Sub-Volcanic Intrusions and the Link to Global Climatic and Environmental Changes

  • Henrik H. SvensenEmail author
  • Sverre Planke
  • Else-Ragnhild Neumann
  • Ingrid Aarnes
  • Julian S. Marsh
  • Stéphane Polteau
  • Camilla H. Harstad
  • Luc Chevallier
Part of the Advances in Volcanology book series (VOLCAN)


Most of the Large Igneous Provinces (LIPs) formed during the last 260 million years are associated with climatic changes, oceanic anoxia, or extinctions in marine and terrestrial environments. Current hypotheses involve (1) degassing of carbon from either oceans or shallow sea-bed reservoirs, (2) degassing from flood basalts, or from (3) sedimentary basins heavily intruded by LIP-related sills. These hypotheses are based on detailed geological and geochemical studies from LIPSs or relevant proxy data sequences. Here we present new data on gas generation and degassing from a LIP, based on the LA1/68 borehole north of the Ladybrand area in the Karoo Basin, South Africa. The borehole was drilled in the middle of a phreatic breccia pipe and penetrated 11 sills before reaching the basement at 1710 m depth. We present new data on the lowermost 15 m thick sill emplaced in shale, and on the breccia comprising the uppermost 154 m of the core. We show that (1) a reduction in organic matter within a contact aureole can be explained by heating and the formation of CH4, (2) a phreatic eruption and breccia formation was initiated from pore fluid boiling around sills emplaced in Beaufort Group sandstones at 420–570 m depth, (3) the phreatic eruption cut through a cover of solidified and partly molten lava flows that subsequently filled the crater, and (4) the pipe has been used as a fluid flow pathway for millions of years, demonstrated by fossil and active oil seeps. We conclude that the sub-volcanic LIP environment hold the key to understand the relationships between large scale volcanism and rapid environmental perturbations.



We gratefully acknowledge support from the Norwegian Research Council (grant to H.H. Svensen and a Centre of Excellence grant to CEED, grant number 223272). We also would like to thank Council of Geoscience and the National Core Library in Pretoria for providing borehole material and logs from LA1/68, and to Doug Cole for discussions about Karoo geology.


  1. Aarnes I, Fristad K, Planke S, Svensen H (2011a) The impact of host-rock composition on devolatilization of sedimentary rocks during contact metamorphism around mafic sheet intrusions. Geochem Geophys Geosyst 12(10)CrossRefGoogle Scholar
  2. Aarnes I, Podladchikov Y, Svensen H (2012) Devolatilization-induced pressure build-up: implications for reaction front movement and breccia pipe formation. Geofluids 12(4):265–279CrossRefGoogle Scholar
  3. Aarnes I, Svensen H, Connolly JAD, Podladchikov YY (2010) How contact metamorphism can trigger global climate changes: modeling gas generation around igneous sills in sedimentary basins. Geochim Et Cosmochim Acta 74(24):7179–7195CrossRefGoogle Scholar
  4. Aarnes I, Svensen H, Polteau S, Planke S (2011b) Contact metamorphic devolatilization of shales in the Karoo Basin, South Africa, and the effects of multiple sill intrusions. Chem Geol 281(3–4):181–194CrossRefGoogle Scholar
  5. Armstrong MKDI, Tyrrell T, Wilson PA, Foster GL (2014) Estimating the impact of the cryptic degassing of large igneous provinces: a mid-Miocene case-study. Earth Planet Sci Lett 403:254–262Google Scholar
  6. Arneth JD, Matzigkeit U (1986) Laboratory-simulated thermal maturation of different types of sediments from the Williston Basin, North America–effects on the production rates, the isotopic and organo-geochemical composition of various pyrolysis products. Chem Geol Isot Geosci Sect 58(4):339–360Google Scholar
  7. Beerling DJ, Harfoot M, Lomax B, Pyle JA (2007) The stability of the stratospheric ozone layer during the end-Permain eruption of the Siberian Traps. Philos Trans R Soc Math Phys Eng Sci 365:1843–1866CrossRefGoogle Scholar
  8. Berner RA (2002) Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proc Natl Acad Sci USA 99(7):4172–4177CrossRefGoogle Scholar
  9. Bond DPG, Wignall PB (2014) Large igneous provinces and mass extinctions: an update. Geol Soc Am Spec Pap 505:29–55Google Scholar
  10. Bristow JW, Saggerson EP (1983) A review of Karoo vulcanicity in Southern Africa. Bull Volcanologique 46(2):135–159CrossRefGoogle Scholar
  11. Caldeira K, Rampino MR (1990) Carbon dioxide emissions from Deccan volcanism and a K/T boundary greenhouse effect. Geophys Res Lett 17:1299–1302CrossRefGoogle Scholar
  12. Catuneanu O, Hancox PJ, Rubidge BS (1998) Reciprocal flexural behaviour and contrasting stratigraphies: a new basin development model for the Karoo retroarc foreland system, South Africa. Basin Res 10(4):417–439CrossRefGoogle Scholar
  13. Catuneanu O, Wopfner H, Eriksson PG, Cairncross B, Rubidge BS, Smith RMH, Hancox PJ (2005) The Karoo basins of south-central Africa. J Afr Earth Sci 43(1–3):211–253CrossRefGoogle Scholar
  14. Chevallier L, Woodford A (1999) Morpho-tectonics and mechanism of emplacement of the dolerite rings and sills of the western Karoo, South Africa. S Afr J Geol 102(1):43–54Google Scholar
  15. Cohen AS, Coe AL, Kemp DB (2007) The late Palaeocene-Early Eocene and Toarcian (Early Jurassic) carbon isotope excursions: a comparison of their time scales, associated environmental changes, causes and consequences. J Geol Soc 164:1093–1108CrossRefGoogle Scholar
  16. Courtillot VE, Renne PR (2003) On the ages of flood basalt events. CR Geosci 335(1):113–140CrossRefGoogle Scholar
  17. de Oliveira DPS, Cawthorn RG (1999) Dolerite intrusion morphology at Majuba Colliery, northeast Karoo Basin, Republic of South Africa. Int J Coal Geol 41(4):333–349CrossRefGoogle Scholar
  18. Dickens GR, Castillo MM, Walker JCG (1997) A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation on oceanic methane hydrate. Geology 25(3):259–262CrossRefGoogle Scholar
  19. Dingle RV, Siesser WG, Newton AR (1983) Mesozoic and tertiary geology of Southern Africa, Rotterdam, Balkema, 375 pGoogle Scholar
  20. du Toit AI (1920) The Karoo dolerites of South Africa: a study in hypabyssal injection. Trans Geol Soc S Afr 23:1–42Google Scholar
  21. Duncan AR, Marsh JS (2006) The karoo igneous province. In: Johnson MR, Anhaeusser CR, RJ T (eds) The geology of South Africa, geological society of South Africa, Johannesburg/Council for Geoscience, Pretoria, pp 501–519Google Scholar
  22. Eales HV, Marsh JS, Cox KG (1984) The Karoo igneous province: an introduction. In: Erlank AJ (ed) Petrogenesis of the volcanic rocks of the Karoo Province, vol 13. Geological Society Special Publication of South Africa, pp 1–26Google Scholar
  23. Galerne CY, Neumann ER, Planke S (2008) Emplacement mechanisms of sill complexes: information from the geochemical architecture of the Golden Valley Sill Complex, South Africa. J Volcanol Geoth Res 177(2):425–440CrossRefGoogle Scholar
  24. Ganino C, Arndt NT (2009) Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37(4):323–326CrossRefGoogle Scholar
  25. Gevers TW (1928) The volcanic vents of the Western Stormberg. Trans Geol Soc S Afr 31:43–62Google Scholar
  26. Grab S, Svensen H (2011) Rock doughnut and pothole structures of the Clarens Fm. Sandstone in the Karoo Basin, South Africa: Possible links to Lower Jurassic fluid seepage. Geomorphology 131(1–2):14–27CrossRefGoogle Scholar
  27. Gröcke DR, Rimmer SM, Yoksoulian LE, Cairncross B, Tsikos H, van Hunen J (2009) No evidence for thermogenic methane release in coal from the Karoo-Ferrar large igneous province. Earth Planet Sci Lett 277(1–2):204–212CrossRefGoogle Scholar
  28. Hesselbo SP, Grocke DR, Jenkyns HC, Bjerrum CJ, Farrimond P, Bell HSM, Green OR (2000) Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406(6794):392–395CrossRefGoogle Scholar
  29. Jamtveit B, Svensen H, Podladchikov Y, Planke S (2004) Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. Phys Geol High-level Magmatic Syst 234:233–241CrossRefGoogle Scholar
  30. Jourdan F, Feraud G, Bertrand H, Kampunzu AB, Tshoso G, Watkeys MK, Le Gall B (2005) Karoo large igneous province: brevity, origin, and relation to mass extinction questioned by new Ar-40/Ar-39 age data. Geology 33(9):745–748CrossRefGoogle Scholar
  31. Kemp DB, Coe AL, Cohen AS, Schwark L (2005) Astronomical pacing of methane release in the Early Jurassic period. Nature 437(7057):396–399CrossRefGoogle Scholar
  32. Lock BE, Robey JA, Svensen H, Planke S, Jamtveit B, Chevallier L (2007) Discussion on structure and evolution of hydrothermal vent complexes in the Karoo Basin, South Africa—Journal, Vol. 163, 2006, 671–682. J Geol Soc 164:477–479CrossRefGoogle Scholar
  33. Malthe-Sørenssen A, Planke S, Svensen H, Jamtveit B (2004) Formation of saucer-shaped sills. In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems, vol 234., Geological societyLondon, Special Publications, pp 215–227Google Scholar
  34. Marsh JS, Eales HV (1984) The chemistry and petrogenesis of igneous rocks of the Karoo central area, Southern Africa. Spec Publ Geol Soc S Afr 13:27–67Google Scholar
  35. Marsh JS, Hooper PR, Rehacek J, Duncan AR and Duncan RA (1997) Stratigraphy and age of Karoo basalts of Lesotho and implications for correlations within the Karoo igneous province. In: Mahoney JJ and Coffin MF (eds) Large igneous provinces: continental, oceanic and planetary flood volcanism. Geophysical Monograph 100, pp 347–272Google Scholar
  36. Mazzini A, Svensen H, Leanza HA, Corfu F, Planke S (2010) Early Jurassic shale chemostratigraphy and U-Pb ages from the Neuquén Basin (Argentina): implications for the Toarcian Oceanic Anoxic event. Earth Planet Sci Lett 297(3–4):633–645CrossRefGoogle Scholar
  37. McClintock M, White JDL, Houghton BF, Skilling IP (2008) Physical volcanology of a large crater-complex formed during the initial stages of Karoo flood basalt volcanism, Sterkspruit, Eastern Cape, South Africa. J Volcanol Geoth Res 172(1–2):93–111CrossRefGoogle Scholar
  38. McElwain JC, Wade-Murphy J, Hesselbo SP (2005) Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals. Nature 435(7041):479–482CrossRefGoogle Scholar
  39. Meyers PA, Simoneit BRT (1999) Effects of extreme heating on the elemental and isotopic compositions of an upper Cretaceous coal. Org Geochem 30(5):299–305CrossRefGoogle Scholar
  40. Mills SR, Fourie ET (1976) A review of the heat effects of dolerite intrusions on oil accumulations in the Middle Ecca of the Northern KarooGoogle Scholar
  41. Neumann ER, Svensen H, Galerne CY, Planke S (2011) multistage evolution of dolerites in the karoo large igneous province, Central South Africa. J Petrol 52(5):959–984CrossRefGoogle Scholar
  42. Peters EK, Rohrback BG, Kaplan IR (1981) Carbon and hydrogen stable isotope variations in kerogen during laboratory-simulated thermal maturation. AAPG Bull 65:501–508Google Scholar
  43. Polteau S, Mazzini A, Galland O, Planke S, Malthe-Sorenssen A (2008a) Saucer-shaped intrusions: Occurrences, emplacement and implications. Earth Planet Sci Lett 261:195–204CrossRefGoogle Scholar
  44. Polteau S, Ferre EC, Planke S, Neumann ER, Chevallier L (2008b) How are saucer-shaped sills emplaced? constraints from the Golden Valley Sill, South Africa. J Geophys Res Solid Earth 113(B12)Google Scholar
  45. Retallack G, Jahren AH (2008) Methane release from igneous intrusion of coal during late permian extinction events. J Geol 116(1):1–20CrossRefGoogle Scholar
  46. Richardson SH (1979) Chemical variation produced by flow differentiation in an extensive Karroo dolerite sheet, southern Namibia. Geochim Cosmochim Acta 43:1433–1441CrossRefGoogle Scholar
  47. Roscher M, Stordal F, Svensen H (2011) The effect of global warming and global cooling on the distribution of the latest Permian climate zones. Palaeogeogr Palaeoclimatol Palaeoecol 309(3–4):186–200CrossRefGoogle Scholar
  48. Roux HJ (1972) Geological well completion report of LA1/68Google Scholar
  49. Rowsell DM, De Swardt AMJ (1976) Diagenesis in Cape and Karoo sediments, South Africa and its bearing on their hydrocarbon potential. Trans Geol Soc S Afr 79:81–145Google Scholar
  50. Ruhl M, Kürschner WM (2011) Multiple phases of carbon cycle disturbance from large igneous province formation at the Triassic-Jurassic transition. Geology 39(5):431–434CrossRefGoogle Scholar
  51. Senger K, Planke S, Polteau S, Ogata K, Svensen H (2014) Sill emplacement and contact metamorphism in a siliciclastic reservoir on Svalbard, Arctic Norway. Norw J Geol 94(2–3):155–169Google Scholar
  52. Stothers RB (1993) Flood basalts and extinction events. Geophys Res Lett 20(13):1399–1402CrossRefGoogle Scholar
  53. Svensen H, Bebout G, Kronz A, Li L, Planke S, Chevallier L, Jamtveit B (2008) Nitrogen geochemistry as a tracer of fluid flow in a hydrothermal vent complex in the Karoo Basin, South Africa. Geochim Et Cosmochim Acta 72(20):4929–4947CrossRefGoogle Scholar
  54. Svensen H, Corfu F, Polteau S, Hammer O, Planke S (2012) Rapid magma emplacement in the karoo large igneous province. Earth Planet Sci Lett 325:1–9CrossRefGoogle Scholar
  55. Svensen H, Jamtveit B (2010) Metamorphic fluids and global environmental changes. Elements 6(3):179–182CrossRefGoogle Scholar
  56. Svensen H, Jamtveit B, Planke S, Chevallier L (2006) Structure and evolution of hydrothermal vent complexes in the Karoo Basin, South Africa. J Geol Soc 163:671–682CrossRefGoogle Scholar
  57. Svensen H, Planke S, Chevallier L, Malthe-Sorenssen A, Corfu F, Jamtveit B (2007) Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth Planet Sci Lett 256(3–4):554–566CrossRefGoogle Scholar
  58. Svensen H, Planke S, Corfu F (2010) Zircon dating ties NE Atlantic sill emplacement to initial Eocene global warming. J Geol Soc 167(3):433–436CrossRefGoogle Scholar
  59. Svensen H, Planke S, Malthe-Sorenssen A, Jamtveit B, Myklebust R, Rasmussen Eidem T, Rey SS (2004) Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429(6991):542–545CrossRefGoogle Scholar
  60. Svensen H, Planke S, Polozov AG, Schmidbauer N, Corfu F, Podladchikov YY, Jamtveit B (2009a) Siberian gas venting and the end-Permian environmental crisis. Earth Planet Sci Lett 277(3–4):490–500CrossRefGoogle Scholar
  61. Svensen H, Schmidbauer N, Roscher M, Stordal F, Planke S (2009b) Contact metamorphism, halocarbons, and environmental crises of the past. Environ Chem 6:466–471CrossRefGoogle Scholar
  62. Tankard A, Welsink H, Aukes P, Newton R, Stettler E (2009) Tectonic evolution of the Cape and Karoo basins of South Africa. Mar Pet Geol 26(8):1379–1412CrossRefGoogle Scholar
  63. van de Schootbrugge B, Quan TM, Lindstrom S, Puttmann W, Heunisch C, Pross J, Fiebig J, Petschick R, Rohling HG, Richoz S, Rosenthal Y, Falkowski PG (2009) Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nat Geosci 2(8):589–594CrossRefGoogle Scholar
  64. Wignall PB (2001) Large igneous provinces and mass extinctions. Earth Sci Rev 53(1–2):1–33CrossRefGoogle Scholar
  65. Woodford AC, Chevallier L (2002) Hydrogeology of the main Karoo Basin: current knowledge and research needs: pretoria. South Africa, Water Research Commission Report, p 310Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Henrik H. Svensen
    • 1
    Email author
  • Sverre Planke
    • 1
    • 2
  • Else-Ragnhild Neumann
    • 1
  • Ingrid Aarnes
    • 3
  • Julian S. Marsh
    • 4
  • Stéphane Polteau
    • 2
  • Camilla H. Harstad
    • 5
  • Luc Chevallier
    • 6
  1. 1.Centre for Earth Evolution and Dynamics (CEED)University of OsloOsloNorway
  2. 2.Volcanic Basin Petroleum Research (VBPR)Oslo Innovation CentreOsloNorway
  3. 3.Roxar Software Solutions, ASOsloNorway
  4. 4.Rhodes UniversityGrahamstownSouth Africa
  5. 5.AGR Petroleum ServicesOsloNorway
  6. 6.Council for GeoscienceBellvilleSouth Africa

Personalised recommendations