Skip to main content

Parameters Influencing Lipase-Catalyzed Glycolipid Synthesis by (Trans-)Esterification Reaction

  • Chapter
  • First Online:
Biosurfactants for the Biobased Economy

Abstract

Glycolipids are biodegradable, non-toxic surfactants with a wide range of applications. Enzymatic esterification or transesterification facilitated in reaction media of low water activity is a reaction strategy for the production of tailor-made glycolipids as a high structural diversity can be achieved. Organic solvents, ionic liquids, and deep eutectic solvents have been applied as reaction media. However, several challenges need to be addressed for efficient (trans-)esterification reactions, especially for the lipophilization of polar substrates. Therefore, crucial parameters in (trans-)esterification reactions in conventional and non-conventional media are discussed and compared in this review with a special focus on glycolipid synthesis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker IJA et al (2000) Sugar fatty acid ester surfactants: structure and ultimate aerobic biodegradability. J Surfactant Deterg 3(1):1–11. https://doi.org/10.1007/s11743-000-0107-2

    Article  CAS  Google Scholar 

  2. Dörjes J (1984) Experimentelle Untersuchungen zur Wirkung von Rohöl und Rohöl/Tensid-Gemischen im Ökosystem Wattenmeer. XVI. Zusammenfassung und Schlußfolgerungen. Senckenbergiana Maritima 16:267–271

    Google Scholar 

  3. Hirata Y, Ryu M, Igarashi K et al (2009) Natural synergism of acid and lactone type mixed sophorolipids in interfacial activities and cytotoxicities. J Oleo Sci 58(11):565–572. https://doi.org/10.5650/jos.58.565

    Article  PubMed  CAS  Google Scholar 

  4. Hirata Y, Ryu M, Oda Y et al (2009) Novel characteristics of sophorolipids, yeast glycolipid biosurfactants, as biodegradable low-foaming surfactants. J Biosci Bioeng 108(2):142–146. https://doi.org/10.1016/j.jbiosc.2009.03.012

    Article  PubMed  CAS  Google Scholar 

  5. Lima TMS et al (2011) Biodegradability of bacterial surfactants. Biodegradation 22(3):585–592. https://doi.org/10.1007/s10532-010-9431-3

    Article  PubMed  CAS  Google Scholar 

  6. Poremba K et al (1991) Toxicity testing of synthetic and biogenic surfactants on marine microorganisms. Environ Toxicol Water Qual 6(2):157–163. https://doi.org/10.1002/tox.2530060205

    Article  CAS  Google Scholar 

  7. Johann S et al (2016) Mechanism-specific and whole-organism ecotoxicity of mono-rhamnolipids. Sci Total Environ 548–549:155–163. https://doi.org/10.1016/j.scitotenv.2016.01.066

    Article  PubMed  CAS  Google Scholar 

  8. Raza ZA, Khalid ZM, Banat IM (2009) Characterization of rhamnolipids produced by a Pseudomonas aeruginosa mutant strain grown on waste oils. J Environ Sci Health A Tox Hazard Subst Environ Eng 44(13):1367–1373. https://doi.org/10.1080/10934520903217138

    Article  PubMed  CAS  Google Scholar 

  9. Zhang X et al (2015) Characterization of enzymatically prepared sugar medium-chain fatty acid monoesters. J Sci Food Agric 95(8):1631–1637. https://doi.org/10.1002/jsfa.6863

    Article  PubMed  CAS  Google Scholar 

  10. Zhao L et al (2015) In vitro antibacterial activities and mechanism of sugar fatty acid esters against five food-related bacteria. Food Chem. https://doi.org/10.1016/j.foodchem.2015.04.108

  11. Hollenbach R, Völp AR et al (2020) Interfacial and foaming properties of tailor-made glycolipids – influence of the hydrophilic head group and functional groups in the hydrophobic tail. Molecules 25(17):3797. https://doi.org/10.3390/molecules25173797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ji S et al (2020) Direct and selective enzymatic synthesis of trehalose unsaturated fatty acid diesters and evaluation of foaming and emulsifying properties. Enzyme Microb Technol:109516. https://doi.org/10.1016/j.enzmictec.2020.109516

  13. Recke VK et al (2013) Lipase-catalyzed acylation of microbial mannosylerythritol lipids (biosurfactants) and their characterization. Carbohydr Res 373:82–88. https://doi.org/10.1016/j.carres.2013.03.013

    Article  PubMed  CAS  Google Scholar 

  14. Lourith N, Kanlayavattanakul M (2009) Natural surfactants used in cosmetics: glycolipids. Int J Cosmet Sci 31(4):255–261. https://doi.org/10.1111/j.1468-2494.2009.00493.x

    Article  PubMed  CAS  Google Scholar 

  15. Shete AM et al (2006) Mapping of patents on bioemulsifier and biosurfactant: a review. J Sci Ind Res 65(2):91–115

    Google Scholar 

  16. Younes M et al (2018) Refined exposure assessment of sucrose esters of fatty acids (E 473) from its use as a food additive. EFSA J 16(1):1–22. https://doi.org/10.2903/j.efsa.2018.5087

    Article  CAS  Google Scholar 

  17. Perinelli DR et al (2018) Lactose oleate as new biocompatible surfactant for pharmaceutical applications. Eur J Pharm Biopharm 124(124):55–62. https://doi.org/10.1016/j.ejpb.2017.12.008

    Article  PubMed  CAS  Google Scholar 

  18. Harada S et al (2007) A broad antiviral neutral glycolipid, fattiviracin FV-8, is a membrane fluidity modulator. Cell Microbiol 9(1):196–203. https://doi.org/10.1111/j.1462-5822.2006.00781.x

    Article  PubMed  CAS  Google Scholar 

  19. Rodrigues L et al (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57(4):609–618. https://doi.org/10.1093/jac/dkl024

    Article  PubMed  CAS  Google Scholar 

  20. De Souza LM et al (2012) Structural characterization and anti-HSV-1 and HSV-2 activity of glycolipids from the marine algae Osmundaria obtusiloba isolated from southeastern Brazilian coast. Mar Drugs 10(4):918–931. https://doi.org/10.3390/md10040918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bornaghi LF, Poulsen SA (2005) Microwave-accelerated Fischer glycosylation. Tetrahedron Lett 46(20):3485–3488. https://doi.org/10.1016/j.tetlet.2005.03.126

    Article  CAS  Google Scholar 

  22. Oikawa M et al (2004) One-pot preparation and activation of glycosyl trichloroacetimidates: operationally simple glycosylation induced by combined use of solid-supported, reactivity-opposing reagents. Tetrahedron Lett 45(21):4039–4042. https://doi.org/10.1016/j.tetlet.2004.03.170

    Article  CAS  Google Scholar 

  23. Roy B, Mukhopadhyay B (2007) Sulfuric acid immobilized on silica: an excellent catalyst for Fischer type glycosylation. Tetrahedron Lett 48(22):3783–3787. https://doi.org/10.1016/j.tetlet.2007.03.165

    Article  CAS  Google Scholar 

  24. Dolman BM, Wang F, Winterburn JB (2019) Integrated production and separation of biosurfactants. Process Biochem 83:1–8. https://doi.org/10.1016/j.procbio.2019.05.002

    Article  CAS  Google Scholar 

  25. Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24(11):509–515. https://doi.org/10.1016/j.tibtech.2006.09.005

    Article  PubMed  CAS  Google Scholar 

  26. Grüninger J, Delavault A, Ochsenreither K (2019) Enzymatic glycolipid surfactant synthesis from renewables. Process Biochem 87:45–54. https://doi.org/10.1016/j.procbio.2019.09.023

    Article  CAS  Google Scholar 

  27. Hollenbach R, Bindereif B et al (2020) Optimization of glycolipid synthesis in hydrophilic deep eutectic solvents. Front Bioeng Biotechnol 8:382. https://doi.org/10.3389/fbioe.2020.00382

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hollenbach R, Ochsenreither K, Syldatk C (2020) Enzymatic synthesis of glucose monodecanoate in a hydrophobic deep eutectic solvent. Int J Mol Sci 21(12):4342. https://doi.org/10.3390/ijms21124342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Siebenhaller S et al (2016) Sustainable enzymatic synthesis of glycolipids in a deep eutectic solvent system. J Mol Catal B Enzym 133:S281–S287. https://doi.org/10.1016/j.molcatb.2017.01.015

    Article  CAS  Google Scholar 

  30. Bouzaouit N, Bidjou-haiour C (2016) Response surface methodological study of glucose laurate synthesis catalyzed by immobilized lipase from Candida cylindracea. Biol Forum Int J 8(1):420–427

    CAS  Google Scholar 

  31. Chamouleau F et al (2001) Influence of water activity and water content on sugar esters lipase-catalyzed synthesis in organic media. J Mol Catal A Chem 11:949–954. https://doi.org/10.1016/S1381-1177(00)00166-1

    Article  CAS  Google Scholar 

  32. Ganske F, Bornscheuer UT (2005) Optimization of lipase-catalyzed glucose fatty acid ester synthesis in a two-phase system containing ionic liquids and t-BuOH. J Mol Catal B Enzym 36(1–6):40–42. https://doi.org/10.1016/j.molcatb.2005.08.004

    Article  CAS  Google Scholar 

  33. Lee SH et al (2008) Lipase-catalyzed synthesis of glucose fatty acid ester using ionic liquids mixtures. J Biotechnol 133(4):486–489. https://doi.org/10.1016/j.jbiotec.2007.11.001

    Article  PubMed  CAS  Google Scholar 

  34. Pöhnlein M et al (2015) Lipase-catalyzed synthesis of glucose-6-O-hexanoate in deep eutectic solvents. Eur J Lipid Sci Technol 117(2):161–166. https://doi.org/10.1002/ejlt.201400459

    Article  CAS  Google Scholar 

  35. Šabeder S, Habulin M, Knez Ž (2006) Lipase-catalyzed synthesis of fatty acid fructose esters. J Food Eng 77(4):880–886. https://doi.org/10.1016/j.jfoodeng.2005.08.016

    Article  CAS  Google Scholar 

  36. Siebenhaller S et al (2018) Integrated process for the enzymatic production of fatty acid sugar esters completely based on lignocellulosic substrates. Front Chem 6:1–11. https://doi.org/10.3389/fchem.2018.00421

    Article  CAS  Google Scholar 

  37. Delavault A, Ochs K et al (2021) Microwave-assisted one-pot lipid extraction and glycolipid production from oleaginous yeast saitozyma podzolica in sugar alcohol-based media. Molecules 26(2). https://doi.org/10.3390/molecules26020470

  38. Abbott AP et al (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 9(1):70–71. https://doi.org/10.1039/b210714g

    Article  CAS  Google Scholar 

  39. Dai Y et al (2015) Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem 187:14–19. https://doi.org/10.1016/j.foodchem.2015.03.123

    Article  PubMed  CAS  Google Scholar 

  40. Gutiérrez MC et al (2009) Freeze-drying of aqueous solutions of deep eutectic solvents: a suitable approach to deep eutectic suspensions of self-assembled structures. Langmuir 25(10):5509–5515. https://doi.org/10.1021/la900552b

    Article  PubMed  CAS  Google Scholar 

  41. Hammond OS, Bowron DT, Edler KJ (2016) Liquid structure of the choline chloride-urea deep eutectic solvent (reline) from neutron diffraction and atomistic modelling. Green Chem 18(9). https://doi.org/10.1039/c5gc02914g

  42. Kalhor P, Ghandi K (2019) Deep eutectic solvents for pretreatment, extraction, and catalysis of biomass and food waste. Molecules 24(22). https://doi.org/10.3390/molecules24224012

  43. Kourist R, González-Sabín J (2020) Non-conventional media as strategy to overcome the solvent dilemma in chemoenzymatic tandem catalysis. ChemCatChem 12(7):1903–1912. https://doi.org/10.1002/cctc.201902192

    Article  CAS  Google Scholar 

  44. Florindo C et al (2017) A closer look into deep eutectic solvents: exploring intermolecular interactions using solvatochromic probes, physical chemistry chemical physics. R Soc Chem 20(1):206–213. https://doi.org/10.1039/c7cp06471c

    Article  CAS  Google Scholar 

  45. Florindo C, Branco LC, Marrucho IM (2017) Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments. Fluid Phase Equilibria 448:135–142. https://doi.org/10.1016/j.fluid.2017.04.002

    Article  CAS  Google Scholar 

  46. Martins MAR et al (2018) Tunable hydrophobic eutectic solvents based on terpenes and monocarboxylic acids. ACS Sustain Chem Eng 6(7):8836–8846. https://doi.org/10.1021/acssuschemeng.8b01203

    Article  CAS  Google Scholar 

  47. Oh Y et al (2019) Dihydrogen-bonding deep eutectic solvents as reaction media for lipase-catalyzed transesterification. Biochem Eng J 142:34–40. https://doi.org/10.1016/j.bej.2018.11.010

    Article  CAS  Google Scholar 

  48. Suopajärvi T et al (2020) Acidic and alkaline deep eutectic solvents in delignification and nanofibrillation of corn stalk, wheat straw, and rapeseed stem residues. Ind Crop Prod 145:111956. https://doi.org/10.1016/j.indcrop.2019.111956

    Article  CAS  Google Scholar 

  49. Florindo C, Branco LC, Marrucho IM (2019) Quest for green-solvent design: from hydrophilic to hydrophobic (deep) eutectic solvents. ChemSusChem 12(8):1549–1559. https://doi.org/10.1002/cssc.201900147

    Article  PubMed  CAS  Google Scholar 

  50. Chen Z, Jacoby WA, Wan C (2019) Ternary deep eutectic solvents for effective biomass deconstruction at high solids and low enzyme loadings. Bioresour Technol 279:281–286. https://doi.org/10.1016/j.biortech.2019.01.126

    Article  PubMed  CAS  Google Scholar 

  51. Procentese A et al (2015) Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresour Technol 192:31–36. https://doi.org/10.1016/j.biortech.2015.05.053

    Article  PubMed  CAS  Google Scholar 

  52. Monhemi H et al (2014) How a protein can remain stable in a solvent with high content of urea: insights from molecular dynamics simulation of Candida antarctica lipase B in urea: choline chloride deep eutectic solvent. Phys Chem Chem Phys 16(28):14882–14893. https://doi.org/10.1039/c4cp00503a

    Article  PubMed  CAS  Google Scholar 

  53. Kaur S et al (2020) How hydration affects the microscopic structural morphology in a deep eutectic solvent. J Phys Chem B 124(11):2230–2237. https://doi.org/10.1021/acs.jpcb.9b11753

    Article  PubMed  CAS  Google Scholar 

  54. Gorke JT, Srienc F, Kazlauskas RJ (2008) Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chem Commun 10:1235–1237. https://doi.org/10.1039/b716317g

    Article  CAS  Google Scholar 

  55. Guajardo N, Schrebler RA, Domínguez de María P (2019) From batch to fed-batch and to continuous packed-bed reactors: lipase-catalyzed esterifications in low viscous deep-eutectic-solvents with buffer as cosolvent. Bioresour Technol 273:320–325. https://doi.org/10.1016/j.biortech.2018.11.026

    Article  PubMed  CAS  Google Scholar 

  56. Delavault, A., Opochenska, O., et al. (2021) Lipase-catalyzed production of sorbitol laurate in a “2-in-1” deep eutectic system: factors affecting the synthesis and scalability, Molecules, 26(9). https://doi.org/10.3390/molecules26092759

  57. Hayyan M et al (2015) In vitro and in vivo toxicity profiling of ammonium-based deep eutectic solvents. PLoS One 10(2):1–18. https://doi.org/10.1371/journal.pone.0117934

    Article  CAS  Google Scholar 

  58. Hou XD et al (2013) Evaluation of toxicity and biodegradability of cholinium amino acids ionic liquids. PLoS One 8(3). https://doi.org/10.1371/journal.pone.0059145

  59. Mbous YP et al (2017) Unraveling the cytotoxicity and metabolic pathways of binary natural deep eutectic solvent systems. Sci Rep 7:1–14. https://doi.org/10.1038/srep41257

    Article  CAS  Google Scholar 

  60. Silva JM et al (2019) Therapeutic role of deep eutectic solvents based on menthol and saturated fatty acids on wound healing. ACS Appl Bio Mater 2(10):4346–4355. https://doi.org/10.1021/acsabm.9b00598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Wen Q et al (2015) Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere. https://doi.org/10.1016/j.chemosphere.2015.02.061

  62. Cao J et al (2020) Effective release of intracellular enzymes by permeating the cell membrane with hydrophobic deep eutectic solvents. Chembiochem 21(5):672–680. https://doi.org/10.1002/cbic.201900502

    Article  PubMed  CAS  Google Scholar 

  63. Petkovic M et al (2010) Novel biocompatible cholinium-based ionic liquids – toxicity and biodegradability. Green Chem 12(4):643–664. https://doi.org/10.1039/b922247b

    Article  CAS  Google Scholar 

  64. Huang ZL et al (2014) Deep eutectic solvents can be viable enzyme activators and stabilizers. J Chem Technol Biotechnol 89(12):1975–1981. https://doi.org/10.1002/jctb.4285

    Article  CAS  Google Scholar 

  65. Kitagawa M et al (2002) Effect of water on the enzymatic synthesis of vinyl sugar ester in hydrophilic organic solvent. Macromol Biosci 2(5):233–237. https://doi.org/10.1002/1616-5195(200206)2:5<233::AID-MABI233>3.0.CO;2-9

    Article  CAS  Google Scholar 

  66. Pedersen NR et al (2003) Synthesis of sucrose laurate using a new alkaline protease. Tetrahedron Asymmetry 14(6):667–673. https://doi.org/10.1016/S0957-4166(03)00086-7

    Article  CAS  Google Scholar 

  67. Wang X et al (2012) Highly efficient synthesis of sucrose monolaurate by alkaline protease Protex 6L. Bioresour Technol 109:7–12. https://doi.org/10.1016/j.biortech.2012.01.035

    Article  PubMed  CAS  Google Scholar 

  68. Bernal C, Poveda-Jaramillo JC, Mesa M (2018) Raising the enzymatic performance of lipase and protease in the synthesis of sugar fatty acid esters, by combined ionic exchange -hydrophobic immobilization process on aminopropyl silica support. Chem Eng J 334:760–767. https://doi.org/10.1016/j.cej.2017.10.082

    Article  CAS  Google Scholar 

  69. Zhao H, Baker GA, Holmes S (2011) New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel. Org Biomol Chem 9(6):1908–1916. https://doi.org/10.1039/c0ob01011a

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Panintrarux C, Adachi S, Matsuno R (1997) β-Glucosidase-catalyzed condensation of glucose with 2-alcohols in buffer-saturated alcohols. Biotechnol Lett 19(9):899–902. https://doi.org/10.1023/A:1018350006951

    Article  CAS  Google Scholar 

  71. Shinoyama H, Kamiyama Y, Yasui T (1988) Enzymatic synthesis of alkyl β-xylosides from xylobiose by application of the transxylosyl reaction of Aspergillus niger β-xylosidase. Agric Biol Chem 52(9):2197–2202. https://doi.org/10.1080/00021369.1988.10869010

    Article  CAS  Google Scholar 

  72. Miranda-Molina A et al (2019) Deep eutectic solvents as new reaction media to produce alkyl-glycosides using alpha-amylase from thermotoga maritima. Int J Mol Sci 20(21). https://doi.org/10.3390/ijms20215439

  73. Durand E et al (2013) Evaluation of deep eutectic solvent–water binary mixtures for lipase-catalyzed lipophilization of phenolic acids. Green Chem 15(8):2275. https://doi.org/10.1039/c3gc40899j

    Article  CAS  Google Scholar 

  74. Zhao H, Zhang C, Crittle TD (2013) Choline-based deep eutectic solvents for enzymatic preparation of biodiesel from soybean oil. J Mol Catal B Enzym 85–86:243–247. https://doi.org/10.1016/j.molcatb.2012.09.003

    Article  CAS  Google Scholar 

  75. Arcens D et al (2018) 6-O-glucose palmitate synthesis with lipase: investigation of some key parameters. Mol Catal 460:63–68. https://doi.org/10.1016/j.mcat.2018.09.013

    Article  CAS  Google Scholar 

  76. Cao L et al (1996) Lipase-catalyzed solid phase synthesis of sugar fatty acid esters. Biocatal Biotransformation 14(4):269–283. https://doi.org/10.3109/10242429609110280

    Article  Google Scholar 

  77. Arroyo M, Sánchez-Montero JM, Sinisterra JV (1999) Thermal stabilization of immobilized lipase B from Candida antarctica on different supports: effect of water activity on enzymatic activity in organic media. Enzyme Microb Technol. https://doi.org/10.1016/S0141-0229(98)00067-2

  78. Arcos JA, Bernabé M, Otero C (1998) Quantitative enzymatic production of 6-O-acylglucose esters. Biotechnol Bioeng 57(5):505–509. https://doi.org/10.1002/(SICI)1097-0290(19980305)57:5<505::AID-BIT1>3.0.CO;2-K

    Article  PubMed  CAS  Google Scholar 

  79. Idris A, Bukhari A (2012) Immobilized Candida antarctica lipase B: hydration, stripping off and application in ring opening polyester synthesis. Biotechnol Adv 30(3):550–563. https://doi.org/10.1016/j.biotechadv.2011.10.002

    Article  PubMed  CAS  Google Scholar 

  80. Nakashima K et al (2006) Activation of lipase in ionic liquids by modification with comb-shaped poly(ethylene glycol). Sci Technol Adv Mater 7(7):692–698. https://doi.org/10.1016/j.stam.2006.06.008

    Article  CAS  Google Scholar 

  81. Yang L, Dordick JS, Garde S (2004) Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity. Biophys J 87(2):812–821. https://doi.org/10.1529/biophysj.104.041269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Bornscheuer U et al (1993) Factors affecting the lipase catalyzed transesterification reactions of 3-hydroxy esters in organic solvents. Tetrahedron Asymmetry 4(5):1007–1016. https://doi.org/10.1016/S0957-4166(00)80145-7

    Article  CAS  Google Scholar 

  83. Zaks A, Klibanov AM (1986) Substrate specificity of enzymes in organic solvents vs. water is reversed. J Am Chem Soc 108(10):2767–2768. https://doi.org/10.1021/ja00270a053

    Article  CAS  Google Scholar 

  84. Degn P et al (1999) Lipase-catalysed synthesis of glucose fatty acid esters in tert-butanol. Biotechnol Lett 21(4):275–280. https://doi.org/10.1023/A:1005439801354

    Article  CAS  Google Scholar 

  85. Flores MV et al (2002) Influence of glucose solubility and dissolution rate on the kinetics of lipase catalyzed synthesis of glucose laurate in 2-methyl 2-butanol. Biotechnol Bioeng 78(7):815–821. https://doi.org/10.1002/bit.10263

    Article  PubMed  CAS  Google Scholar 

  86. Siebenhaller S (2019) Enzymatic synthesis of glycolipid surfactants: utilization of sustainable media and substrates. Karlsruhe. https://doi.org/10.5445/IR/1000096065

  87. Woudenberg-van Oosterom M, van Rantwijk F, Sheldon RA (1996) Regioselective acylation of disaccharides in tert-butyl alcohol catalyzed by Candida antarctica lipase. Biotechnol Bioeng 49:328–333

    Article  PubMed  CAS  Google Scholar 

  88. Shin DW et al (2019) Enhanced lipase-catalyzed synthesis of sugar fatty acid esters using supersaturated sugar solution in ionic liquids. Enzyme Microb Technol 126:18–23. https://doi.org/10.1016/j.enzmictec.2019.03.004

    Article  PubMed  CAS  Google Scholar 

  89. Blecker C et al (2008) Enzymatically prepared n-alkyl esters of glucuronic acid: the effect of freeze-drying conditions and hydrophobic chain length on thermal behavior. J Colloid Interface Sci 321(1):154–158. https://doi.org/10.1016/j.jcis.2008.02.002

    Article  PubMed  CAS  Google Scholar 

  90. Cauglia F, Canepa P (2008) The enzymatic synthesis of glucosylmyristate as a reaction model for general considerations on “sugar esters” production. Bioresour Technol 99(10):4065–4072. https://doi.org/10.1016/j.biortech.2007.01.036

    Article  PubMed  CAS  Google Scholar 

  91. Lopresto CG et al (2014) Kinetic study on the enzymatic esterification of octanoic acid and hexanol by immobilized Candida antarctica lipase B. J Mol Catal B Enzym 110:64–71. https://doi.org/10.1016/j.molcatb.2014.09.011

    Article  CAS  Google Scholar 

  92. Ben Salah R et al (2007) Production of butyl acetate ester by lipase from novel strain of Rhizopus oryzae. J Biosci Bioeng 103(4):368–372. https://doi.org/10.1263/jbb.103.368

    Article  PubMed  CAS  Google Scholar 

  93. Serri NA, Kamaruddin AH, Long WS (2006) Studies of reaction parameters on synthesis of Citronellyl laurate ester via immobilized Candida rugosa lipase in organic media. Bioprocess Biosyst Eng 29(4):253–260. https://doi.org/10.1007/s00449-006-0074-z

    Article  PubMed  CAS  Google Scholar 

  94. Xiao Z et al (2015) Enzymatic synthesis of aroma acetoin fatty acid esters by immobilized Candida antarctica lipase B. Biotechnol Lett 37(8):1671–1677. https://doi.org/10.1007/s10529-015-1834-0

    Article  PubMed  CAS  Google Scholar 

  95. Yadav GD, Lathi PS (2004) Synthesis of citronellol laurate in organic media catalyzed by immobilized lipases: kinetic studies. J Mol Catal B Enzym. https://doi.org/10.1016/j.molcatb.2003.10.004

  96. Zaidi A et al (2002) Esterification of fatty acids using nylon-immobilized lipase in n-hexane: kinetic parameters and chain-length effects. J Biotechnol. https://doi.org/10.1016/S0168-1656(01)00401-1

  97. Lin XS et al (2015) Impacts of ionic liquids on enzymatic synthesis of glucose laurate and optimization with superior productivity by response surface methodology. Process Biochem. https://doi.org/10.1016/j.procbio.2015.07.019

  98. Ha SH et al (2010) Optimization of lipase-catalyzed glucose ester synthesis in ionic liquids. Bioprocess Biosyst Eng 33(1):63–70. https://doi.org/10.1007/s00449-009-0363-4

    Article  PubMed  CAS  Google Scholar 

  99. Mai NL et al (2014) Ionic liquids as novel solvents for the synthesis of sugar fatty acid ester. Biotechnol J 9: 1565–1572. https://doi.org/10.1002/biot.201400099

    Article  PubMed  CAS  Google Scholar 

  100. Galonde N et al (2013) Use of response surface methodology for the optimization of the lipase-catalyzed synthesis of mannosyl myristate in pure ionic liquid. Process Biochem 48(12):1914–1920. https://doi.org/10.1016/j.procbio.2013.08.023

    Article  CAS  Google Scholar 

  101. Abdulmalek E et al (2012) Improved enzymatic galactose oleate ester synthesis in ionic liquids. J Mol Catal B Enzym 76:37–43. https://doi.org/10.1016/j.molcatb.2011.12.004

    Article  CAS  Google Scholar 

  102. Park S et al (2003) Vacuum-driven lipase-catalysed direct condensation of L-ascorbic acid and fatty acids in ionic liquids: synthesis of a natural surface active antioxidant. Green Chem 5(6):715–719. https://doi.org/10.1039/b307715b

    Article  CAS  Google Scholar 

  103. Dutkiewicz M (1990) Classification of organic solvents based on correlation between dielectric β parameter and empirical solvent polarity parameter ETN. J Chem Soc Faraday Trans 86(12):2237–2241. https://doi.org/10.1039/FT9908602237

    Article  CAS  Google Scholar 

  104. Walsh MK et al (2009) Synthesis of lactose monolaurate as influenced by various lipases and solvents. J Mol Catal B Enzym 60(3–4):171–177. https://doi.org/10.1016/j.molcatb.2009.05.003

    Article  CAS  Google Scholar 

  105. Lee SH, Koo YM, Ha SH (2008) Influence of ionic liquids under controlled water activity and low halide content on lipase activity. Korean J Chem Eng 25(6):1456–1462. https://doi.org/10.1007/s11814-008-0239-3

    Article  CAS  Google Scholar 

  106. Kaar JL et al (2003) Impact of ionic liquid physical properties on lipase activity and stability. J Am Chem Soc 125(14):4125–4131. https://doi.org/10.1021/ja028557x

    Article  PubMed  CAS  Google Scholar 

  107. Lau RM et al (2004) Dissolution of Candida antarctica lipase B in ionic liquids: effects on structure and activity. Green Chem 6(9):483–487. https://doi.org/10.1039/b405693k

    Article  CAS  Google Scholar 

  108. Zhao KH et al (2016) Enzymatic synthesis of glucose-based fatty acid esters in bisolvent systems containing ionic liquids or deep eutectic solvents. Molecules 21(10):1–13. https://doi.org/10.3390/molecules21101294

    Article  CAS  Google Scholar 

  109. Hümmer M et al (2018) Synthesis of (−)-menthol fatty acid esters in and from (−)-menthol and fatty acids – novel concept for lipase catalyzed esterification based on eutectic solvents. Mol Catal:67–72. https://doi.org/10.1016/j.mcat.2018.08.003

  110. Pätzold M et al (2019) Optimization of solvent-free enzymatic esterification in eutectic substrate reaction mixture. Biotechnol Rep 22:e00333. https://doi.org/10.1016/j.btre.2019.e00333

    Article  Google Scholar 

  111. Elgharbawy AA et al (2018) Shedding light on lipase stability in natural deep eutectic solvents. Chem Biochem Eng Q 32(3). https://doi.org/10.15255/CABEQ.2018.1335

Download references

Acknowledgments

Conflicts of Interest: The authors declare no conflict of interest.

Author Contributions: Conceptualization, R.H.; writing – original draft preparation, R.H.; writing – review and editing, R.H., K.O and C.S.; supervision, C.S.; funding acquisition, C.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work by R.H. was supported by the European Regional Development Fund and the Ministry of Science, Research and the Arts of the State of Baden-Württemberg within the research center ZAFH InSeL (Grant#32-7545.24-20/6/3). We gratefully thank the Open Access Publishing Fund of Karlsruhe Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Hollenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hollenbach, R., Ochsenreither, K., Syldatk, C. (2021). Parameters Influencing Lipase-Catalyzed Glycolipid Synthesis by (Trans-)Esterification Reaction. In: Hausmann, R., Henkel, M. (eds) Biosurfactants for the Biobased Economy. Advances in Biochemical Engineering/Biotechnology, vol 181. Springer, Cham. https://doi.org/10.1007/10_2021_173

Download citation

Publish with us

Policies and ethics