Abstract
The interaction of the human user with equipment and software is a central aspect of the work in the life science laboratory. The enhancement of the usability and intuition of software and hardware products, as well as holistic interaction solutions are a demand from all stakeholders in the scientific laboratory who desire more efficient workflows. Shorter training periods, parallelization of workflows, improved data integrity, and enhanced safety are only a few advantages innovative intuitive human-device-interfaces can bring. With recent advances in artificial intelligence (AI), the availability of smart devices, as well as unified communication protocols, holistic interaction solutions are on the rise. Future interaction in the laboratory will not be limited to pushing mechanical buttons on equipment. Instead, the interplay between voice, gestures, and innovative hard- and software components will drive interactions in the laboratory into a more streamlined future.
Graphical Abstract

Keywords
- Artificial intelligence
- Human–device interaction
- Natural user interfaces
- Smart devices
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
Parts of chapter “Natural User Interfaces in the Laboratory” have been adapted and revised from the doctoral thesis of J. Austerjost [1].
References
Austerjost J. Entwicklung und Evaluation innovativer Automations- und Digitalisierungslösungen für die chemische und biotechnologische Laborumgebung. https://portal.dnb.de/opac.htm?method=simpleSearch&cqlMode=true&query=idn%3D119365730X. Accessed 25 Aug 2021
Kauffman GB (1989) The making of modern chemistry. Nature 338:699–700
Olsen K (2012) The first 110 years of laboratory automation: technologies, applications, and the creative scientist. J Lab Autom 17:469–480. https://doi.org/10.1177/2211068212455631
Morschett H, Tenhaef N, Hemmerich J et al (2021) Robotic integration enables autonomous operation of laboratory scale stirred tank bioreactors with model-driven process analysis. Biotechnol Bioeng 118:2759–2769. https://doi.org/10.1002/bit.27795
Trapp W (1989) Von den Anfängen der Massebestimmung zur elektromechanischen Waage. In: Handbuch des Wägens. Vieweg+Teubner Verlag, Wiesbaden, pp 1–38
Pryce FN, Lang ML, Gill DWJ (2016) Weighing instruments. In: Oxford research encyclopedia of classics. Oxford University Press
Jenemann HR (1982) Zur Geschichte der mechanischen Laboratoriumswaage. Phys J 38:316–322. https://doi.org/10.1002/phbl.19820381008
Maiwald M (2020) The internet of things in the lab and in process – the digital transformation challenges for the laboratory 4.0. https://q-more.chemeurope.com/q-more-articles/313/the-internet-of-things-in-the-lab-and-in-process.html. Accessed 2 Aug 2021
Beussman DJ, Walters JP (2017) Complete LabVIEW-controlled HPLC lab: an advanced undergraduate experience. J Chem Educ 94:1527–1532. https://doi.org/10.1021/ACS.JCHEMED.7B00041
Thakur G, Hebbi V, Rathore AS (2020) An NIR-based PAT approach for real-time control of loading in protein A chromatography in continuous manufacturing of monoclonal antibodies. Biotechnol Bioeng 117:673–686. https://doi.org/10.1002/BIT.27236
Holmqvist A, Sellberg A (2016) A generic PAT software interface for on-line monitoring and control of chromatographic separation systems. Comput Aided Chem Eng 38:811–816. https://doi.org/10.1016/B978-0-444-63428-3.50140-5
Wheeler MJ (2007) Overview on robotics in the laboratory. Ann Clin Biochem 44:209–218. https://doi.org/10.1258/000456307780480873
Zucchelli P, Horak G, Skinner N (2021) Highly versatile cloud-based automation solution for the remote design and execution of experiment protocols during the COVID-19 pandemic. SLAS Technol 26:127–139. https://doi.org/10.1177/2472630320971218
Elliott C, Vijayakumar V, Zink W, Hansen R (2016) National Instruments LabVIEW: a programming environment for laboratory automation and measurement. JALA 12:17–24. https://doi.org/10.1016/J.JALA.2006.07.012
Williams AJ, Ekins S, Clark AM et al (2011) Mobile apps for chemistry in the world of drug discovery. Drug Discov Today 16:928–939. https://doi.org/10.1016/J.DRUDIS.2011.09.002
Austerjost J, Porr M, Riedel N et al (2018) Introducing a virtual assistant to the lab: a voice user Interface for the intuitive control of laboratory instruments. SLAS Technol Transl Life Sci Innov. https://doi.org/10.1177/2472630318788040
Naese JA, McAteer D, Hughes KD et al (2019) Use of augmented reality in the instruction of analytical instrumentation design. J Chem Educ 96:593–596. https://doi.org/10.1021/ACS.JCHEMED.8B00794
An J, Poly L-P, Holme TA (2019) Usability testing and the development of an augmented reality application for laboratory learning. J Chem Educ 97:97–105. https://doi.org/10.1021/ACS.JCHEMED.9B00453
Jones RB (2000) Life before and after computers in the general chemistry laboratory. J Chem Educ 77:1085–1087. https://doi.org/10.1021/ed077p1085
Rojas R (1997) Konrad Zuse’s legacy: the architecture of the Z1 and Z3. IEEE Ann Hist Comput 19:5–16. https://doi.org/10.1109/85.586067
Göde B, Holzmüller-Laue S, Rimane K et al (2007) Laboratory information management systems – an approach as an integration platform within flexible laboratory automation for application in life sciences. In: Proceedings of 3rd IEEE international conference on automation science and engineering. IEEE, pp 841–845. https://doi.org/10.1109/COASE.2007.4341780
Rubacha M, Rattan AK, Hosselet SC (2011) A review of electronic laboratory notebooks available in the market today. J Lab Autom 16:90–98. https://doi.org/10.1016/J.JALA.2009.01.002
Sagmeister P, Wechselberger P, Jazini M et al (2013) Soft sensor assisted dynamic bioprocess control: efficient tools for bioprocess development. Chem Eng Sci 96:190–198. https://doi.org/10.1016/J.CES.2013.02.069
Zhang D, Del Rio-Chanona EA, Petsagkourakis P, Wagner J (2019) Hybrid physics-based and data-driven modeling for bioprocess online simulation and optimization. Biotechnol Bioeng 116:2919–2930. https://doi.org/10.1002/BIT.27120
Ceruzzi PE (1981) The early computers of Konrad Zuse, 1935 to 1945. Ann Hist Comput 3:241–262. https://doi.org/10.1109/MAHC.1981.10034
Auerbach AA, Shaw RF, Eckert JP et al (1952) The binac. Proc IRE 40:12–29. https://doi.org/10.1109/JRPROC.1952.273922
Wadlow TA (1981) The xerox alto computer. BYTE Mag:58–68
Pouzin L. The origin of the shell. https://www.multicians.org/shell.html. Accessed 15 July 2021
Glementi E (1967) Chemistry and computers. Int J Quantum Chem 1:307–312. https://doi.org/10.1002/qua.560010636
Härle C, Barth M, Fay A (2018) Process simulation on single-board computers. In: IEEE international conference on automation science and engineering. IEEE Computer Society, pp 1548–1555
Ulbrich M, Aggarwal V (2019) The digital revolution is coming to chemical laboratories. J Bus Chem 2:76
Chng JJK, Patuwo MY (2021) Building a raspberry pi spectrophotometer for undergraduate chemistry classes. J Chem Educ 98:682–688. https://doi.org/10.1021/acs.jchemed.0c00987
Foster SW, Alirangues MJ, Naese JA et al (2019) A low-cost, open-source digital stripchart recorder for chromatographic detectors using a raspberry pi. J Chromatogr A 1603:396–400. https://doi.org/10.1016/j.chroma.2019.03.070
Barthels F, Barthels U, Schwickert M, Schirmeister T (2020) FINDUS: an open-source 3D printable liquid-handling workstation for laboratory automation in life sciences. SLAS Technol 25:190–199. https://doi.org/10.1177/2472630319877374
Gibbon GA (1996) A brief history of LIMS. Lab Autom Inf Manag 32:1–5. https://doi.org/10.1016/1381-141X(95)00024-K
Eisen K, Eifert T, Herwig C, Maiwald M (2020) Current and future requirements to industrial analytical infrastructure—part 1: process analytical laboratories. Anal Bioanal Chem 412:2027–2035. https://doi.org/10.1007/s00216-020-02420-2
Apte A, Paul S, Gade A, Compton C (2017) Accelerating clinical research using cloud technology. In: Cancer research. American Association for Cancer Research, p 2606
Kranjc T (2021) Introduction to laboratory software solutions and differences between them. In: Digital transformation of the laboratory. Wiley, pp 75–84
Hayden EC (2014) The automated lab. Nature 516:131–132. https://doi.org/10.1038/516131a
Emerald Cloud Lab: remote controlled life sciences lab. https://www.emeraldcloudlab.com/. Accessed 23 July 2021
Mandenius C-F, Brundin A (2008) Bioprocess optimization using design-of-experiments methodology. Biotechnol Prog 24:1191–1203. https://doi.org/10.1002/BTPR.67
Fricke J, Pohlmann K, Jonescheit NA et al (2013) Designing a fully automated multi-bioreactor plant for fast DoE optimization of pharmaceutical protein production. Biotechnol J 8:738–747. https://doi.org/10.1002/BIOT.201200190
Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130. https://doi.org/10.1016/S0169-7439(01)00155-1
MODDE® – Design of experiments software. Sartorius. https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/doe-software/modde. Accessed 23 July 2021
Bär H, Hochstrasser R, Papenfuß B (2012) SiLA: basic standards for rapid integration in laboratory automation. J Lab Autom 17:86–95. https://doi.org/10.1177/2211068211424550
Bernshausen J, Haller A, Holm T et al (2016) Namur modul type package – definition. atp Ed 58:72. https://doi.org/10.17560/atp.v58i01-02.554
Hannelius T, Salmenperä M, Kuikka S (2008) Roadmap to adopting OPC UA. In: IEEE int conf ind informatics. IEEE, pp 756–761. https://doi.org/10.1109/INDIN.2008.4618203
Networked laboratory equipment. SPECTARIS. https://www.spectaris.de/en/association/thespectarisindustries/networked-laboratory-equipment/. Accessed 23 July 2021
Chambers D (1994) Decentralized management of laboratory automation. J Automat Chem 16:135–137. https://doi.org/10.1155/S1463924694000143
Fernandez RAS, Sanchez-Lopez JL, Sampedro C et al (2016) Natural user interfaces for human-drone multi-modal interaction. In: 2016 international conference on unmanned aircraft systems, ICUAS 2016. IEEE, pp 1013–1022
Xu W, Lee E-J (2012) Human-computer natural user Interface based on hand motion detection and tracking. J Korea Multimed Soc 15:501–507. https://doi.org/10.9717/kmms.2012.15.4.501
Vuletic T, Duffy A, Hay L et al (2019) Systematic literature review of hand gestures used in human computer interaction interfaces. Int J Hum Comput Stud 129:74–94. https://doi.org/10.1016/j.ijhcs.2019.03.011
Mewes A, Hensen B, Wacker F, Hansen C (2017) Touchless interaction with software in interventional radiology and surgery: a systematic literature review. Int J Comput Assist Radiol Surg 12:291–305
Minagawa A, Odagiri J, Hotta Y et al (2014) Touchless user interface utilizing several types of sensing technology. Fujitsu Sci Tech J 50(1):34–39
Shan C (2010) Gesture control for consumer electronics. Springer, London, pp 107–128
Ionescu D, Ionescu B, Gadea C, Islam S (2012) Gesture control: a new and intelligent man-machine interface. In: Applied computational intelligence in engineering and information technology. Springer, Berlin, pp 331–354. https://doi.org/10.1007/978-3-642-28305-5_26
Scholl PM, Wille M, Van Laerhoven K (2015) A laboratory system for capturing and guiding experiments. In: UbiComp 2015 – proceedings of the 2015 ACM international joint conference on pervasive and ubiquitous computing. ACM, pp 589–599
Lab balance stabilization & automatic levelling. Cubis® II. Sartorius. https://www.sartorius.com/en/products/weighing/laboratory-balances/cubis-ii/highlights. Accessed 20 July 2021
Raucci U, Valentini A, Pieri E et al (2021) Voice-controlled quantum chemistry. Nat Comput Sci 1:42–45. https://doi.org/10.1038/s43588-020-00012-9
C1000 Touch Thermal Cycler. Life science research. Bio-Rad. https://www.bio-rad.com/de-de/product/c1000-touch-thermal-cycler?ID=LGTW9415. Accessed 26 July 2021
Introducing our new ultra-low temperature user interface. Thermo Fisher Scientific – DE. https://www.thermofisher.com/de/de/home/products-and-services/promotions/life-science/introducing-ultra-low-temperature-user-interface.html. Accessed 26 July 2021
MOBILE DEVICE: definition in the Cambridge english dictionary. https://dictionary.cambridge.org/us/dictionary/english/mobile-device. Accessed 24 Jun 2021
Was ist ein mobiles Endgerät? https://www.mobile-zeitgeist.com/was-ist-ein-mobiles-endgeraet/. Accessed 29 Oct 2018
Mobile endgeräte. Munich Digital Institute. https://www.munich-digital.com/insights/fachartikel/was-ist-ein-mobiles-endgeraet. Accessed 29 July 2021
Smartphone: mächtige sensoren. ZEIT ONLINE. https://www.zeit.de/digital/mobil/2014-05/smartphone-sensoren-iphone-samsung. Accessed 30 July 2021
81% der Internetnutzer gehen per Handy oder Smartphone ins Internet. https://www.destatis.de/DE/PresseService/Presse/Pressemitteilungen/2016/12/PD16_430_63931pdf.pdf?__blob=publicationFile. Accessed 12 July 2021
Tablets, PCs und smartphones – Prognostizierter Absatz bis 2024. Statista. https://de.statista.com/statistik/daten/studie/256337/umfrage/prognose-zum-weltweiten-absatz-von-tablets-pcs-und-smartphones/. Accessed 2 Aug 2021
Absatz von Notebooks weltweit bis 2021. Statista. https://de.statista.com/statistik/daten/studie/784224/umfrage/weltweite-absatzzahlen-von-notebooks/. Accessed 2 Aug 2021
Desktop-PC – Weltweiter Absatz 2009–2024. Statista. https://de.statista.com/statistik/daten/studie/160874/umfrage/prognose-zum-weltweiten-absatz-von-desktop-pc-seit-2009/. Accessed 2 Aug 2021
Goadrich MH, Rogers MP (2011) Smart smartphone development. In: Proc 42nd ACM tech symp comput sci educ – SIGCSE ‘11. ACM, p 607. https://doi.org/10.1145/1953163.1953330
Rossing JP, Miller WM, Cecil AK, Stamper SE (2012) iLearning: the future of higher education? Student perceptions on learning with mobile tablets. J Scholarsh Teach Learn 12:1–26
Flatt H, Koch N, Röcker C et al (2015) A context-aware assistance system for maintenance applications in smart factories based on augmented reality and indoor localization. In: IEEE int conf emerg technol fact autom ETFA 2015-octob. IEEE, pp 1–4. https://doi.org/10.1109/ETFA.2015.7301586
McQueen A, Cress C, Tothy A (2012) Using a tablet computer during pediatric procedures a case series and review of the “apps”. Pediatr Emerg Care 28:712–714. https://doi.org/10.1097/PEC.0b013e31825d24eb
Waldrop MM (2016) The chips are down for Moore’s law. Nature 530:144–147. https://doi.org/10.1038/530144a
Cecchinato ME, Cox AL, Bird J (2015) Smartwatches: the good, the bad and the ugly? In: Proc 33rd annu ACM conf ext abstr hum factors comput syst – CHI EA ’15. ACM, pp 2133–2138. https://doi.org/10.1145/2702613.2732837
Syberfeldt A, Danielsson O, Gustavsson P (2017) Augmented reality smart glasses in the smart factory: product evaluation guidelines and review of available products. IEEE Access 5:9118–9130. https://doi.org/10.1109/ACCESS.2017.2703952
Gan SK-E, Poon J-K (2016) The world of biomedical apps: their uses, limitations, and potential. Sci Phone Apps Mob Devices 2:6. https://doi.org/10.1186/s41070-016-0009-2
Contreras-naranjo JC, Wei Q, Ozcan A (2016) Mobile phone-based microscopy, sensing, and diagnostics. IEEE J Select Topics Quantum Electron 22. https://doi.org/10.1109/JSTQE.2015.2478657
Libman D, Huang L (2013) Chemistry on the go: review of chemistry apps on smartphones. J Chem Educ 90:320–325. https://doi.org/10.1021/ed300329e
Austerjost J, Marquard D, Raddatz L et al (2017) A smart device application for the automated determination of E. coli colonies on agar plates. Eng Life Sci 17:959–966. https://doi.org/10.1002/elsc.201700056
Long KD, Yu H, Cunningham BT (2014) Smartphone instrument for portable enzyme- linked immunosorbent assays. Biomed Opt Express 5:3792. https://doi.org/10.1364/BOE.5.003792
Liu Y, Liu Q, Chen S et al (2015) Surface plasmon resonance biosensor based on smart phone platforms. Sci Rep 5:12864. https://doi.org/10.1038/srep12864
Williams AJ, Pence HE (2011) Smart phones, a powerful tool in the chemistry classroom. J Chem Educ 88:683–686
Libman D, Huang L (2013) Chemistry on the go: review of chemistry apps on smartphones. J Chem Educ 90:320–325
Krieger E, Vriend G (2014) YASARA view – molecular graphics for all devices – from smartphones to workstations. Bioinformatics 30:2981–2982. https://doi.org/10.1093/bioinformatics/btu426
Biological buffer calculator on the app store. https://itunes.apple.com/us/app/biological-buffer-calculator/id408368126?mt=8. Accessed 23 July 2021
Periodensystem – android-apps auf google play. https://play.google.com/store/search?q=periodensystem&c=apps. Accessed 23 July 2021
Baumgart DC (2011) Smartphones in clinical practice, medical education, and research. Arch Intern Med 171:1294. https://doi.org/10.1001/archinternmed.2011.320
Clark AM, Ekins S, Williams AJ (2012) Redefining cheminformatics with intuitive collaborative mobile apps. Mol Inform 31:569–584. https://doi.org/10.1002/minf.201200010
Warr WA (2015) App-etite for change. J Comput Aided Mol Des 29:297–303. https://doi.org/10.1007/s10822-014-9824-1
Baker M (2016) 1,500 scientists lift the lid on reproducibility. Nature 533:452–454. https://doi.org/10.1038/533452a
Wilkinson MD, Dumontier M, Aalbersberg IJ et al (2016) The FAIR guiding principles for scientific data management and stewardship. Sci Data 3:1–9. https://doi.org/10.1038/sdata.2016.18
Van Dyke AR, Smith-Carpenter J (2017) Bring your own device: a digital notebook for undergraduate biochemistry laboratory using a free, cross-platform application. J Chem Educ 94:656–661. https://doi.org/10.1021/acs.jchemed.6b00622
Guerrero S, Dujardin G, Cabrera-Andrade A et al (2016) Analysis and implementation of an electronic laboratory notebook in a biomedical research institute. PLoS One 11. https://doi.org/10.1371/journal.pone.0160428
Bird CL, Willoughby C, Frey JG (2013) Laboratory notebooks in the digital era: the role of ELNs in record keeping for chemistry and other sciences. Chem Soc Rev 42:8157. https://doi.org/10.1039/c3cs60122f
Promega protocols on the app store. https://itunes.apple.com/us/app/promega-protocols/id947048912?mt=8. Accessed 24 July 2021
Avanti JXN-26 stand-Kühlzentrifugen. Beckman Coulter. https://www.beckman.de/centrifuges/high-speed/avanti-jxn-26. Accessed 24 July 2021
QuantStudio 3 real-time PCR system – DE. https://www.thermofisher.com/de/de/home/life-science/pcr/real-time-pcr/real-time-pcr-instruments/quantstudio-3-5-real-time-pcr-system/quantstudio-3.html. Accessed 24 July 2021
LyoBeta. Telstar life science solutions. https://www.telstar-lifesciences.com/Technologies/Freeze Drying Systems/Laboratory Freeze Dryers/LyoBeta.htm. Accessed 24 July 2021
Mobile Funktionen für LIMS. Abbott Informatics. https://www.informatics.abbott/int/de/offerings/mobile. Accessed 24 July 2021
Connecting lab instruments: interface strategies depend upon compliance requirements. https://www.labmanager.com/laboratory-technology/2018/07/connecting-lab-instruments-interface-strategies-depend-upon-compliance-requirements. Accessed 6 July 2021
Schmid I, Aschoff J (2017) A scalable software framework for data integration in bioprocess development. Eng Life Sci 17:1159–1165. https://doi.org/10.1002/elsc.201600008
Miller BA, Nixon T, Tai C, Wood MD (2001) Home networking with universal plug and play. IEEE Commun Mag 39:104–109. https://doi.org/10.1109/35.968819
Remple TB (2003) USB on-the-go interface for portable devices. In: 2003 IEEE international conference on consumer electronics, 2003. ICCE. IEEE, pp 8–9
Gauglitz G (2018) Lab 4.0: SiLA or OPC UA. Anal Bioanal Chem 410:5093–5094
Ozcan A (2014) Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab Chip 14(17):3187–3194. https://doi.org/10.1039/c4lc00010b
Ceylan Koydemir H, Ozcan A (2018) Smartphones democratize advanced biomedical instruments and foster innovation. Clin Pharmacol Ther 104:38–41. https://doi.org/10.1002/cpt.1081
Nemcova A, Jordanova I, Varecka M et al (2020) Monitoring of heart rate, blood oxygen saturation, and blood pressure using a smartphone. Biomed Signal Process Control 59. https://doi.org/10.1016/j.bspc.2020.101928
Gopinath SCB, Tang TH, Chen Y et al (2014) Bacterial detection: from microscope to smartphone. Biosens Bioelectron 60:332–342
Coulibaly JT, Ouattara M, D’Ambrosio MV et al (2016) Accuracy of mobile phone and handheld light microscopy for the diagnosis of schistosomiasis and intestinal protozoa infections in Côte d’Ivoire. PLoS Negl Trop Dis 10:e0004768. https://doi.org/10.1371/journal.pntd.0004768
Contreras-Naranjo JC, Wei Q, Ozcan A (2016) Mobile phone-based microscopy, sensing, and diagnostics. IEEE J Sel Top Quantum Electron 22:1–14. https://doi.org/10.1109/JSTQE.2015.2478657
D’Ambrosio MV, Bakalar M, Bennuru S et al (2015) Point-of-care quantification of blood-borne filarial parasites with a mobile phone microscope. Sci Transl Med 7:286re4. https://doi.org/10.1126/scitranslmed.aaa3480
Bates M, Zumla A (2015) Rapid infectious diseases diagnostics using smartphones. Ann Transl Med 3:215. https://doi.org/10.3978/j.issn.2305-5839.2015.07.07
Tseng D, Mudanyali O, Oztoprak C et al (2010) Lensfree microscopy on a cellphone. Lab Chip 10:1787–1792. https://doi.org/10.1039/c003477k
Breslauer DN, Maamari RN, Switz NA et al (2009) Mobile phone based clinical microscopy for global health applications. PLoS One 4:e6320. https://doi.org/10.1371/journal.pone.0006320
Preechaburana P, Gonzalez MC, Suska A, Filippini D (2012) Surface Plasmon resonance chemical sensing on cell phones. Angew Chem 124:11753–11756. https://doi.org/10.1002/ange.201206804
Lillehoj PB, Huang MC, Truong N, Ho CM (2013) Rapid electrochemical detection on a mobile phone. Lab Chip 13:2950–2955. https://doi.org/10.1039/c3lc50306b
Ame SM, Utzinger J, Bogoch II et al (2013) Mobile phone microscopy for the diagnosis of soil-transmitted helminth infections: a proof-of-concept study. Am J Trop Med Hyg 88:626–629. https://doi.org/10.4269/ajtmh.12-0742
Wei Q, Qi H, Luo W et al (2013) Fluorescent imaging of single nanoparticles and viruses on a smart phone. ACS Nano 7:9147–9155. https://doi.org/10.1021/nn4037706
Kadimisetty K, Song J, Doto AM et al (2018) Fully 3D printed integrated reactor array for point-of-care molecular diagnostics. Biosens Bioelectron 109:156–163. https://doi.org/10.1016/J.BIOS.2018.03.009
Manzanares Palenzuela CL, Pumera M (2018) (Bio)analytical chemistry enabled by 3D printing: sensors and biosensors. TrAC Trends Anal Chem 103:110–118. https://doi.org/10.1016/J.TRAC.2018.03.016
Lee DJ, Mai J, Huang TJ (2018) Microfluidic approaches for cell-based molecular diagnosis. Biomicrofluidics 12:051501. https://doi.org/10.1063/1.5030891
Erickson D, O’Dell D, Jiang L et al (2014) Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics. Lab Chip 14:3159. https://doi.org/10.1039/C4LC00142G
Zhu H, Sencan I, Wong J et al (2013) Cost-effective and rapid blood analysis on a cell-phone. Lab Chip 13:1282–1288. https://doi.org/10.1039/c3lc41408f
Vashist SK, Luong JHT (2018) Smartphone-based immunoassays. In: Handbook of immunoassay technologies. Academic Press, pp 433–453
Coskun AF, Wong J, Khodadadi D et al (2013) A personalized food allergen testing platform on a cellphone. Lab Chip 13:636–640. https://doi.org/10.1039/c2lc41152k
You DJ, Park TS, Yoon JY (2013) Cell-phone-based measurement of TSH using Mie scatter optimized lateral flow assays. Biosens Bioelectron 40:180–185. https://doi.org/10.1016/j.bios.2012.07.014
Guner H, Ozgur E, Kokturk G et al (2017) A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection. Sensors Actuators B Chem 239:571–577. https://doi.org/10.1016/j.snb.2016.08.061
Zhang D, Liu Q (2016) Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens Bioelectron 75:273–284
Roda A, Michelini E, Zangheri M et al (2016) Smartphone-based biosensors: a critical review and perspectives. Trends Anal Chem 79:317–325. https://doi.org/10.1016/j.trac.2015.10.019
Quesada-González D, Merkoçi A (2017) Mobile phone-based biosensing: An emerging “diagnostic and communication” technology. Biosens Bioelectron 92:549–562. https://doi.org/10.1016/J.BIOS.2016.10.062
Rateni G, Dario P, Cavallo F (2017) Smartphone-based food diagnostic technologies: a review. Sensors (Switzerland) 17:1453
Sim J-Z, Nguyen P-V, Lee H-K, Gan SK (2015) GelApp: mobile gel electrophoresis analyser. Nat Methods Appl Notes. https://doi.org/10.1038/an964
Fogel I, Sagi D (1989) Gabor filters as texture discriminator. Biol Cybern 61:103–113. https://doi.org/10.1007/BF00204594
Priye A, Wong S, Bi Y et al (2016) Lab-on-a-drone: toward pinpoint deployment of smartphone-enabled nucleic acid-based diagnostics for mobile health care. Anal Chem 88:4651–4660. https://doi.org/10.1021/acs.analchem.5b04153
Porr M, Marquard D, Stanislawski N et al (2019) smartLAB – working interactively in a digitalized laboratory environment. Chemie-Ingenieur-Technik 91:285–293. https://doi.org/10.1002/cite.201800090
Iqbal MZ, Campbell A (2020) The emerging need for touchless interaction technologies. Interactions 27:51–52
Abdelnasser H, Youssef M, Harras KA (2015) WiGest: a ubiquitous WiFi-based gesture recognition system. In: Proceedings – IEEE INFOCOM. IEEE, pp 1472–1480
Berman S, Stern H (2012) Sensors for gesture recognition systems. IEEE Trans Syst Man Cybern Part C Appl Rev 42:277–290. https://doi.org/10.1109/TSMCC.2011.2161077
Google AI blog: on-device, real-time hand tracking with MediaPipe. https://ai.googleblog.com/2019/08/on-device-real-time-hand-tracking-with.html. Accessed 21 July 2021
Alvarez-Lopez F, Maina MF, Saigí-Rubió F (2019) Use of commercial off-the-shelf devices for the detection of manual gestures in surgery: systematic literature review. J Med Internet Res 21:e11925. https://doi.org/10.2196/11925
Bockhacker M, Syrek H, Elstermann Von Elster M et al (2020) Evaluating usability of a touchless image viewer in the operating room. Appl Clin Inform 11:88–94. https://doi.org/10.1055/s-0039-1701003
Wojtczyk M, Panin G, Lenz C et al (2008) A vision based human robot interface for robotic in a biotech laboratory. In: Proceedings of the 4th ACM/IEEE international conference on human-robot interaction, HRI’09. Springer, pp 309–310
Jagodziński P, Wolski R (2015) Assessment of application technology of natural user interfaces in the creation of a virtual chemical laboratory. J Sci Educ Technol 24:16–28. https://doi.org/10.1007/S10956-014-9517-5
Liu H (2016) Intelligent strategies for mobile robotics in laboratory automation. University of Rostock
Cohen MH, Giangola JP, Balogh J (2004) Voice user interface design. Addison-Wesley
Lu X, Li S, Fujimoto M (2020) Automatic speech recognition. Springer, London
Liddy E (2001) Natural language processing. In: Encyclopedia of library and information science2nd edn. Marcel Decker
Quesada W, Lautenbach B (2017) Programming voice interfaces. O'Reilly Media
Blackley SV, Huynh J, Wang L et al (2019) Speech recognition for clinical documentation from 1990 to 2018: a systematic review. J Am Med Inform Assoc 26:324–338. https://doi.org/10.1093/jamia/ocy179
Sezgin E, Huang Y, Ramtekkar U, Lin S (2020) Readiness for voice assistants to support healthcare delivery during a health crisis and pandemic. NPJ Digit Med 3:1–4. https://doi.org/10.1038/s41746-020-00332-0
Jadczyk T, Wojakowski W, Tendera M et al (2021) Artificial intelligence can improve patient management at the time of a pandemic: the role of voice technology. J Med Internet Res 23:e22959. https://doi.org/10.2196/22959
Bérubé C, Schachner T, Keller R et al (2021) Voice-based conversational agents for the prevention and management of chronic and mental health conditions: systematic literature review. J Med Internet Res 23. https://doi.org/10.2196/25933
Perkel JM (2020) Alexa, do science! Voice-activated assistants hit the lab bench. Nature 582:303–304. https://doi.org/10.1038/d41586-020-01683-0
Cambre J, Liu Y, Taylor RE, Kulkarni C (2019) Vitro: designing a voice assistant for the scientific lab workplace. In: DIS 2019 – proceedings of the 2019 ACM designing interactive systems conference. ACM, New York, pp 1531–1542
Speech recognition and digital assistants in LIMS – LabVantage. https://www.labvantage.com/speech-recognition-and-digital-assistants-in-lims/. Accessed 23 July 2021
QuantStudio 6 und 7 pro real-time-pcr-systeme. Thermo Fisher Scientific – DE. https://www.thermofisher.com/de/de/home/life-science/pcr/real-time-pcr/real-time-pcr-instruments/quantstudio-systems/models/quantstudio-6-7-pro.html. Accessed 23 July 2021
myNEB®. NEB. https://international.neb.com/myneb/myneb. Accessed 23 July 2021
Scientists are turning Alexa into an automated lab helper. MIT technology review. https://www.technologyreview.com/2017/05/03/68492/scientists-are-turning-alexa-into-an-automated-lab-helper/. Accessed 23 July 2021
HelixAI – voice powered digital laboratory assistants for scientific laboratories. https://www.askhelix.io/. Accessed 23 July 2021
LabTwin – voice and AI powered digital lab assistant. https://www.labtwin.com/. Accessed 23 July 2021
LabVoice. About. https://www.labvoice.ai/about. Accessed 23 July 2021
Elkins K, Chun J (2020) Can GPT-3 pass a writer’s turing test? J Cult Anal 1:17212. https://doi.org/10.22148/001c.17212
Amazon does the unthinkable and sends Alexa recordings to the wrong person. https://www.forbes.com/sites/kevinmurnane/2018/12/20/amazon-does-the-unthinkable-and-sends-alexa-recordings-to-the-wrong-person/?sh=2255d08b3ca5. Accessed 28 July 2021
Sutherland IE (1968) A head-mounted three dimensional display. In: Proceedings of the December 9–11, 1968, fall joint computer conference, part I on – AFIPS ‘68 (fall, part I). ACM Press, New York, p 757
Ma JY, Choi JS (2007) The virtuality and reality of augmented reality. J Multimed 2:32–37. https://doi.org/10.4304/jmm.2.1.32-37
Blyth C (2018) Immersive technologies and language learning. Foreign Lang Ann 51:225–232. https://doi.org/10.1111/flan.12327
Reif R, Günthner WA (2009) Pick-by-vision: augmented reality supported order picking. Vis Comput 25:461–467. https://doi.org/10.1007/s00371-009-0348-y
Henderson SJ, Feiner S (2009) Evaluating the benefits of augmented reality for task localization in maintenance of an armored personnel carrier turret. In: Science and technology proceedings – IEEE 2009 international symposium on mixed and augmented reality, ISMAR 2009. IEEE, pp 135–144
Huck-Fries V, Wiegand F, Klinker K et al (2017) Datenbrillen in der Wartung: evaluation verschiedener eingabemodalitäten bei servicetechnikern. Inform 2017:78464. https://doi.org/10.18420/in2017
Cortazar B, Koydemir HC, Tseng D et al (2015) Quantification of plant chlorophyll content using Google Glass. Lab Chip 15:1708–1716. https://doi.org/10.1039/c4lc01279h
Hu G, Chen L, Okerlund J, Shaer O (2015) Exploring the use of Google Glass in wet laboratories. Ext Abstr ACM CHI’15 Conf Hum Factors Comput Syst 2:2103–2108. https://doi.org/10.1145/2702613.2732794
Austerjost J, Bargholz M, Porr M et al (2019) A flexible IT infrastructure for the integration of smartglasses into the brewing laboratory as a digital support for standard analysis workflows. Brew Sci 72. https://doi.org/10.23763/BrSc18-20austerjost
Feng S, Caire R, Cortazar B et al (2014) Immunochromatographic diagnostic test analysis using google glass. ACS Nano 8:3069–3079. https://doi.org/10.1021/nn500614k
Zhang YS, Busignani F, Ribas J et al (2016) Google glass-directed monitoring and control of microfluidic biosensors and actuators. Sci Rep 6:22237. https://doi.org/10.1038/srep22237
O’Connor M, Deeks HM, Dawn E et al (2018) Sampling molecular conformations and dynamics in a multiuser virtual reality framework. Sci Adv 4:eaat2731. https://doi.org/10.1126/sciadv.aat2731
Patel KK, Patel SM (2016) Internet of things-IOT: definition, characteristics, architecture, enabling technologies, application & future challenges. Int J Eng Sci Comput 6(5):6122–6131
Santhanam G, Ryu SI, Yu BM et al (2006) A high-performance brain-computer interface. Nature 442:195–198. https://doi.org/10.1038/nature04968
Perry TS (2020) Augmented reality in a contact lens: it’s the real deal. https://spectrum.ieee.org/ar-in-a-contact-lens-its-the-real-deal. Accessed 12 Oct 2021
Acknowledgements
We gratefully acknowledge Janina Dürr for figure preparation and proof-reading the manuscript.
Financial Support
S.R. is supported by the German Research Foundation (DFG SFB 1002 INF).
T.M. is supported by the DZHK (German Center for Cardiovascular Research) and the German Federal Ministry for Science and Education (IndiHEART; 161L0250A).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Söldner, R., Rheinländer, S., Meyer, T., Olszowy, M., Austerjost, J. (2022). Human–Device Interaction in the Life Science Laboratory. In: Beutel, S., Lenk, F. (eds) Smart Biolabs of the Future. Advances in Biochemical Engineering/Biotechnology, vol 182. Springer, Cham. https://doi.org/10.1007/10_2021_183
Download citation
DOI: https://doi.org/10.1007/10_2021_183
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-12581-2
Online ISBN: 978-3-031-12582-9
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)