Skip to main content

Resource-Efficient Use of Residues from Medicinal and Aromatic Plants for Production of Secondary Plant Metabolites

  • Chapter
  • First Online:
Advances in Biochemical Engineering/Biotechnology

Abstract

Although people’s interest in green and healthy plant-based products and natural active ingredients in the cosmetic, pharmaceutical, and food industries is steadily increasing, medicinal and aromatic plants (MAPs) represent a niche crop type.

It is possible to increase cultivation and sales of MAPs, by utilizing plant components that are usually discarded. This chapter provides an overview of studies concerning material flows and methods used for sustainable production of valuable metabolites from MAPs between 2018 and 2023. Additionally, it describes new developments and strategies for extraction and isolation, as well as innovative applications. In order to use these valuable resources almost completely, a systematic recycling of the plant material is recommended. This would be a profitable way to increase sustainability in the cultivation and usage of MAPs and provide new opportunities for extraction in plant science.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. FNR (2023) FNR- Pflanzen: Anbauzahlen [WWW Document]. URL https://pflanzen.fnr.de/anbauzahlen. Accessed 22 Apr 2023

  2. FAO (2021) The state of the world’s land and water resources for food and agriculture – systems at breaking point (SOLAW 2021). FAO https://doi.org/10.4060/cb7654en

  3. Jiménez-Moreno N, Esparza I, Bimbela F, Gandía LM, Ancín-Azpilicueta C (2020) Valorization of selected fruit and vegetable wastes as bioactive compounds: opportunities and challenges. Crit Rev Environ Sci Technol 50:2061–2108. https://doi.org/10.1080/10643389.2019.1694819

    Article  Google Scholar 

  4. Lu Q, Li C (2021) Comprehensive utilization of Chinese medicine residues for industry and environment protection: turning waste into treasure. J Clean Prod 279:123856. https://doi.org/10.1016/j.jclepro.2020.123856

    Article  Google Scholar 

  5. Huang C, Li Z-X, Wu Y, Huang Z-Y, Hu Y, Gao J (2021) Treatment and bioresources utilization of traditional Chinese medicinal herb residues: recent technological advances and industrial prospect. J Environ Manage 299:113607. https://doi.org/10.1016/j.jenvman.2021.113607

    Article  Google Scholar 

  6. EU Commission (2019) Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions the European Green Deal

    Google Scholar 

  7. EU Commission (2020) Communication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions a new Circular Economy Action Plan for a Cleaner and More Competitive Europe

    Google Scholar 

  8. Saha A, Basak BB, Manivel P, Kumar J (2021) Valorization of Java citronella (Cymbopogon winterianus Jowitt) distillation waste as a potential source of phenolics/antioxidant: influence of extraction solvents. J Food Sci Technol 58. https://doi.org/10.1007/s13197-020-04538-8

  9. Dina E, Vontzalidou A, Cheilari A, Bagatzounis P, Agapidou E, Giannenas I, Grigoriadou K, Aligiannis N (2022) Sustainable use of Greek Herbs by-products, as an alternative source of biologically active ingredients for innovative products. Front Nutr 9:867666. https://doi.org/10.3389/fnut.2022.867666

    Article  Google Scholar 

  10. Belyagoubi L, Loukidi B, Belyagoubi-Benhammou N, Gismondi A, Di Marco G, D’Agostino A, Canini A, Benmahieddine A, Rouigueb K, Ben Menni D, Atik-Bekkara F (2021) Valorization of Algerian Saffron: stigmas and flowers as source of bioactive compounds. Waste Biomass Valorization 12:6671–6683. https://doi.org/10.1007/s12649-021-01454-6

    Article  Google Scholar 

  11. Web of Science TM Citation Report: Medicinal Plant Waste Valorization (All Fields) 30 Apr 2023

    Google Scholar 

  12. Amran MA, Palaniveloo K, Fauzi R, Satar NM, Mohidin TBM, Mohan G, Razak SA, Arunasalam M, Nagappan T, Sathiya Seelan JS (2021) Value-added metabolites from agricultural waste and application of green extraction techniques. Sustainability 13:11432. https://doi.org/10.3390/su132011432

    Article  Google Scholar 

  13. McClements DJ, Ozturk B (2022) Utilization of nanotechnology to improve the application and bioavailability of phytochemicals derived from waste streams. J Agric Food Chem 70:6884–6900. https://doi.org/10.1021/acs.jafc.1c03020

    Article  Google Scholar 

  14. Chiocchio I, Mandrone M, Tomasi P, Marincich L, Poli F (2021) Plant secondary metabolites: an opportunity for circular economy. Molecules 26:495. https://doi.org/10.3390/molecules26020495

    Article  Google Scholar 

  15. Filipović V, Ugrenović V (2013) The composting of plant residues originating from the production of medicinal plants. Proc Sustain Agric Rural Dev Terms Repub Serbia Strateg Goals Realiz Danube Reg-Achiev Reg Compet:1283–1301

    Google Scholar 

  16. Semerel J, John N, Dehaen W, Fardim P (2023) Valorization of Aloe barbadensis Miller. (Aloe vera) processing waste. J Renew Mater 11:1031–1061. https://doi.org/10.32604/jrm.2022.023449

    Article  Google Scholar 

  17. Zema DA, Calabrò PS, Folino A, Tamburino V, Zappia G, Zimbone SM (2018) Valorisation of citrus processing waste: a review. Waste Manag 80:252–273. https://doi.org/10.1016/j.wasman.2018.09.024

    Article  Google Scholar 

  18. Lamine M, Gargouri M, Rahali FZ, Mliki A (2021) Recovering and characterizing phenolic compounds from citrus by-product: a way towards agriculture of subsistence and sustainable bioeconomy. Waste Biomass Valorization 12:4721–4731. https://doi.org/10.1007/s12649-020-01306-9

    Article  Google Scholar 

  19. Truzzi E, Chaouch MA, Rossi G, Tagliazucchi L, Bertelli D, Benvenuti S (2022) Characterization and valorization of the agricultural waste obtained from Lavandula steam distillation for its reuse in the food and pharmaceutical fields. Molecules 27:1613. https://doi.org/10.3390/molecules27051613

    Article  Google Scholar 

  20. Ivanov I, Petkova N, Tumbarski Y, Vrancheva R, Stoyanova M (2018) Lavender waste–promising source of triterpenoids and polyphenols with antioxidant and antimicrobial activity. Ind Technol 5:26–32

    Google Scholar 

  21. Slavov AM, Karneva KB, Vasileva IN, Denev PN, Denkova RS, Shikov VT, Manolova MN, Lazarova YL, Ivanova VN (2018) Valorization of lavender waste – obtaining and characteristics of polyphenol rich extracts. Food Sci Appl Biotechnol 1:11–18. https://doi.org/10.30721/fsab2018.v1.i1.5

    Article  Google Scholar 

  22. Saha A, Basak BB, Banerjee A (2022) In-vitro antioxidant evaluation and production of biochar from distillation waste biomass of Mentha arvensis. J Appl Res Med Aromat Plants 31:100428. https://doi.org/10.1016/j.jarmap.2022.100428

    Article  Google Scholar 

  23. Berktas S, Cam M (2021) Peppermint leaves hydrodistillation by-products: bioactive properties and incorporation into ice cream formulations. J Food Sci Technol 58:4282–4293. https://doi.org/10.1007/s13197-020-04903-7

    Article  Google Scholar 

  24. Zaccardelli M, Roscigno G, Pane C, Celano G, Di Matteo M, Mainente M, Vuotto A, Mencherini T, Esposito T, Vitti A, De Falco E (2021) Essential oils and quality composts sourced by recycling vegetable residues from the aromatic plant supply chain. Ind Crop Prod 162:113255. https://doi.org/10.1016/j.indcrop.2021.113255

    Article  Google Scholar 

  25. Moisa C, Copolovici L, Bungau S, Pop G, Imbrea I, Lupitu A, Nemeth S, Copolovici D (2018) Wastes resulting from aromatic plants distillation – bio-sources of antioxidants and phenolic compounds with biological active principles. Farmacia 66:289–295

    Google Scholar 

  26. Petrović M, Jovanović M, Lević S, Nedović V, Mitić-Ćulafić D, Semren TŽ, Veljović S (2022) Valorization potential of Plantago major L. solid waste remaining after industrial tincture production: insight into the chemical composition and bioactive properties. Waste Biomass Valorization 13:1639–1651. https://doi.org/10.1007/s12649-021-01608-6

    Article  Google Scholar 

  27. Deghima A, Righi N, Rosales-Conrado N, Leon-Gonzalez ME, Baali F, Gomez-Mejia E, Madrid Y, Bedjou F (2021) Valorisation of the green waste parts from large-leaved buttercup (Ranunculus macrophyllus Desf.): phenolic profile and health promoting effects study. Waste Biomass Valorization 12:4307–4318. https://doi.org/10.1007/s12649-020-01310-z

    Article  Google Scholar 

  28. Sánchez-Vioque R, Izquierdo-Melero ME, Quílez M, Herraiz-Peñalver D, Santana-Méridas O, Jordán MJ (2018) Solid residues from the distillation of Salvia lavandulifolia Vahl as a natural source of antioxidant compounds. J Am Oil Chem Soc 95:1277–1284. https://doi.org/10.1002/aocs.12128

    Article  Google Scholar 

  29. Santana-Méridas O, González-Coloma A, Sánchez-Vioque R (2012) Agricultural residues as a source of bioactive natural products. Phytochem Rev 11:447–466. https://doi.org/10.1007/s11101-012-9266-0

    Article  Google Scholar 

  30. Austel N, Böttcher C, Meiners T (2021) Chemical defence in Brassicaceae against pollen beetles revealed by metabolomics and flower bud manipulation approaches. Plant Cell Environ 44:519–534. https://doi.org/10.1111/pce.13949

    Article  Google Scholar 

  31. Kümmritz S, Klocke B, Krähmer A (2023) The potential use of steam distillation residues from medicinal plant material as a natural agricultural agent. In: Medicinal agroecology. CRC Press

    Google Scholar 

  32. Chemat F, Abert-Vian M, Fabiano-Tixier AS, Strube J, Uhlenbrock L, Gunjevic V, Cravotto G (2019) Green extraction of natural products. Origins, current status, and future challenges. Trends Anal Chem 118:248–263. https://doi.org/10.1016/j.trac.2019.05.037

    Article  Google Scholar 

  33. Strube J (1996) Simulation und Optimierung kontinuierlicher simulated-moving-bed (SMB)-chromatographie-prozesse. Thesis. Dortmund University: Dortmund, Germany

    Google Scholar 

  34. Mestmäcker F, Schmidt A, Huter M, Sixt M, Strube J (2018) Systematic and model-assisted process design for the extraction and purification of artemisinin from Artemisia annua L. – part III: chromatographic purification. Processes 6:180. https://doi.org/10.3390/pr6100180

    Article  Google Scholar 

  35. Sixt M, Koudous I, Strube J (2016) Process design for integration of extraction, purification and formulation with alternative solvent concepts. C R Chim 19:733–748. https://doi.org/10.1016/j.crci.2015.12.016

    Article  Google Scholar 

  36. Sixt M, Schmidt A, Mestmäcker F, Huter M, Uhlenbrock L, Strube J (2018) Systematic and model-assisted process design for the extraction and purification of artemisinin from Artemisia annua L. – part I: conceptual process design and cost estimation. Processes 6:161. https://doi.org/10.3390/pr6090161

    Article  Google Scholar 

  37. Huter M, Schmidt A, Mestmäcker F, Sixt M, Strube J (2018) Systematic and model-assisted process design for the extraction and purification of artemisinin from Artemisia annua L. – part IV: crystallization. Processes 6:181. https://doi.org/10.3390/pr6100181

    Article  Google Scholar 

  38. Vetter FL, Strube J (2022) Enabling total process digital twin in sugar refining through the integration of secondary crystallization influences. Processes 10:373. https://doi.org/10.3390/pr10020373

    Article  Google Scholar 

  39. Jensch C, Schmidt A, Strube J (2022) Versatile green processing for recovery of phenolic compounds from natural product extracts towards bioeconomy and cascade utilization for waste valorization on the example of cocoa bean shell (CBS). Sustainability 14:3126. https://doi.org/10.3390/su14053126

    Article  Google Scholar 

  40. Jensch C, Strube J (2022) Proposal of a new green process for waste valorization and cascade utilization of essential oil plants. Sustainability 14:3227. https://doi.org/10.3390/su14063227

    Article  Google Scholar 

  41. Sixt M, Strube J (2018) Systematic design and evaluation of an extraction process for traditionally used herbal medicine on the example of hawthorn (Crataegus monogyna JACQ). Processes 6:73. https://doi.org/10.3390/pr6070073

    Article  Google Scholar 

  42. Sixt M, Strube J (2017) Pressurized hot water extraction of 10-deacetylbaccatin III from yew for industrial application. Resour-Effic Technol 3:177–186. https://doi.org/10.1016/j.reffit.2017.03.007

    Article  Google Scholar 

  43. Sixt M, Strube J (2017) Systematic and model-assisted evaluation of solvent based- or pressurized hot water extraction for the extraction of artemisinin from Artemisia annua L. Processes 5:86. https://doi.org/10.3390/pr5040086

    Article  Google Scholar 

  44. Tegtmeier M, Knierim L, Schmidt A, Strube J (2023) Green manufacturing for herbal remedies with advanced pharmaceutical technology. Pharmaceutics 15:188. https://doi.org/10.3390/pharmaceutics15010188

    Article  Google Scholar 

  45. Schmidt A, Strube J (2018) Application and fundamentals of liquid–liquid extraction processes: purification of biologicals, botanicals, and strategic metals. In: Kirk-Othmer encyclopedia of chemical technology. Wiley, pp 1–52. https://doi.org/10.1002/0471238961.koe00041

    Chapter  Google Scholar 

  46. Uhlenbrock L, Sixt M, Tegtmeier M, Schulz H, Hagels H, Ditz R, Strube J (2018) Natural products extraction of the future – sustainable manufacturing solutions for societal needs. Processes 6:177. https://doi.org/10.3390/pr6100177

    Article  Google Scholar 

  47. Uhl A et al (2023) Digital twin and PAT for APC in pressurized hot water extraction. In Submission

    Google Scholar 

  48. Uhl A, Knierim L, Tegtmeier M, Schmidt A, Strube J (2023) Is regulatory approval without autonomous operation for natural extract manufacturing under economic competitiveness and climate-neutrality demands still permissible? Processes 11:1790. https://doi.org/10.3390/pr11061790

    Article  Google Scholar 

  49. Uhl A, Schmidt A, Tegtmeier M, Wenzel A, Beneke F, Strube J (2023) Establishment of a research focus on resilient sustainable climate neutral agricultural production – resilient farming initiative. Processes 11:1105. https://doi.org/10.3390/pr11041105

    Article  Google Scholar 

  50. Schmidt A, Uhlenbrock L, Strube J (2020) Technical potential for energy and GWP reduction in chemical–pharmaceutical industry in Germany and EU—focused on biologics and botanicals manufacturing. Processes 8(7):818. https://doi.org/10.3390/pr8070818

    Article  Google Scholar 

  51. İncegül Y, Çam M (2021) Recovery of water-soluble materials after distillation of sage (Salvia officinalis L.) and the use of materials in the production of cake and ice cream. J Food Meas Charact 15:2688–2694. https://doi.org/10.1007/s11694-021-00851-8

    Article  Google Scholar 

  52. Saha A, Basak BB (2020) Scope of value addition and utilization of residual biomass from medicinal and aromatic plants. Ind Crop Prod 145:111979. https://doi.org/10.1016/j.indcrop.2019.111979

    Article  Google Scholar 

  53. Sarkar R, Basak BB, Banerjee A, Kumar S (2023) Recycling of distillation by-products of Ocimum sp. as potential source of antioxidants as well as feedstock for biochar. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-023-01670-3

  54. Zhou Y, Selvam A, Wong JWC (2018) Chinese medicinal herbal residues as a bulking agent for food waste composting. Bioresour Technol 249:182–188. https://doi.org/10.1016/j.biortech.2017.09.212

    Article  Google Scholar 

  55. Zhang L, Gu J, Wang X, Sun W, Yin Y, Sun Y, Guo A, Tuo X (2017) Behavior of antibiotic resistance genes during co-composting of swine manure with Chinese medicinal herbal residues. Bioresour Technol 244:252–260. https://doi.org/10.1016/j.biortech.2017.07.035

    Article  Google Scholar 

  56. Zaccardelli M, Sorrentino R, Caputo M, Scotti R, De Falco E, Pane C (2020) Stepwise-selected Bacillus amyloliquefaciens and B. subtilis strains from composted aromatic plant waste able to control soil-borne diseases. Agriculture 10:30. https://doi.org/10.3390/agriculture10020030

    Article  Google Scholar 

  57. Filipović V, Ugrenović V, Popović V, Dimitrijević S, Popović S, Aćimović M, Dragumilo A, Pezo L (2023) Productivity and flower quality of different pot marigold (Calendula officinalis L.) varieties on the compost produced from medicinal plant waste. Ind Crop Prod 192:116093. https://doi.org/10.1016/j.indcrop.2022.116093

    Article  Google Scholar 

  58. Villecco D, Pane C, Ronga D, Zaccardelli M (2020) Enhancing sustainability of tomato, pepper and melon nursery production systems by using compost tea spray applications. Agronomy 10:1336. https://doi.org/10.3390/agronomy10091336

    Article  Google Scholar 

  59. Lewerenz L, Abouzeid S, Yahyazadeh M, Hijazin T, Selmar D (2022) Novel cognitions in allelopathy: implications from the “Horizontal Natural Product Transfer”. Plan Theory 11:3264. https://doi.org/10.3390/plants11233264

    Article  Google Scholar 

  60. EFSA (2011) Scientific opinion on pyrrolizidine alkaloids in food and feed. EFSA J 9:2406. https://doi.org/10.2903/j.efsa.2011.2406

    Article  Google Scholar 

  61. Nitzsche J, Plescher A, Wahl S (2018) Pyrrolizidinalkaloid-haltige Beikräuter in Arznei- und Gewürzpflanzenkulturen – Verbreitung und Gefahr der Kontamination von Ernteprodukten in Deutschland Tagungsband 28 Dtsch. Arbeitsbesprechung Über Frag. Unkrautbiologie – Bekämpf. 27 Februar – 1 März 2018 Braunschw. 458:408–418. https://doi.org/10.5073/jka.2018.458.060

  62. Selmar D, Wittke C, Beck-von Wolffersdorff I, Klier B, Lewerenz L, Kleinwächter M, Nowak M (2019) Transfer of pyrrolizidine alkaloids between living plants: a disregarded source of contaminations. Environ Pollut 248:456–461. https://doi.org/10.1016/j.envpol.2019.02.026

    Article  Google Scholar 

  63. Chmit MS, Müller J, Wiedow D, Horn G, Beuerle T (2021) Biodegradation and utilization of crop residues contaminated with poisonous pyrrolizidine alkaloids. J Environ Manage 290:112629. https://doi.org/10.1016/j.jenvman.2021.112629

    Article  Google Scholar 

  64. Jensch C, Knierim L, Tegtmeier M, Strube J (2021) Development of a general PAT strategy for online monitoring of complex mixtures – on the example of natural product extracts from bearberry leaf (Arctostaphylos uva-ursi). Processes 9:2129. https://doi.org/10.3390/pr9122129

    Article  Google Scholar 

  65. Knierim L, Strube J (2022) Versatile green technology for waste valorization – products from cocoa bean shell and essential oil plants. Chem Ing Tech 94:1298–1298. https://doi.org/10.1002/cite.202255087

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Federal Ministry of Food and Agriculture (BMEL) by decision of the German Bundestag and managed by the Agency for Renewable Resources (FNR) for the financial support of these studies under the program “Renewable Resources,” project number: 22021517.

Special thanks to Larissa Knierim and Colin Herzberger and the whole natural products extraction team, as well as Dr. M. Gahr, PT Jülich, for BMWK funding grant project RUENNA and TPTP. Alexander Uhl for digital twin and autonomous operation studies as well as Thomas Knebel and Mourad Mouellef for process automation concept and realization. ITVP fine mechanics workshop with Volker Strohmeyer and Nils Hoffmann for PHWE combined with UF and NF pilot plant. Frank Steinhäuser for troubleshooting support 24/7.

Language editing of the manuscript by Luca Benazzi has been highly acknowledged. Citation Report graphic is derived from the Web of Science provided by Clarivate, Copyright Clarivate 2023. All rights reserved

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibylle Kümmritz .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kümmritz, S., Tron, N., Tegtmeier, M., Schmidt, A., Strube, J. (2024). Resource-Efficient Use of Residues from Medicinal and Aromatic Plants for Production of Secondary Plant Metabolites. In: Advances in Biochemical Engineering/Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2024_250

Download citation

  • DOI: https://doi.org/10.1007/10_2024_250

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics