. Nakamura K (1977) Volcanoes as possible indicators of tectonic stress orientation–principle and proposal. J Volcanol Geotherm Res 2(1):1–16ADSGoogle Scholar
  193. Nermoen A, Galland O, Jettestuen E, Fristad K, Podladchikov YY, Svensen H, Malthe-Sørenssen A (2010a) Experimental and analytic modeling of piercement structures. J Geophys Res 115(B10):B10202. doi:10.1029/2010jb007583 ADSGoogle Scholar
  194. Nermoen A, Raufaste C, deVilliers SD, Jettestuen E, Meakin P, Dysthe DK (2010b) Morphological transitions in partially gas-fluidized granular mixtures. Phys Rev E 81(6):061305ADSGoogle Scholar
  195. Norini G, Acocella V (2011) Analogue modeling of flank instability at Mount Etna: understanding the driving factors. Journal of Geophysical Research: Solid Earth 116(B7):B07206. doi:10.1029/2011jb008216 ADSGoogle Scholar
  196. O’Driscoll B, Troll VR, Reavy RJ, Turner P (2006) The Great Eucrite intrusion of Ardnamurchan, Scotland: reevaluating the ring-dike concept. Geology 34(3):189–192ADSGoogle Scholar
  197. Odé H (1957) Mechanical analysis of the dike pattern of the Spanish Peaks area, Colorado. Geol Soc Am Bull 68:567–576Google Scholar
  198. Pallister JS, McCausland WA, Jonsson S, Lu Z, Zahran HM, Hadidy SE, Aburukbah A, Stewart ICF, Lundgren PR, White RA, Moufti MRH (2010) Broad accommodation of rift-related extension recorded by dyke intrusion in Saudi Arabia. Nature Geosci 3(10):705–712. doi:http://www.nature.com/ngeo/journal/v3/n10/abs/ngeo966.html#supplementary-information
  199. Panien M, Schreurs G, Pfiffner A (2006) Mechanical behaviour of granular materials used in analogue modelling: insights from grain characterisation, ring-shear tests and analogue experiments. J Struct Geol 28(9):1710–1724. doi:10.1016/j.jsg.2006.05.004 ADSGoogle Scholar
  200. Paquet F, Dauteuil O, Hallot E, Moreau F (2007) Tectonics and magma dynamics coupling in a dyke swarm of Iceland. J Struct Geol 29(9):1477–1493. doi:10.1016/j.jsg.2007.06.001 ADSGoogle Scholar
  201. Phillips WJ (1974) The dynamic emplacement of cone sheets. Tectonophysics 24:69–84ADSGoogle Scholar
  202. Pinel V, Jaupart C (2000) The effect of Edifice load on magma ascent beneath a volcano. Philos Trans: Math Phys Eng Sci 358(1770):1515–1532ADSGoogle Scholar
  203. Pinel V, Jaupart C (2004) Magma storage and horizontal dyke injection beneath a volcanic edifice. Earth Planet Sci Lett 221(1–4):245–262ADSGoogle Scholar
  204. Planke S, Rasmussen T, Rey SS, Myklebust R (2005) Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins. In: Doré AG, Vining BA (eds) Proceedings of 6th Petroleum Geology Conference. Geological Society, LondonGoogle Scholar
  205. Pollard DD (1987) Elementary fracture mechanics applied to the structural interpretation of dikes. In: Halls HC, Fahrig WF (eds) Mafic dyke swarms, vol 34. Geological Association of Canada Special Paper, pp 5–24Google Scholar
  206. Pollard DD, Holzhausen G (1979) On the mechanical interaction between a fluid-filled fracture and the Earth’s surface. Tectonophysics 53(1–2):27–57ADSGoogle Scholar
  207. Pollard DD, Johnson AM (1973) Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah, II. Bending and failure of overburden layers and sill formation. Tectonophysics 18:311–354ADSGoogle Scholar
  208. Polteau S, Ferré EC, Planke S, Neumann E-R, Chevallier L (2008a) How are saucer-shaped sills emplaced? Constraints from the Golden Valley Sill, South Africa. J Geophys Res 113Google Scholar
  209. Polteau S, Mazzini A, Galland O, Planke S, Malthe-Sørenssen A (2008b) Saucer-shaped intrusions: occurrences, emplacement and implications. Earth Planet Sci Lett 266(1–2):195–204ADSGoogle Scholar
  210. Ramberg H (1967) Gravity, deformation and the Earth’s crust as studied by centrifuge models. Academic Press, New YorkGoogle Scholar
  211. Ramberg H (ed) (1970) Model studies in relation to intrusion of plutonic bodies, vol 2. Mechanism of igneous intrusion, Geol J Spec IssGoogle Scholar
  212. Ramberg H (1981) Gravity, deformation and the Earth’s crust. Academic Press, New YorkGoogle Scholar
  213. Ramos O, Altshuler E, Måløy KJ (2009) Avalanche prediction in a self-organized pile of beads. Phys Rev Lett 102(7):078701PubMedADSGoogle Scholar
  214. Reber JE, Galland O, Cobbold PR, Carlier Le, de Veslud C (2013) Experimental study of sheath fold development around a weak inclusion in a mechanically layered matrix. Tectonophysics 586:130–144. doi:10.1016/j.tecto.2012.11.013 ADSGoogle Scholar
  215. Reddish DJ, Whittaker BN (1989) Subsidence: occurrence, prediction and control, vol 56. Elsevier, AmsterdamGoogle Scholar
  216. Richards RJ, Mark R (1966) Gelatin models for photoelastic analysis of gravity structures. Exp Mech 6(1):30–38. doi:10.1007/bf02327111 Google Scholar
  217. Richey JE (1932) The tertiary ring complex of Slieve Gullion (Ireland), with petrological notes by Herbert Henry Thomas. Q J Geol Soc 88(1–4):776–849Google Scholar
  218. Richey JE, Thomas HH, Radley EG, Dixon BE (1930) The geology of Ardnamurchan, North-West Mull and Coll: a description of Sheet 51 and part of sheet 52 of the Geological Map. Printed under the authority of HM Stationery OfficeGoogle Scholar
  219. Rivalta E (2010) Evidence that coupling to magma chambers controls the volume history and velocity of laterally propagating intrusions. J Geophys Res 115(B7):B07203. doi:10.1029/2009jb006922 ADSGoogle Scholar
  220. Rivalta E, Böttinger M, Dahm T (2005) Buoyancy-driven fracture ascent: experiments in layered gelatine. J Volcanol Geotherm Res 144:273–285ADSGoogle Scholar
  221. Rivalta E, Dahm T (2006) Acceleration of buoyancy-driven fractures and magmatic dikes beneath the free surface. Geophys J Int 166(3):1424–1439. doi:10.1111/j.1365-246X.2006.02962.x ADSGoogle Scholar
  222. Rocchi S, Westerman DS, Dini A, Innocenti F, Tonarini S (2002) Two-stage growth of laccoliths at Elba Island, Italy. Geology 30(11):983–986. doi:10.1130/0091-7613(2002)030<0983:tsgola>2.0.co;2 ADSGoogle Scholar
  223. Roche O, Druitt TH (2001) Onset of caldera collapse during ignimbrite eruptions. Earth Planet Sci Lett 191(3–4):191–202. doi:10.1016/S0012-821X(01)00428-9 ADSGoogle Scholar
  224. Roche O, Druitt TH, Merle O (2000) Experimental study of caldera formation. J Geophys Res: Solid Earth 105(B1):395–416. doi:10.1029/1999jb900298 Google Scholar
  225. Roche O, van Wyk de Vries B, Druitt TH (2001) Sub-surface structures and collapse mechanisms of summit pit craters. J Volcanol Geotherm Res 105(1–2):1–18. doi:10.1016/S0377-0273(00)00248-1
  226. Rodriguez Monreal F, Villar HJ, Baudino R, Delpino D, Zencich S (2009) Modeling an atypical petroleum system: a case study of hydrocarbon generation, migration and accumulation related to igneous intrusions in the Neuquén Basin, Argentina. Mar Pet Geol 26(4):590–605. doi:10.1016/j.marpetgeo.2009.01.005 Google Scholar
  227. Román-Berdiel T (1999) Geometry of granite emplacement in the upper crust: contribution of analogue modelling. In: Castro A, Fernández C, Vigneresse JL (eds) Understanding granites: integrating new and classical techniques, vol 174. Geological Society of London,Special Publications, London, pp 77–94Google Scholar
  228. Román-Berdiel T, Gapais D, Brun J-P (1995) Analogue models of laccolith formation. J Struct Geol 17(9):1337–1346ADSGoogle Scholar
  229. Román-Berdiel T, Gapais D, Brun JP (1997) Granite intrusion along strike-slip zones in experiment and nature. Am J Sci 297(6):651–678. doi:10.2475/ajs.297.6.651 Google Scholar
  230. Rosenau M, Nerlich R, Brune S, Oncken O (2010) Experimental insights into the scaling and variability of local tsunamis triggered by giant subduction megathrust earthquakes. J Geophys Res 115(B9):B09314. doi:10.1029/2009jb007100 ADSGoogle Scholar
  231. Ross PS, White JDL, Zimanowski B, Büttner R (2008a) Multiphase flow above explosion sites in debris-filled volcanic vents: insights from analogue experiments. J Volcanol Geotherm Res 178(1):104–112. doi:10.1016/j.jvolgeores.2008.01.013 ADSGoogle Scholar
  232. Ross PS, White JDL, Zimanowski B, Büttner R (2008b) Rapid injection of particles and gas into non-fluidized granular material, and some volcanological implications. Bull Volcanol 70(10):1151–1168. doi:10.1007/s00445-008-0230-1 ADSGoogle Scholar
  233. Rossello EA, Cobbold PR, Diraison M, Arnaud N (2002) Auca Mahuida (Neuquén basin, Argentina): a quaternary shield volcano on a hydrocarbon-producing substrate. Paper presented at the 5th ISAG, Extended Abstracts, ToulouseGoogle Scholar
  234. Rossi D, Storti F (2003) New artificial granular materials for analogue laboratory experiments: aluminium and siliceous microspheres. J Struct Geol 25:1893–1899ADSGoogle Scholar
  235. Rubin AM (1995) Propagation of magma-filled cracks. Annu Rev Earth Planet Sci 23:287–336ADSGoogle Scholar
  236. Ruch J, Acocella V, Geshi N, Nobile A, Corbi F (2012) Kinematic analysis of vertical collapse on volcanoes using experimental models time series. J Geophys Res: Solid Earth 117(B7):B07301. doi:10.1029/2012jb009229 ADSGoogle Scholar
  237. Ruzicka B, Zaccarelli E (2011) A fresh look at the Laponite phase diagram. Soft Matter 7(4):1268–1286ADSGoogle Scholar
  238. Rymer H, Wyk Van, de Vries B, Stix J (1998) Pit Crater structure and persistent volcanic activity at Masaya, Nicaragua. Bull Volcanol 59:345–355ADSGoogle Scholar
  239. Sanford AR (1959) Analytical and experimental study of simple geologic structures. Geol Soc Am Bull 70(1):19–52. doi:10.1130/0016-7606(1959)70[19:aaesos]2.0.co;2 Google Scholar
  240. Scaillet B, Holtz F, Pichavant M (1997) Rheological Properties of Granitic Magmas in Their Crystallization Range. In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement Fabrics, vol 8. Petrology and structural geology. Springer, Netherlands, pp 11–29. doi:10.1007/978-94-017-1717-5_2
  241. Schellart WP (2000) Shear test results for cohesion and friction coefficients for different materials: scaling implications for their usage in analogue modelling. Tectonophysics 324:1–16ADSGoogle Scholar
  242. Schellart WP (2011) Rheology and density of glucose syrup and honey: determining their suitability for usage in analogue and fluid dynamic models of geological processes. J Struct Geol 33(6):1079–1088. doi:10.1016/j.jsg.2011.03.013 ADSGoogle Scholar
  243. Schirnick C, van den Bogaard P, Schmincke H-U (1999) Cone sheet formation and intrusive growth of an oceanic island—yhe Miocene Tejeda complex on Gran Canaria (Canary Islands). Geology 27(3):207–210. doi:10.1130/0091-7613(1999)027<0207:csfaig>2.3.co;2 ADSGoogle Scholar
  244. Schofield N, Stevenson CT, Reston T (2010) Magma fingers and host rock fluidization in the emplacement of sills. Geology 38(1):63–66. doi:10.1130/g30142.1 ADSGoogle Scholar
  245. Schreurs G, Buiter SJH, Boutelier D, Corti G, Costa E, Cruden AR, Daniel JM, Hoth S, Koyi HA, Kukowski N, Lohrmann J, Ravaglia A, Schlische RW, Withjack MO, Yamada Y, Cavozzi C, Del Ventisette C, Brady JAE, Hoffmann-Rothe A, Mengus JM, Montanari D, Nilforoushan F (2006) Analogue benchmarks of shortening and extension experiments. Geol Soc London Spec Pub 253(1):1–27. doi:10.1144/gsl.sp.2006.253.01.01 Google Scholar
  246. Schultz RA (1996) Relative scale and the strength and deformability of rock masses. J Struct Geol 18(9):1139–1149. doi:10.1016/0191-8141(96)00045-4 ADSGoogle Scholar
  247. Schweiger A, Zimmermann I (1999) A new approach for the measurement of the tensile strength of powders. Powder Technol 101(1):7–15. doi:10.1016/S0032-5910(98)00117-X Google Scholar
  248. Sibson RH (2003) Brittle-failure controls on maximum sustainable overpressure in different tectonic regimes. AAPG Bull 87(6):901–908Google Scholar
  249. Sigmundsson F, Hreinsdottir S, Hooper A, Arnadottir T, Pedersen R, Roberts MJ, Oskarsson N, Auriac A, Decriem J, Einarsson P, Geirsson H, Hensch M, Ofeigsson BG, Sturkell E, Sveinbjornsson H, Feigl KL (2010) Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption. Nature 468(7322):426–430. doi:10.1038/nature09558 PubMedADSGoogle Scholar
  250. Smith RL, Bailey RA (1968) Resurgent Cauldrons. Geological Society of America Memoirs 116:613–662. doi:10.1130/MEM116-p613 Google Scholar
  251. Sparks RSJ (1988) Petrology and geochemistry of the Loch Ba ring-dyke, Mull (N.W. Scotland): an example of the extreme differentiation of tholeiitic magmas. Contr Mineral and Petrol 100(4):446–461. doi:10.1007/bf00371374
  252. Sparks RSJ, Baker L, Brown RJ, Field M, Schumacher J, Stripp G, Walters A (2006) Dynamical constraints on kimberlite volcanism. J Volcanol Geotherm Res 155(1–2):18–48. doi:10.1016/j.jvolgeores.2006.02.010 ADSGoogle Scholar
  253. Stix J, Kobayashi T (2008) Magma dynamics and collapse mechanisms during four historic caldera-forming events. J Geophys Res: Solid Earth 113(B9):B09205. doi:10.1029/2007jb005073 ADSGoogle Scholar
  254. Svensen H, Corfu F, Polteau S, Hammer Ø, Planke S (2012) Rapid magma emplacement in the Karoo Large Igneous Province. Earth Planet Sci Lett 325–326:1–9. doi:10.1016/j.epsl.2012.01.015 Google Scholar
  255. Svensen H, Jamtveit B, Planke S, Chevallier L (2006) Structure and evolution of hydrothermal vent complexes in the Karoo Basin, South Africa. J Geol Soc London 163:671–682Google Scholar
  256. Svensen H, Planke S, Chevallier L, Malthe-Sorenssen A, Corfu F, Jamtveit B (2007) Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth Planet Sci Lett 256(3–4):554–566ADSGoogle Scholar
  257. Svensen H, Planke S, Malthe-Sorenssen A, Jamtvelt B, Myklebust R, Eldem TR, Rey SS (2004) Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429(6991):542–545PubMedADSGoogle Scholar
  258. Taisne B, Jaupart C (2011) Magma expansion and fragmentation in a propagating dyke. Earth Planet Sci Lett 301(1–2):146–152. doi:10.1016/j.epsl.2010.10.038 ADSGoogle Scholar
  259. Taisne B, Tait S (2009) Eruption versus intrusion? Arrest of propagation of constant volume, buoyant, liquid-filled cracks in an elastic, brittle host. J Geophys Res: Solid Earth 114(B6):B06202. doi:10.1029/2009jb006297 ADSGoogle Scholar
  260. Taisne B, Tait S (2011) Effect of solidification on a propagating dike. J Geophys Res: Solid Earth 116(B1):B01206. doi:10.1029/2009jb007058 ADSGoogle Scholar
  261. Taisne B, Tait S, Jaupart C (2011) Conditions for the arrest of a vertical propagating dyke. Bull Volcanol 73(2):191–204. doi:10.1007/s00445-010-0440-1
  262. Takada A (1990) Experimental study on propagation of liquid-filled crack in gelatin: shape and velocity in hydrostatic stress condition. J Geophys Res 95(B6):8471–8481ADSGoogle Scholar
  263. Takada A (1994a) Accumulation of magma in space and time by crack interaction. In: Michael PR (ed) International geophysics, vol 57. Academic Press, New York, pp 241–257. doi:10.1016/S0074-6142(09)60099-1
  264. Takada A (1994b) Development of a subvolcanic structure by the interaction of liquid-filled cracks. J Volc Geothermal Res 62:207–224ADSGoogle Scholar
  265. Takada A (1999) Variations in magma supply and magma partitioning: the role of tectonic settings. J Volcanol Geotherm Res 93(1–2):93–110. doi:10.1016/S0377-0273(99)00082-7 ADSGoogle Scholar
  266. ten Grotenhuis SM, Piazolo S, Pakula T, Passchier CW, Bons PD (2002) Are polymers suitable rock analogs? Tectonophysics 350(1):35–47. doi:10.1016/S0040-1951(02)00080-X ADSGoogle Scholar
  267. Thomson K (2007) Determining magma flow in sills, dykes and laccoliths and their implications for sill emplacement mechanisms. Bull Volcanol 70(2):183–201MathSciNetADSGoogle Scholar
  268. Thomson K, Hutton D (2004) Geometry and growth of sill complexes: insights using 3D seismic from the North Rockall Trough. Bull Volcanol 66(4):364–375ADSGoogle Scholar
  269. Tibaldi A (1995) Morphology of pyroclastic cones and tectonics. J Geophys Res: Solid Earth 100(B12):24521–24535. doi:10.1029/95jb02250 Google Scholar
  270. Tibaldi A (2005) Volcanism in compressional tectonic settings: is it possible? Geophys Res Lett 32(L06309)Google Scholar
  271. Tibaldi A, Bonali FL, Corazzato C (2014) The diverging volcanic rift system. Tectonophysics 611:94–113. doi:10.1016/j.tecto.2013.11.023 ADSGoogle Scholar
  272. Tibaldi A, Pasquarè F, Tormey D (2010) Volcanism in Reverse and Strike-Slip Fault Settings. In: Cloetingh S, Negendank J (eds) New frontiers in integrated solid earth sciences. Springer, Netherlands, pp 315–348. doi:10.1007/978-90-481-2737-5_9
  273. Trippanera D, Acocella V, Ruch J (2014) Dike-induced contraction along oceanic and continental divergent plate boundaries. Geophys Res Lett GL061570. doi:10.1002/2014gl061570
  274. Troll VR, Walter TR, Schmincke HU (2002) Cyclic caldera collapse: piston or piecemeal subsidence? Field and experimental evidence. Geology 30(2):135–138ADSGoogle Scholar
  275. Trude J, Cartwright J, Davies RJ, Smallwood J (2003) New technique for dating igneous sills. Geology 31(9):813–816ADSGoogle Scholar
  276. Turcotte DL, Schubert G (2002) Geodynamics –, 2nd edn. Cambridge Unversity Press, CambridgeGoogle Scholar
  277. van Wyk de Vries B, Marques A, Herrera R, Granjas JL, llanes P, Delcamp (2014) Craters of elevation revisited: forced folds, bulges and uplift of volcanoes (2014) Bull Volcanol. doi:10.1007/s00445-014-0875-x
  278. Verbeek R (1884) The Krakatoa eruption. Nature 30:10–15ADSGoogle Scholar
  279. Walker GL, Skelhorn RR (1966) Some associations of acid and basic igneous rocks. Earth-Sci Rev 2:93–109. doi:10.1016/0012-8252(66)90024-9 ADSGoogle Scholar
  280. Walker GPL (1999) Volcanic rift zones and their intrusion swarms. J Volcanol Geotherm Res 94(1–4):21–34ADSGoogle Scholar
  281. Walter TR, Troll VR (2001) Formation of caldera periphery faults: an experimental study. Bull Volcanol 63:191–203ADSGoogle Scholar
  282. Walter TR, Troll VR (2003) Experiments on rift zone evolution in unstable volcanic edifices. J Volcanol Geotherm Res 127(1–2):107–120ADSGoogle Scholar
  283. Walters AL, Phillips JC, Brown RJ, Field M, Gernon T, Stripp G, Sparks RSJ (2006) The role of fluidisation in the formation of volcaniclastic kimberlite: grain size observations and experimental investigation. J Volcanol Geotherm Res 155(1–2):119–137. doi:10.1016/j.jvolgeores.2006.02.005 ADSGoogle Scholar
  284. Watanabe T, Masuyama T, Nagaoka N, Tahara T (2002) Analog experiments on magma-filled cracks: competition between external stresses and internal pressure. Earth Planets Space 54:1247–1261ADSGoogle Scholar
  285. Weijermars R (1986) Flow behaviour and physical chemistry of bouncing putties and related polymers in view of tectonic laboratory applications. Tectonophysics 124(3–4):325–358. doi:10.1016/0040-1951(86)90208-8 ADSGoogle Scholar
  286. Westerman DS, Dini A, Innocenti F, Rocchi S (2004) Rise and fall of a nested Christmas-tree laccolith complex, Elba Island, Italy. Geol Soc London Spec Pub 234(1):195–213. doi:10.1144/gsl.sp.2004.234.01.12 Google Scholar
  287. White DJ, Take WA, Bolton MD (2003) Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Géotechnique 53(7):619–631. doi:10.1680/geot.2003.53.7.619 Google Scholar
  288. White JDL, Ross PS (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201(1–4):1–29. doi:10.1016/j.jvolgeores.2011.01.010 ADSGoogle Scholar
  289. White RS, Drew J, Martens HR, Key J, Soosalu H, Jakobsdóttir SS (2011) Dynamics of dyke intrusion in the mid-crust of Iceland. Earth Planet Sci Lett 304(3–4):300–312. doi:10.1016/j.epsl.2011.02.038 ADSGoogle Scholar
  290. Williams H (1941) Calderas and their origin 25:239-346Google Scholar
  291. Wilson CJN, Hildreth W (1997) The Bishop Tuff: new insights from eruptive stratigraphy. J Geol 105(4):407–440ADSGoogle Scholar
  292. Witte J, Bonora M, Carbone C, Oncken O (2012) Fracture evolution in oil-producing sills of the Rio Grande Valley, northern Neuquén Basin, Argentina. AAPG Bull 96(7):1253–1277. doi:10.1306/10181110152 Google Scholar
  293. Woolsey TS, McCallum ME, Schumm SA (1975) Modeling of diatreme emplacement by fluidization. Phys Chem Earth 9:29–42Google Scholar
  294. Wright TJ, Ebinger C, Biggs J, Ayele A, Yirgu G, Keir D, Stork A (2006) Magma-maintained rift segmentation at continental rupture in the 2005 Afar dyking episode. Nature 442(7100):291–294. doi:10.1038/nature04978 PubMedADSGoogle Scholar
  295. Závada P, Dedecek P, Mach K, Lexa O, Potuzák M (2011) Emplacement dynamics of phonolite magma into maar-diatreme structures—correlation of field, thermal modeling and AMS analogue modeling data. J Volcanol Geotherm Res 201(1–4):210–226ADSGoogle Scholar
  296. Závada P, Kratinová Z, Kusbach V, Hrouda F (2006) Analogue modeling of AMS development during emplacement of shallow level volcanic bodies (Extrusive Domes and Laccoliths). Geolines 206(5):136–137Google Scholar
  297. Závada P, Kratinová Z, Kusbach V, Schulmann K (2009) Internal fabric development in complex lava domes. Tectonophysics 466(1–2):101–113. doi:10.1016/j.tecto.2008.07.005 ADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Olivier Galland
    • 1
  • Eoghan Holohan
    • 2
  • Benjamin van Wyk de Vries
    • 3
  • Steffi Burchardt
    • 4
  1. 1.Physics of Geological Processes (PGP), Department of GeosciencesUniversity of OsloOsloNorway
  2. 2.German Research Centre for Geosciences (GFZ)Helmholtz Zentrum PotsdamPotsdam Germany
  3. 3.Observatoire de Physique du Globe de Clermont-FerrandBlaise Pascal UniversityClermont-Ferrand France
  4. 4.Department of Earth Sciences, Center for Experimental Mineralogy, Petrology and GeochemistryUniversity of UppsalaUppsalaSweden

Personalised recommendations