Skip to main content

Farming of Medicinal Mushrooms

  • Chapter
  • First Online:
  • 207 Accesses

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 184))

Abstract

Since most of the medicinal mushrooms are rare in nature, production of fungal fruiting bodies is hardly covering the food market and the production of pharmaceutically active products, so artificial cultivation of fruiting bodies in a form of farming has been intensively established during the last 40 years. Various cultivation technologies are presented, including traditional farming of fruiting bodies on wood logs and beds, and also on other substrate-based media, such as cultivation in bags, bottles, and others. The advantage of farming is a cheap but time-consuming large-scale production. Agriculture, wood, and food industry wastes represent the main substrates that are in this process delignified and enriched in proteins and highly valuable pharmaceutically active compounds. The present article presents an overview of achievements in artificial cultivation of fruiting bodies, including the most relevant medicinal mushroom species, such as Ganoderma lucidum, Grifola frondosa, Pleurotus ostreatus, Agaricus brasiliensis, and Lentinula edodes.

Graphical Abstract

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

a w :

Water activity

BE:

Biological efficiencies

CC:

Corn-cobs

CW:

Cotton wastes

OS:

Oak-wood sawdust

R.H.:

Relative humidity

T:

Temperature

WS:

Wheat straw

References

  1. Wasser SP (2017) Medicinal mushrooms in human clinical studies. Part I. Anticancer, Onco immunological, and immunomodulatory activities: a review. Int J Med Mushrooms 19(4):279–317

    PubMed  Google Scholar 

  2. Boh B (2006) Use of waste materials from agriculture for cultivation of edible and medicinal mushrooms. In: Information study and reference database. Bistra Press, Ptuj, pp 180–186

    Google Scholar 

  3. Berovic M (2019) Cultivation of medicinal mushroom biomass by solid-state bioprocessing in bioreactors. In: Steudler S, Werner A, Cheng J (eds) Solid state fermentation. Advances in biochemical engineering/biotechnology, vol 169. Springer, Cham

    Google Scholar 

  4. Xuan Wei Zhou (2017) Cultivation of Ganoderma lucidum: technology and applications in Cunha Zied Diego Arturo Pardo Giménez. Edible and medicinal mushrooms: technology and applications. Wiley, pp 385–436

    Google Scholar 

  5. Lee JH (2000) Cultivation of Reishi (Ganoderma lucidum) [on-line], MushWorld Cultivation, http://www.mushworld.com/sub_en.html

  6. Chen AW (2004) Natural-log cultivation of the medicinal mushroom Ganoderma lucidum (Reishi), [on-line], MushWorld – Cultivation, http://www.mushworld.com/sub_en.html

  7. Chen AW (1999) Cultivation of the medicinal mushroom Ganoderma lucidum (Curt.:Fr.) P. Karst.(Reishi). Int J Med Mushrooms 1:263–282

    Google Scholar 

  8. Chen AW, (2002) Cultivation of the medicinal mushroom Ganoderma lucidum (Curt.: Fr.) P. Karst (Reishi) in North America (3), [on-line], MushWorld – cultivation, http://www.mushworld.com/sub_en.html

  9. Stamets P (1993) Growing gourmet and medicinal mushrooms, edible mushrooms. Ten Speed Press, pp 322–334

    Google Scholar 

  10. Chen AW (2003) A fresh look at an ancient mushroom Ganoderma lucidum (Reishi) [on-line], MushWorld – Cultivation, http://www.mushworld.com/sub_en.html

  11. Changhai Z, Hanguo S, Jimin C, Lijing P, Miaobin Z, Congling H, Shufen L (2013) Study on culture medium of Ganoderma lucidum in Zhuhai. Chinese Agric Sci Bull 13:036

    Google Scholar 

  12. Gurung O, Budathoki U, Parajuli G (2013) Effect of different substrates on the production of Ganoderma lucidum (Curt.: Fr.) Karst. Our Nat 10:191–198

    Google Scholar 

  13. Royse DJ (1996) Specialty mushrooms. In: Janick J (ed) Progress in new crops. ASHS Press, Arlington, pp 464–475

    Google Scholar 

  14. Chen AW (2014) Mushrooms worldwide part III. Mushrooms for the tropics. Growing Ganoderma mushrooms. Mushroom growers' handbook, vol 1, pp 224–234

    Google Scholar 

  15. Hossain K, Sarker N, Kakon A, Khan A, Ahmed S (2009) Cultivation of Reishi mushroom (Ganoderma lucidum) on sawdust of different tree species. Bangladesh J Mushrooms 3:1–5

    Google Scholar 

  16. Gonzalez-Matute R, Figlas D, Devalis R, Delmastro S, Curvetto N (2002) Sunflower seed hulls as a main nutrient source for cultivating Ganoderma lucidum. Micologia Aplicada Int 14:19–24

    Google Scholar 

  17. Yang BK, Jeong SC, Song CH (2002) Hypolipidemic effect of exo-biopolymer produced from submerged mycelial culture of Ganoderma lucidum. The 2nd meeting of Far East Asia for collaboration on edible fungi research, proceedings, Tottori, Japan, pp 37–44

    Google Scholar 

  18. Furci George-Nascimento GM (2005) Ganoderma lucidum (Curt.:Fr.) P. Karst grown indoors on native Chilean hardwoods, [on-line], MushWorld – cultivation, http://www.mushworld.com/sub_en.html

  19. Hsieh C, Yang FC (2004) Reusing soy residue for the solid-state fermentation of Ganoderma lucidum. Bioresour Technol 91:105–109

    CAS  PubMed  Google Scholar 

  20. Kim HK (2001) Comparison of characteristics of Ganoderma lucidum according to geographical origins: consideration of growth characteristics (1) [on-line], MushWorld – world mushroom, 2001-09-01, http://www.mushworld.com/sub_en.html

  21. Takashi M (1999) Apparatus for cultivating Ganoderma lucidum Karst and other mushrooms and their cultivation Patent JP11155366

    Google Scholar 

  22. Kiyoshi K, Hamajirou S, Yoshiaki A (1998) Cultivation method for Ganoderma lucidum (fr.) Karst, patent JP10084772

    Google Scholar 

  23. Chen KL, Chao DM (1997) Lin Zhi (Ganoderma species). In: Hsu KT (ed) Chinese medicinal mycology. United Press of Beijing, China, pp 496–517

    Google Scholar 

  24. Kim JR (2003) Production of polysaccharide by the edible mushroom, Grifola frondosa. Mycobiology 31(4):205–208

    CAS  Google Scholar 

  25. Mayell M (2001) Maitake extracts and their therapeutic potential – a review. Altern Med Rev 6(1):48–60

    CAS  PubMed  Google Scholar 

  26. Shen Q (2001) Molecular phylogenetic analysis of Grifola frondosa (Maitake) and related species and the influence of selected nutrient supplements on mushroom yield. Doctoral thesis. The Pennsylvania State University, USA

    Google Scholar 

  27. Chen AW,Stamets P, Huang NL,Han SH (1999) The mushroom growers’ newsletter, pp 1–4

    Google Scholar 

  28. Chen AW, Stamets P, Huang NL, Wu JL, Han SH (2004) Crop management and morphogenesis of Grifola frondosa (Maitake) in cultivation. World Soc Mushroom Biol Mushroom Prod:1–6

    Google Scholar 

  29. Stott K, Mohammed C (2004) Specialty mushroom production systems: Maitake and morels. A report for the Rural Industries Research and Development Corporation, March 2004, RIRDC Publication No 04/024

    Google Scholar 

  30. Kirchhoff B (1996) Investigations in genotypes and substrates for the fruitbody production of Grifola frondosa (Dicks.:Fr.). In: Royse DJ (ed) Mushroom biology and mushroom products. PENN State University Press, State College, pp 432–441

    Google Scholar 

  31. Shen Q, Royse DJ (2003) Crop cycle time, yield and quality of Maitake Grifola frondosa as influenced by nutrient supplements. World Soc Mushroom Biol Mushroom Prod:1–7

    Google Scholar 

  32. Kawakami S, Kobayashi F, Umio S, Naito S (1994) Japanese patent, JP6153692

    Google Scholar 

  33. Masafumi N, Katsuhiko K (2000) Japanese patent, JP 2000270675

    Google Scholar 

  34. Someya N, Someya S (2001) Japanese patent, JP 2001136832

    Google Scholar 

  35. (1989) Japanese patent, JP 1254606

    Google Scholar 

  36. (1989) Japanese patent, JP 1186802

    Google Scholar 

  37. Song B, Ye J, Sossah FL et al (2018) Assessing the effects of different agro-residue as substrates on growth cycle and yield of Grifola frondosa and statistical optimization of substrate components using simplex-lattice design. AMB Expr 8:46–52

    Google Scholar 

  38. Chen AW, Stamets P, Cooper RB, Huang NL, Han SH (1998) Grifola frondosa (Maitake): ecology and morphology, mushroom growers’ newsletter

    Google Scholar 

  39. Chen A, Stamets P, Huang N (1999) Crop management and morphogenesis of Grifola frondosa (Maitake) in cultivation. In: Proceedings of the 3rd international conference on mushroom biology and mushroom products, Sidney, October 1999, pp 479–488

    Google Scholar 

  40. Naito S, Niwa H, Oosawa Y, Matsumoto N (1996) Japanese patent, JP 8317726

    Google Scholar 

  41. Nanba K, Yamazaki T, Mizuno M (2002) Japanese patent, JP 2002218844

    Google Scholar 

  42. Nanba K, Yamazaki T, Mizuno M (2004) Japanese patent, JP 2004147668

    Google Scholar 

  43. Masayuki O (2003) Japanese patent, JP 2003143950

    Google Scholar 

  44. Fukunaga K, Takemura K, Kariya Y, Kondo M (1991) Japanese patent, JP3172118

    Google Scholar 

  45. Lee JH, Lee NG, Park YH, Mun YG, Jeong TS, Kwon SB, Jae-Rok Kim JR, Yoo YB (2013) Development of the log cultivation techniques of the Maitake Grifola frondosa. J Mushroom Sci Prod 11(4):240–243

    Google Scholar 

  46. Kerrigan RW (2005) Agaricus subrufescens, a cultivated edible and medicinal mushroom, and its synonyms. Mycologia 97(1):12–24

    PubMed  Google Scholar 

  47. Chen A (2003) A practical guide to the cultivation of Agaricus blazei, a mushroom of culinary and biomedical importance. MushWorld. https://www.mushworld.com

  48. Mizuno T (2002) Medicinal properties and clinical effects of culinary-medicinal mushroom Agaricus blazei Murill (Agaricomycetideae) (review). Int J Med Mushr 4:299–312

    Google Scholar 

  49. Mendonca M, Kasuya MC, Cadorin A, Vieira AJ (2005) Agaricus blazei cultivation for a living in Brazil. Mushroom grower’s handbook 2, Shiitake cultivation, Mush World, Seul Korea, 79th Issue, pp 247–257

    Google Scholar 

  50. Kwon JH (2006) There’s something about Agaricus blazei. (Murrill) ABM, Newsletter from Mush World 79th issue

    Google Scholar 

  51. Choi KW (2006) A Case Korea, Newsletter from Mush World 79th Issue, pp 38–44

    Google Scholar 

  52. Chen AW, Stamets P, Huang NL Han SH, (1999) Compost substrate fermentation and crop management for successful production of Agaricus blazei. In: Broderrick, Andrew, Tan-Nair (ed) 3rd international conference on mushroom biology and mushroom products. pp 211–217

    Google Scholar 

  53. Kwon HJ (2001) There is something about Agaricus blazei MURRLL(ABM) Newsletter from Mush World 79 Issue, pp 55–62

    Google Scholar 

  54. Chen AW, Stamets P and Huang NL (2004) Compost-substrate fermentation and alternatives for successful production of Agaricus blazei. World Society for Mushroom Biology and Mushroom Products, pp 76–88

    Google Scholar 

  55. Zhou X, Luo F, Lin L (2005) Chinese Patent, CN1593090

    Google Scholar 

  56. Iwade I (1985) Korean patent, KR8501418

    Google Scholar 

  57. Okubo J, Kuramoto K, Ohkubo S (1991) US Patent, US5048227

    Google Scholar 

  58. Iwata M, Furuya K (2002) US patent, US6378244

    Google Scholar 

  59. Isao H, Suyama K (1997) Japanese patent, JP9154401

    Google Scholar 

  60. Colauto NB, Reis da Silveira A, Ferreira da Eira A, Linde GA (2010) Alternative to peat for Agaricus brasiliensis yield. Bioresour Technol 101:712–716

    CAS  PubMed  Google Scholar 

  61. Wang JT, Wang Q, Han JR (2013) Yield, polysaccharides content and antioxidant properties of the mushroom Agaricus subrufescens produced on different substrates based on selected agricultural wastes. Sci Hortic 157:84–89

    CAS  Google Scholar 

  62. Win TT, Ohga S (2018) Study on the cultivation of Agaricus blazei (Almond mushroom) grown on compost mixed with selected agro-residues. Adv Microbiol 8:778–789

    CAS  Google Scholar 

  63. Rózsa S, Măniuțiu DN, Poșta G, Gocan TM, Andreica I, Bogdan I, Rózsa M, Lazăr V (2019) Influence of the culture substrate on the Agaricus blazei Murrill mushrooms vitamins content. Plan Theory 8:316. https://doi.org/10.3390/plants8090316

    Article  CAS  Google Scholar 

  64. Golak-Siwulska I, Kaluzewicz A, Spizewski T et al (2018) Bioactive compounds and medicinal properties of oyster mushrooms (Pleurotus sp). Folia Hortic 30(2):191201

    Google Scholar 

  65. Raman J, Jang KY, Oh YL (2021) Cultivation and nutritional value of prominent Pleurotus sp.: an overview mycobiology. Mycobiology 49(1):1–14. https://doi.org/10.1080/12298093.2020.1835142

    Article  Google Scholar 

  66. Choi KW (2004) The mushroom growers handbook 1 oyster mushroom cultivation. Part II, cultivation modes. Chapter 7. Shelf cultivation of oyster mushroom, p 153

    Google Scholar 

  67. Kwon H, Kang SW (2004) The mushroom growers handbook 1 oyster mushroom cultivation. Part II oyster mushroom. Chapter 7 cultivation modes. Log cultivation in temperate regions, p 135

    Google Scholar 

  68. Nguyen TB (2004) The mushroom growers handbook 1 oyster mushroom cultivation. Part II chapter 5. Substrates. Rubber tree sawdust, p 117

    Google Scholar 

  69. Christoper DC (2004) Coco lumber sawdust. The mushroom growers handbook 1 part II oyster mushroom cultivation. Chapter 5, pp 91–94

    Google Scholar 

  70. Masenda E (2004) The mushroom growers handbook 1 oyster mushroom cultivation. Part II, chapter 5. Substrates. Groundnut shells, p 120

    Google Scholar 

  71. Khan A (2004) The mushroom growers handbook 1 oyster mushroom cultivation. Part II, chapter 5. Substrates. Non sterilized wheat straw, p 123

    Google Scholar 

  72. Gabriel V (2004) The mushroom growers handbook 1. Oyster mushroom cultivation. Part II, chapter 5. Substrates. Cereal straw and corncobs, p. 87

    Google Scholar 

  73. Qian G (2004) The mushroom growers handbook 1 oyster mushroom cultivation. Part II, chapter 5. Substrates, p 108

    Google Scholar 

  74. Curvetto NR, Gonzales M, Figlas D, Delmastro SE (2004) The mushroom growers handbook 1 oyster mushroom cultivation. Part II, chapter 5. Substrates. Sunflower seed hulls, p 96

    Google Scholar 

  75. Taurachand D (2004) The mushroom growers handbook 1 oyster mushroom cultivation. Part II, chapter 5. Substrates. Sugarcane bagasse, p 112

    Google Scholar 

  76. Lin Z (2004) The mushroom growers handbook 1 oyster mushroom cultivation. Part II, chapter 5. Substrates. Juncao – Grass, p 101

    Google Scholar 

  77. Kwon H, Kang SW (2001) Log cultivation in the temperate regions. Mushroom growers’ handbook 1. Oyster mushroom cultivation part II. Oyster mushrooms. Chapter 7. Cultivation modes, pp 132–138

    Google Scholar 

  78. Kwon H, Kim BS (2001) Bag cultivation. Oyster mushroom cultivation part II. Oyster mushrooms. Chapter 7. Mushroom growers’ handbook 1, pp 139–152

    Google Scholar 

  79. Isikhuemhen OS, Frantisek N, Rytas V (2000) Cultivation studies on wild and hybrid strains of Pleurotus tuberregium (Fr.) sing on wheat straw substrate. World J Microbiol Biotechnol 16:431–435

    Google Scholar 

  80. Zhang R, Kjuijin L, Fadel JG (2002) Oyster mushroom cultivation with rice and wheat straw. Bioresour Technol 82:270–288

    Google Scholar 

  81. Mandeel QA, Al-Laith AA, Mohamed SA (2005) Cultivation of oyster mushrooms (Pleurotus sp.) on various lignocellulosic wastes. World J Microbiol Biotechnol 21:601–607

    CAS  Google Scholar 

  82. Curvetto NR, Delmastro SE, Devalis RJ (1997) A low cost method for decontaminating sunflower seed hull-based substrate in the cultivation of Plerotus edible mushrooms. Mushroom Res 6(1):25–28

    Google Scholar 

  83. Ashraf J, Ali MA, Ahmad W, Ayyub CM, Shafi J (2013) Effect of different substrate supplements on oyster mushroom (Pleurotus sp.) production. Food Sci Technol 1(3):44–51

    Google Scholar 

  84. Kurt S, Buyukalaca S (2010) Yield performances and changes in enzyme activities of Pleurotus sp. (P. ostreatus and P. sajor-caju) cultivated on different agricultural wastes. Bioresour Technol 101(9):2905–3298

    Google Scholar 

  85. Kwon H, Kim BS (2001) Bottle cultivation. Oyster mushroom cultivation part II. Oyster mushrooms. Chapter 9. Cultivation modes. Mushroom growers’ handbook 1, pp 166–171

    Google Scholar 

  86. Akiyoshi WD, Sakoda A, Suzuki M (2001) Biological efficiency and nutritional value of Pleurotus ostreatus cultivated on spent beer grain. Bioresour Technol 78(3):293–300

    Google Scholar 

  87. Saburo K (2003) Japanese patent, JP2003259729

    Google Scholar 

  88. Jo WS, Kim JS, Cho DH, Park SD, Jung HY (2008) Fruitbody development of Pleurotus ostreatus via bottle cultivation using recycled substrate. Mycobiology 36(3):157–160

    CAS  PubMed  Google Scholar 

  89. Yamauchi M, Sakamoto M, Yamada M, Hara H, Mat T, Shahabaldin T, Fadhil M, Hafifah F, Hanafi M (2019) Cultivation of oyster mushroom (Pleurotus ostreatus) on fermented moso bamboo sawdust. J King Saud Univ Sci 31:490–494

    Google Scholar 

  90. Kwon H, Kang SW, Cho SB (2001) Oyster mushroom cultivation part II. Oyster mushrooms. Chapter 6. Cultivation modes. Mushroom growing houses. Mushroom growers’ handbook 1, pp 129–132

    Google Scholar 

  91. Kawachi S, Meguro S (1991) Japanese patent, JP 3262418

    Google Scholar 

  92. Zhou P (2004) Chinese patent, CN 1528116

    Google Scholar 

  93. Ufimtsev AE (1999) Russian patent RU 2140729

    Google Scholar 

  94. Yoshikawa M (1989) Japanese patent, JP 1254606

    Google Scholar 

  95. Yoshikawa M, Oga Y (1989) Japanese patent, JP 1186802

    Google Scholar 

  96. Sato T, Yamanishi S (1989) Japanese patent, JP 1113307

    Google Scholar 

  97. Nakajima K (1989) Japanese patent, JP 1104114

    Google Scholar 

  98. Shiga N, Okubo E, Arai H, Kasahara F, Kobayashi M, Kuroiwa I (1986) Japanese patent, JP 61231992

    Google Scholar 

  99. Mushinskij AS, Bykova IA (2003) Russian patent, RU 2204236

    Google Scholar 

  100. Akashi H, Aoki M, Nakagawa S (1990) Japanese patent, JP 2255016

    Google Scholar 

  101. Takahata K, Mizumoto K (1996) Japanese patent, JP8322379

    Google Scholar 

  102. Kawasaki W, Yoshida M (1991) Japanese patent, JP 3244318

    Google Scholar 

  103. Liu D (1991) Chinese patent, CN 1052766

    Google Scholar 

  104. Hara H, Sonoda T, Suezaki T, Ito M (1991) Japanese patent, JP 3027280

    Google Scholar 

  105. Wu Z (1996) Chinese patent, CN 1125035

    Google Scholar 

  106. Qingrong W (2001) Chinese patent, CN1327714

    Google Scholar 

  107. Yoshihashi S, Sakauchi I, Akiyama Y, Ogawa I, Nonomura K (1986) Japanese patent, JP 61166374

    Google Scholar 

  108. Yamatsu K, Nogata T, Muraoka M Shibata Y, Kuhara S (1993) Japanese patent, JP 5153852

    Google Scholar 

  109. Guoyin J, Zhao Z, Tan Y (1992) Chinese patent, CN1059068

    Google Scholar 

  110. Tsukada H (1992) Japanese patent, JP4036120

    Google Scholar 

  111. Royse DJ, Baars J, Tan Q (2017) Current overview of mushroom production in the world. In: Zied DC, Pardo-Giménez A (eds) Edible and medicinal mushrooms: technology and applications. Wiley, New York, pp 5–12

    Google Scholar 

  112. Beetz A, Kustudia M (2004) Mushroom cultivation and marketing, horticulture production guide, NCAT Program Specialists, pp 1–23

    Google Scholar 

  113. Chen AW (2005) Mushrooms for the tropics growing shiitake mushrooms chapter 11 mushroom Grovers’ handbook 1. Part III. Mushrooms worldwide. Mushworld Press, p 236

    Google Scholar 

  114. Choi KW, Seugwoo K (2005) Shiitake growing houses – Korean case. Chapter 6 mushroom Grovers’ handbook 2. Part I Shiitake. Mushworld Press, p 178

    Google Scholar 

  115. Tokimoto T (2005) Shiitake growing houses – Korean case. Chapter 6 mushroom Grovers’ handbook 2. Part I Shiitake. Mushworld Press, p 46

    Google Scholar 

  116. Tokimoto K (2005) The mushroom growers’ handbook 2 Chapter 3. Shiitake log cultivation. Part I. Mushworld Press, pp 46–60

    Google Scholar 

  117. Campbell AC, Racjan M (1999) The commercial exploitation of the white rot fungus Lentinula edodes (Shiitake). Int Biodeter Biodegr 43:101–107

    Google Scholar 

  118. Kwon H, Kang SW, Cho CB (2004) Chapter 6. Gowth houses. The mushroom growers’ handbook 2 (2004) part II. Shiitake Mushworld Press, pp 129–134

    Google Scholar 

  119. Royse DJ, Bahler BD, Bahler CC (1990) Enhanced yield of Shiitake by saccharide amendment of the synthetic substrate. Appl Environ Mycrobiol 56(2):179–182

    Google Scholar 

  120. Rinker DL (1991) The influence of heat treatment, genotype and other cultural practices on the production of shiitake mushrooms on sawdust. In: Maher (ed) Science and cultivation of edible fungi. Balkema, Rotterdam, pp 497–502

    Google Scholar 

  121. Chen AW (2001) Cultivation of Lentinula edodes on synthetic logs. The mushroom growers’ newsletter, vol 10, pp 3–9

    Google Scholar 

  122. Royse DJ (1996) Yield stimulation of shiitake by millet supplementation of wood chip substrate. In: Royse DJ (ed) Proceedings of the second international conference on mushroom biology and mushroom products. University Park, Pennsylvania, pp 277–283

    Google Scholar 

  123. Watanabe K (2001) Current cultivation techniques of shiitake on sawdust media in Japan. 15th north American mushroom conference, Las Vegas, USA, Feb 2001

    Google Scholar 

  124. Chen A (2004) Chapter 6. Gowth houses. The mushroom growers’ handbook 1 part III. Mushrooms wordwhile, chapter11, growing shiitake mushrooms. Mushworld Press, pp 233–246

    Google Scholar 

  125. Chen A (2005) The mushroom growers’ handbook 2 part I. Mushrooms wordwhile, chapter 4. Shiitake bag cultivation. Mushworld Press, pp 73–87

    Google Scholar 

  126. Wasser SP, Bilay VT (2005) US Patent US2005097815A1

    Google Scholar 

  127. Ramírez-Carrillo R, Leal-Lara H (2003) The 4th ICMBMP 2003 culture conditions for increasing yields of Lentinula edodes. World Soc Mushroom Biol Mushroom Prod:1–12

    Google Scholar 

  128. (1978) British patent, GB2265153

    Google Scholar 

  129. Inoue S, Ayusawa S, Eda K (1997) Japanese patent JP9205878

    Google Scholar 

  130. Murata H, Yamauchi M, Tanaka H (1987) British patent, GB2181122

    Google Scholar 

  131. Kao Corporation (1978) British patent GB1522279

    Google Scholar 

  132. Kao Corporation (1979) British patent GB1557150

    Google Scholar 

  133. Frolov OK, Kyrychenko VV, Hryhorenko TO (2004) Ukrainian patent UA67499

    Google Scholar 

  134. Liu X (1999) Chinese patent CN 1207240

    Google Scholar 

  135. Bryan H (1994) Chinese patent CN1090966

    Google Scholar 

  136. Donoghue JD, Denison WC (1996) Commercial production of shiitake (Lentinula edodes) using whole-log chip of Quercus, Lithocarpus, and Acer. In: Royse D (ed) Proceedings of the 2 nd international conference on the mushroom biology and mushroom products. Penn. State University, University Park, Pennsylvania, pp 265–275

    Google Scholar 

  137. Royse DJ, Sanchez-Vazque JE (2001) Influence of substrate wood-chip particle size on shiitake (Lentinula edodes) yield. Bioresour Technol 76:229–233

    CAS  PubMed  Google Scholar 

  138. Boyle D (1998) Nutrional factors limiting the growth of Lentinula edodes and other white-rot fungi in wood. Soil Biol Biochem 30(6):817–823

    CAS  Google Scholar 

  139. Santana CC, Kasuya MCM, Vanetti MCD (2004) Production of Shiitake (Lentinula edodes) mushrooms in lignocellulosic residues. http://www.mushworld.com

  140. Royse D (2004) Specialty mushrooms. In: Mushroom fact sheet. Mushroom spawn laboratory, Department of Plant Pathology, Pennsylvania State University State Park

    Google Scholar 

  141. Royse DJ, Sanchez-Vazquez JE (2003) Influence of precipitated calcium carbonate (CaCO3) on Shiitake (Lentinula edodes) yield and mushroom size. Bioresour Technol 90:225–228

    CAS  PubMed  Google Scholar 

  142. Philippoussis A, Diamantopopulou P, Zervakis G (2003) Correlation of the properties of several lignocellulosic substrates to the crop performance of shiitake mushroom Lentinula edodes. World J Microbiol Biotechnol 19(6):551–557

    Google Scholar 

  143. Leifa AF, Pandey C, Soccol R (1999) Growth of Lentinus edodes on coffee industry residues and fruiting body production. In: Broderick A, Nair T (eds) 3rd international conference on mushroom biology & mushroom products, Sydney, pp 285–292

    Google Scholar 

  144. Singhal S, Rasane P, Kaur S, Garba U, Singh J, Raj N, Gupta N (2019) Mushroom cultivation, processing and value-added products: a patent based review recent patents on food. Nutr Agric 10(1):3–19

    Google Scholar 

Download references

Acknowledgement

The authors would like to express their gratitude to doc.dr.A.Gregori, Mycomedica Ltd., Podkoren 72, 4280 Kranjska Gora, Slovenia; Biotechnical faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nikšić, M., Podgornik, B.B., Berovic, M. (2022). Farming of Medicinal Mushrooms. In: Berovic, M., Zhong, JJ. (eds) Biochemical Engineering and Biotechnology of Medicinal Mushrooms. Advances in Biochemical Engineering/Biotechnology, vol 184. Springer, Cham. https://doi.org/10.1007/10_2021_201

Download citation

Publish with us

Policies and ethics