Skip to main content

Empower C1: Combination of Electrochemistry and Biology to Convert C1 Compounds

  • 75 Accesses

Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE,volume 180)

Abstract

The idea to somehow combine electrical current and biological systems is not new. It was subject of research as well as of science fiction literature for decades. Nowadays, in times of limited resources and the need to capture greenhouse gases like CO2, this combination gains increasing interest, since it might allow to use C1 compounds and highly oxidized compounds as substrate for microbial production by “activating” them with additional electrons. In this chapter, different possibilities to combine electrochemistry and biology to convert C1 compounds into useful products will be discussed. The chapter first shows electrochemical conversion of C1 compounds, allowing the use of the product as substrate for a subsequent biosynthesis in uncoupled systems, further leads to coupled systems of biology and electrochemical conversion, and finally reaches the discipline of bioelectrosynthesis, where electrical current and C1 compounds are directly converted by microorganisms or enzymes. This overview will give an idea about the potentials and challenges of combining electrochemistry and biology to convert C1 molecules.

Graphical Abstract

Keywords

  • Bioelectrotechnology
  • CO2 conversion
  • Electrochemistry
  • Methanogenesis
  • Microbial electrosynthesis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/10_2021_171
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-06854-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Fruehauf HM, Enzmann F, Harnisch F, Ulber R, Holtmann D (2020) Microbial electrosynthesis – an inventory on technology readiness level and performance of different process variants. Biotechnol J 15(10):1–11. https://doi.org/10.1002/biot.202000066

    CAS  CrossRef  Google Scholar 

  2. Bian B, Bajracharya S, Xu J, Pant D, Saikaly PE (2020) Microbial electrosynthesis from CO2: challenges, opportunities and perspectives in the context of circular bioeconomy. Bioresour Technol 302:122863. https://doi.org/10.1016/j.biortech.2020.122863

    CAS  CrossRef  PubMed  Google Scholar 

  3. Unden G, Bongaerts J (1997) Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta Bioenerg 1320:217–234. https://doi.org/10.1016/S0005-2728(97)00034-0

    CAS  CrossRef  Google Scholar 

  4. Harnisch F, Schröder U (2010) From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev 39:4433. https://doi.org/10.1039/c003068f

    CAS  CrossRef  PubMed  Google Scholar 

  5. Harnisch F, Holtmann D (2019) Electrification of biotechnology: status quo. In: Harnisch F, Holtmann D (eds) Bioelectrosynthesis. Springer, Berlin, pp 1–14. https://doi.org/10.1007/10_2017_41

    CrossRef  Google Scholar 

  6. Haas T, Krause R, Weber R, Demler M, Schmid G (2018) Technical photosynthesis involving CO2 electrolysis and fermentation. Nat Catal 1:32–39. https://doi.org/10.1038/s41929-017-0005-1

    CAS  CrossRef  Google Scholar 

  7. Stöckl M, Harms S, Dinges I, Dimitrova S, Holtmann D (2020) From CO2 to bioplastic – coupling the electrochemical CO2 reduction with a microbial product generation by drop-in electrolysis. ChemSusChem:4086–4093. https://doi.org/10.1002/cssc.202001235

  8. Abel AJ, Clark DS (2020) A comprehensive modeling analysis of formate-mediated microbial electrosynthesis. ChemSusChem:1–13. https://doi.org/10.1002/cssc.202002079

  9. Li H, Opgenorth PH, Wernick DG, Rogers S, Wu T-YT-Y, Higashide W, Malati P, Huo Y-X, Cho KM, Liao JC (2012) Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335:1596. https://doi.org/10.1126/science.1217643

    CAS  CrossRef  PubMed  Google Scholar 

  10. Jiang Y, Jianxiong Zeng R (2018) Expanding the product spectrum of value added chemicals in microbial electrosynthesis through integrated process design – a review. Bioresour Technol 269:503–512. https://doi.org/10.1016/j.biortech.2018.08.101

    CAS  CrossRef  PubMed  Google Scholar 

  11. Christodoulou X, Okoroafor T, Parry S, Velasquez-Orta SB (2017) The use of carbon dioxide in microbial electrosynthesis: advancements, sustainability and economic feasibility. J CO2 Util 18:390–399. https://doi.org/10.1016/j.jcou.2017.01.027

    CAS  CrossRef  Google Scholar 

  12. Sydow A, Krieg T, Mayer F, Schrader J, Holtmann D (2014) Electroactive bacteria – molecular mechanisms and genetic tools. Appl Microbiol Biotechnol 98:8481–8495. https://doi.org/10.1007/s00253-014-6005-z

    CAS  CrossRef  PubMed  Google Scholar 

  13. Prévoteau A, Carvajal-Arroyo JM, Ganigué R, Rabaey K (2020) Microbial electrosynthesis from CO2: forever a promise? Curr Opin Biotechnol 62:48–57. https://doi.org/10.1016/j.copbio.2019.08.014

    CAS  CrossRef  PubMed  Google Scholar 

  14. Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1:e00103-10. https://doi.org/10.1128/mBio.00103-10

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Oliveira VB, Simões M, Melo LF, Pinto AMFR (2013) Overview on the developments of microbial fuel cells. Biochem Eng J 73:53–64. https://doi.org/10.1016/j.bej.2013.01.012

    CAS  CrossRef  Google Scholar 

  16. Moscoviz R, Toledo-Alarcón J, Trably E, Bernet N (2016) Electro-fermentation: how to drive fermentation using electrochemical systems. Trends Biotechnol 34:856–865. https://doi.org/10.1016/j.tibtech.2016.04.009

    CAS  CrossRef  PubMed  Google Scholar 

  17. Guo K, Tang X, Du Z, Li H (2010) Hydrogen production from acetate in a cathode-on-top single-chamber microbial electrolysis cell with a mipor cathode. Biochem Eng J 51:48–52. https://doi.org/10.1016/j.bej.2010.05.001

    CAS  CrossRef  Google Scholar 

  18. Peckham PH, Knutson JS (2005) Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng 7:327–360. https://doi.org/10.1146/annurev.bioeng.6.040803.140103

    CAS  CrossRef  PubMed  Google Scholar 

  19. Enzmann F, Stöckl M, Zeng A-P, Holtmann D (2019) Same but different-scale up and numbering up in electrobiotechnology and photobiotechnology. Eng Life Sci 19:121–132. https://doi.org/10.1002/elsc.201800160

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Hori Y (2008) Electrochemical CO2 reduction on metal electrodes. Mod Asp Electrochem 42:89–189

    CAS  CrossRef  Google Scholar 

  21. Malkhandi S, Yeo BS (2019) Electrochemical conversion of carbon dioxide to high value chemicals using gas-diffusion electrodes. Curr Opin Chem Eng 26:112–121. https://doi.org/10.1016/j.coche.2019.09.008

    CrossRef  Google Scholar 

  22. Kopljar D, Inan A, Vindayer P, Wagner N, Klemm E (2014) Electrochemical reduction of CO2 to formate at high current density using gas diffusion electrodes. J Appl Electrochem 44:1107–1116. https://doi.org/10.1007/s10800-014-0731-x

    CAS  CrossRef  Google Scholar 

  23. Kopljar D, Wagner N, Klemm E (2016) Transferring electrochemical CO2 reduction from semi-batch into continuous operation mode using gas diffusion electrodes. Chem Eng Technol 39:2042–2050. https://doi.org/10.1002/ceat.201600198

    CAS  CrossRef  Google Scholar 

  24. Lu Q, Jiao F (2016) Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering. Nano Energy 29:439–456. https://doi.org/10.1016/j.nanoen.2016.04.009

    CAS  CrossRef  Google Scholar 

  25. Li Y, Sun Q (2016) Recent advances in breaking scaling relations for effective electrochemical conversion of CO2. Adv Energy Mater 6. https://doi.org/10.1002/aenm.201600463

  26. Lee M-Y, Park KT, Lee W, Lim H, Kwon Y, Kang S (2020) Current achievements and the future direction of electrochemical CO2 reduction: a short review. Crit Rev Environ Sci Technol 50:769–815. https://doi.org/10.1080/10643389.2019.1631991

    CAS  CrossRef  Google Scholar 

  27. Martín AJ, Larrazábal GO, Pérez-Ramírez J (2015) Towards sustainable fuels and chemicals through the electrochemical reduction of CO2: lessons from water electrolysis. Green Chem 17:5114–5130. https://doi.org/10.1039/c5gc01893e

    CrossRef  Google Scholar 

  28. Jörissen J, Turek T, Weber R (2011) Chlorherstellung mit Sauerstoffverzehrkathoden. Energieeinsparung bei der Elektrolyse. Chemie Unserer Zeit 45:172–183. https://doi.org/10.1002/ciuz.201100545

    CAS  CrossRef  Google Scholar 

  29. Ting LRL, Yeo BS (2018) Recent advances in understanding mechanisms for the electrochemical reduction of carbon dioxide. Curr Opin Electrochem 8:126–134. https://doi.org/10.1016/j.coelec.2018.04.011

    CAS  CrossRef  Google Scholar 

  30. Kibria MG, Edwards JP, Gabardo CM, Dinh CT, Seifitokaldani A, Sinton D, Sargent EH (2019) Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv Mater 31:1–24. https://doi.org/10.1002/adma.201807166

    CAS  CrossRef  Google Scholar 

  31. Dinh CT, García De Arquer FP, Sinton D, Sargent EH (2018) High rate, selective, and stable electroreduction of CO2 to CO in basic and neutral media. ACS Energy Lett 3:2835–2840. https://doi.org/10.1021/acsenergylett.8b01734

    CAS  CrossRef  Google Scholar 

  32. Kutz RB, Chen Q, Yang H, Sajjad SD, Liu Z, Masel IR (2017) Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis. Energ Technol 5:929–936. https://doi.org/10.1002/ente.201600636

    CAS  CrossRef  Google Scholar 

  33. Jeanty P, Scherer C, Magori E, Wiesner-Fleischer K, Hinrichsen O, Fleischer M (2018) Upscaling and continuous operation of electrochemical CO2 to CO conversion in aqueous solutions on silver gas diffusion electrodes. J CO2 Util 24:454–462. https://doi.org/10.1016/j.jcou.2018.01.011

    CAS  CrossRef  Google Scholar 

  34. Agarwal AS, Zhai Y, Hill D, Sridhar N (2011) The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. ChemSusChem 4:1301–1310. https://doi.org/10.1002/cssc.201100220

    CAS  CrossRef  PubMed  Google Scholar 

  35. Yishai O, Lindner SN, Gonzalez de la Cruz J, Tenenboim H, Bar-Even A (2016) The formate bio-economy. Curr Opin Chem Biol 35:1–9. https://doi.org/10.1016/j.cbpa.2016.07.005

    CAS  CrossRef  PubMed  Google Scholar 

  36. Fu Y, Li Y, Zhang X, Liu Y, Qiao J, Zhang J, Wilkinson DP (2016) Novel hierarchical SnO2 microsphere catalyst coated on gas diffusion electrode for enhancing energy efficiency of CO2 reduction to formate fuel. Appl Energy 175:536–544. https://doi.org/10.1016/j.apenergy.2016.03.115

    CAS  CrossRef  Google Scholar 

  37. Irtem E, Andreu T, Parra A, Hernández-Alonso MD, García-Rodríguez S, Riesco-García JM, Penelas-Pérez G, Morante JR (2016) Low-energy formate production from CO2 electroreduction using electrodeposited tin on GDE. J Mater Chem A 4:13582–13588. https://doi.org/10.1039/c6ta04432h

    CAS  CrossRef  Google Scholar 

  38. Sen S, Brown SM, Leonard M, Brushett FR (2019) Electroreduction of carbon dioxide to formate at high current densities using tin and tin oxide gas diffusion electrodes. J Appl Electrochem 49:917–928. https://doi.org/10.1007/s10800-019-01332-z

    CAS  CrossRef  Google Scholar 

  39. De Mot B, Hereijgers J, Duarte M, Breugelmans T (2019) Influence of flow and pressure distribution inside a gas diffusion electrode on the performance of a flow-by CO2 electrolyzer. Chem Eng J 378:1–8. https://doi.org/10.1016/j.cej.2019.122224

    CAS  CrossRef  Google Scholar 

  40. Lai Q, Yang N, Yuan G (2017) Highly efficient In–Sn alloy catalysts for electrochemical reduction of CO2to formate. Electrochem Commun 83:24–27. https://doi.org/10.1016/j.elecom.2017.08.015

    CAS  CrossRef  Google Scholar 

  41. Hegner R, Rosa LFM, Harnisch F (2018) Electrochemical CO2 reduction to formate at indium electrodes with high efficiency and selectivity in pH neutral electrolytes. Appl Catal Environ 238:546–556. https://doi.org/10.1016/J.APCATB.2018.07.030

    CAS  CrossRef  Google Scholar 

  42. Díaz-Sainz G, Alvarez-Guerra M, Solla-Gullón J, García-Cruz L, Montiel V, Irabien A (2019) CO2 electroreduction to formate: continuous single-pass operation in a filter-press reactor at high current densities using Bi gas diffusion electrodes. J CO2 Util 34:12–19. https://doi.org/10.1016/j.jcou.2019.05.035

    CAS  CrossRef  Google Scholar 

  43. Zhu C, Wang Q, Wu C (2020) Rapid and scalable synthesis of bismuth dendrites on copper mesh as a high-performance cathode for electroreduction of CO2 to formate. J CO2 Util 36:96–104. https://doi.org/10.1016/j.jcou.2019.11.017

    CAS  CrossRef  Google Scholar 

  44. Han N, Ding P, He L, Li Y, Li Y (2020) Promises of main group metal–based nanostructured materials for electrochemical CO2 reduction to formate. Adv Energy Mater 10. https://doi.org/10.1002/aenm.201902338

  45. Zheng X, De Luna P, García de Arquer FP, Zhang B, Becknell N, Ross MB, Li Y, Banis MN, Li Y, Liu M, Voznyy O, Dinh CT, Zhuang T, Stadler P, Cui Y, Du X, Yang P, Sargent EH (2017) Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 1:794–805. https://doi.org/10.1016/j.joule.2017.09.014

    CAS  CrossRef  Google Scholar 

  46. He S, Ni F, Ji Y, Wang L, Wen Y, Bai H, Liu G, Zhang Y, Li Y, Zhang B, Peng H (2018) The p-orbital delocalization of main-group metals to boost CO2 electroreduction. Angew Chemie 130:16346–16351. https://doi.org/10.1002/ange.201810538

    CrossRef  Google Scholar 

  47. Yang H, Kaczur JJ, Sajjad SD, Masel RI (2017) Electrochemical conversion of CO2 to formic acid utilizing Sustainion™ membranes. J CO2 Util 20:208–217. https://doi.org/10.1016/j.jcou.2017.04.011

    CAS  CrossRef  Google Scholar 

  48. Nakata K, Ozaki T, Terashima C, Fujishima A, Einaga Y (2014) High-yield electrochemical production of formaldehyde from CO2and seawater. Angew Chem Int Ed 53:871–874. https://doi.org/10.1002/anie.201308657

    CAS  CrossRef  Google Scholar 

  49. Barton Cole E, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132:11539–11551. https://doi.org/10.1021/ja1023496

    CAS  CrossRef  Google Scholar 

  50. Yan Y, Zeitler EL, Gu J, Hu Y, Bocarsly AB (2013) Electrochemistry of aqueous pyridinium: exploration of a key aspect of electrocatalytic reduction of CO2 to methanol. J Am Chem Soc 135:14020–14023. https://doi.org/10.1021/ja4064052

    CAS  CrossRef  PubMed  Google Scholar 

  51. Hirunsit P, Soodsawang W, Limtrakul J (2015) CO2 electrochemical reduction to methane and methanol on copper-based alloys: theoretical insight. J Phys Chem C 119:8238–8249. https://doi.org/10.1021/acs.jpcc.5b01574

    CAS  CrossRef  Google Scholar 

  52. De Luna P, Quintero-Bermudez R, DInh CT, Ross MB, Bushuyev OS, Todorović P, Regier T, Kelley SO, Yang P, Sargent EH (2018) Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat Catal 1:103–110. https://doi.org/10.1038/s41929-017-0018-9

    CAS  CrossRef  Google Scholar 

  53. Hori Y, Takahashi I, Koga O, Hoshi N (2003) Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J Mol Catal A Chem 199:39–47. https://doi.org/10.1016/S1381-1169(03)00016-5

    CAS  CrossRef  Google Scholar 

  54. Martin MR, Fornero JJ, Stark R, Mets L, Angenent LT (2013) A single-culture bioprocess of methanothermobacter thermautotrophicus to upgrade digester biogas by CO2 -to-CH 4 conversion with H 2. Archaea 2013:1–11. https://doi.org/10.1155/2013/157529

    CAS  CrossRef  Google Scholar 

  55. Sinóros-Szabó B, Zavarkó M, Popp F, Grima P, Csedő Z (2018) Biomethane production monitoring and data analysis based on the practical operation experiences of an innovative power-to-gas benchscale prototype. Acta Agrar Debreceniensis:399–410. https://doi.org/10.34101/actaagrar/150/1736

  56. Srikanth S, Singh D, Vanbroekhoven K, Pant D, Kumar M, Puri SK, Ramakumar SSV (2018) Electro-biocatalytic conversion of carbon dioxide to alcohols using gas diffusion electrode. Bioresour Technol 265:45–51. https://doi.org/10.1016/j.biortech.2018.02.058

    CAS  CrossRef  PubMed  Google Scholar 

  57. Hegner R, Neubert K, Kroner C, Holtmann D, Harnisch F (2020) Coupled electrochemical and microbial catalysis for the production of polymer bricks. ChemSusChem 13:5295–5300. https://doi.org/10.1002/cssc.202001272

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  58. Tashiro Y, Hirano S, Matson MM, Atsumi S, Kondo A (2018) Electrical-biological hybrid system for CO2 reduction. Metab Eng 47:211–218. https://doi.org/10.1016/j.ymben.2018.03.015

    CAS  CrossRef  PubMed  Google Scholar 

  59. Schmitz LM, Rosenthal K, Lütz S (2017) Enzyme-based electrobiotechnological synthesis. In: Harnisch F, Holtmann D (eds) Bioelectrosynthesis, pp 87–134. https://doi.org/10.1007/10_2017_33

    CrossRef  Google Scholar 

  60. Simonte F, Sturm G, Gescher J, Sturm-Richter K (2017) Extracellular electron transfer and biosensors. In: Harnisch F, Holtmann D (eds) Bioelectrosynthesis. Springer, Berlin, pp 15–38. https://doi.org/10.1007/10_2017_34

    CrossRef  Google Scholar 

  61. Stöckl M, Teubner NC, Holtmann D, Mangold K-M, Sand W (2019) Extracellular polymeric substances from geobacter sulfurreducens biofilms in microbial fuel cells. ACS Appl Mater Interfaces 11:8961–8968. https://doi.org/10.1021/acsami.8b14340

    CAS  CrossRef  PubMed  Google Scholar 

  62. Rosenbaum M, Aulenta F, Villano M, Angenent LT (2011) Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour Technol 102:324–333. https://doi.org/10.1016/j.biortech.2010.07.008

    CAS  CrossRef  PubMed  Google Scholar 

  63. Costa NL, Clarke TA, Philipp LA, Gescher J, Louro RO, Paquete CM (2018) Electron transfer process in microbial electrochemical technologies: the role of cell-surface exposed conductive proteins. Bioresour Technol 255:308–317. https://doi.org/10.1016/j.biortech.2018.01.133

    CAS  CrossRef  PubMed  Google Scholar 

  64. Yates MD, Strycharz-Glaven SM, Golden JP, Roy J, Tsoi S, Erickson JS, El-Naggar MY, Barton SC, Tender LM (2016) Measuring conductivity of living geobacter sulfurreducens biofilms. Nat Nanotechnol 11:910–913. https://doi.org/10.1038/nnano.2016.186

    CAS  CrossRef  PubMed  Google Scholar 

  65. Malvankar NS, Lovley DR (2014) Microbial nanowires for bioenergy applications. Curr Opin Biotechnol 27:88–95. https://doi.org/10.1016/j.copbio.2013.12.003

    CAS  CrossRef  PubMed  Google Scholar 

  66. Feng Q, Song YC, Ahn Y (2018) Electroactive microorganisms in bulk solution contribute significantly to methane production in bioelectrochemical anaerobic reactor. Bioresour Technol 259:119–127. https://doi.org/10.1016/j.biortech.2018.03.039

    CAS  CrossRef  PubMed  Google Scholar 

  67. Yang Y, Xu M, Guo J, Sun G (2012) Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochem 47:1707–1714. https://doi.org/10.1016/j.procbio.2012.07.032

    CAS  CrossRef  Google Scholar 

  68. Choi O, Sang B-I (2016) Extracellular electron transfer from cathode to microbes: application for biofuel production. Biotechnol Biofuels 9:11. https://doi.org/10.1186/s13068-016-0426-0

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  69. Enzmann F, Mayer F, Holtmann D (2019) Process parameters influence the extracellular electron transfer mechanism in bioelectromethanogenesis. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2019.07.039

  70. Krieg T, Sydow A, Schröder U, Schrader J, Holtmann D (2014) Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends Biotechnol 32:645–655. https://doi.org/10.1016/j.tibtech.2014.10.004

    CAS  CrossRef  PubMed  Google Scholar 

  71. Krieg T, Madjarov J, Rosa LFM, Enzmann F, Harnisch F, Holtmann D, Rabaey K (2018) Reactors for microbial electrobiotechnology. In: Advances in biochemical engineering biotechnology, pp 127–141. https://doi.org/10.1007/10_2017_40

    CrossRef  Google Scholar 

  72. Enzmann F, Holtmann D (2019) Rational scale-up of a methane producing bioelectrochemical reactor to 50 L pilot scale. Chem Eng Sci. https://doi.org/10.1016/j.ces.2019.07.051

  73. Enzmann F, Mayer F, Stöckl M, Mangold K-M, Hommel R, Holtmann D (2019) Transferring bioelectrochemical processes from H-cells to a scalable bubble column reactor. Chem Eng Sci 193:133–143. https://doi.org/10.1016/j.ces.2018.08.056

    CAS  CrossRef  Google Scholar 

  74. Krieg T, Sydow A, Faust S, Huth I, Holtmann D (2018) CO2 to terpenes: autotrophic and electroautotrophic α-humulene production with cupriavidus necator. Angew Chem Int Ed 57:1879–1882. https://doi.org/10.1002/anie.201711302

    CAS  CrossRef  Google Scholar 

  75. Das S, Diels L, Pant D, Patil SA, Ghangrekar MM (2020) Review – microbial electrosynthesis: a way towards the production of electro-commodities through carbon sequestration with microbes as biocatalysts. J Electrochem Soc 167:155510. https://doi.org/10.1149/1945-7111/abb836

    CAS  CrossRef  Google Scholar 

  76. Zhen G, Zheng S, Lu X, Zhu X, Mei J, Kobayashi T, Xu K, Li Y-Y, Zhao Y (2018) A comprehensive comparison of five different carbon-based cathode materials in CO2 electromethanogenesis: long-term performance, cell-electrode contact behaviors and extracellular electron transfer pathways. Bioresour Technol 266:382–388. https://doi.org/10.1016/j.biortech.2018.06.101

    CAS  CrossRef  PubMed  Google Scholar 

  77. Sharma M, Alvarez-Gallego Y, Achouak W, Pant D, Sarma PM, Dominguez-Benetton X (2019) Electrode material properties for designing effective microbial electrosynthesis systems. J Mater Chem A 7:24420–24436. https://doi.org/10.1039/c9ta04886c

    CAS  CrossRef  Google Scholar 

  78. Rosenbaum MA, Berger C, Schmitz S, Uhlig R (2017) Microbial electrosynthesis I: pure and defined mixed culture engineering. In: Harnisch F, Holtmann D (eds) Bioelectrosynthesis, pp 181–202. https://doi.org/10.1007/10_2017_17

    CrossRef  Google Scholar 

  79. Rosenbaum MA, Henrich AW (2014) Engineering microbial electrocatalysis for chemical and fuel production. Curr Opin Biotechnol 29:93–98. https://doi.org/10.1016/j.copbio.2014.03.003

    CAS  CrossRef  PubMed  Google Scholar 

  80. Feng J, Lu Q, Li K, Xu S, Wang X, Chen K, Ouyang P (2020) Construction of an electron transfer mediator pathway for bioelectrosynthesis by Escherichia coli. Front Bioeng Biotechnol 8:1–8. https://doi.org/10.3389/fbioe.2020.590667

    CAS  CrossRef  Google Scholar 

  81. Wu Z, Wang J, Liu J, Wang Y, Bi C, Zhang X (2019) Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate from glucose and CO2. Microb Cell Fact 18:1–14. https://doi.org/10.1186/s12934-019-1067-3

    CrossRef  Google Scholar 

  82. Vassilev I, Hernandez PA, Batlle-Vilanova P, Freguia S, Krömer JO, Keller J, Ledezma P, Virdis B (2018) Microbial electrosynthesis of isobutyric, butyric, caproic acids, and corresponding alcohols from carbon dioxide. ACS Sustain Chem Eng 6:8485–8493. https://doi.org/10.1021/acssuschemeng.8b00739

    CAS  CrossRef  Google Scholar 

  83. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296. https://doi.org/10.1016/j.watres.2010.10.010

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  84. Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126

    CAS  CrossRef  Google Scholar 

  85. Rother M, Metcalf WW (2004) Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc Natl Acad Sci 101:16929–16934. https://doi.org/10.1073/pnas.0407486101

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  86. Bapteste E, Brochier C, Boucher Y (2005) Higher-level classification of the archaea: evolution of methanogenesis and methanogens. Archaea 1:353–363. http://www.ncbi.nlm.nih.gov/pubmed/15876569

    CAS  CrossRef  Google Scholar 

  87. Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour Technol 101:3085–3090. https://doi.org/10.1016/j.biortech.2009.12.077

    CAS  CrossRef  PubMed  Google Scholar 

  88. Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189. https://doi.org/10.1196/annals.1419.019

    CAS  CrossRef  PubMed  Google Scholar 

  89. McAnulty MJ, Poosarla VG, Li J, Soo VWC, Zhu F, Wood TK (2017) Metabolic engineering of Methanosarcina acetivorans for lactate production from methane. Biotechnol Bioeng 114:852–861. https://doi.org/10.1002/bit.26208

    CAS  CrossRef  PubMed  Google Scholar 

  90. Wood TK (2016) Metabolic manipulation of methanogens for methane machinations. J Microbial Biotechnol:1–2. https://doi.org/10.1111/1751-7915.12425

  91. Ravichandran M, Munisamy P, Varadharaju C, Natarajan S (2015) Methanogenic archaea: a multipotent biological candidate focusing toward realizing future global energy. Int J Curr Microbiol App Sci 4:785–793

    CAS  Google Scholar 

  92. Goyal N, Zhou Z, Karimi IA (2016) Metabolic processes of Methanococcus maripaludis and potential applications. Microb Cell Fact 15:107. https://doi.org/10.1186/s12934-016-0500-0

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  93. Lyu Z, Whitman WB (2019) Transplanting the pathway engineering toolbox to methanogens. Curr Opin Biotechnol 59:46–54. https://doi.org/10.1016/j.copbio.2019.02.009

    CAS  CrossRef  PubMed  Google Scholar 

  94. Enzmann F, Mayer F, Rother M, Holtmann D (2018) Methanogens: biochemical background and biotechnological applications. AMB Express 8:1. https://doi.org/10.1186/s13568-017-0531-x

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  95. Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100:5478–5484. https://doi.org/10.1016/j.biortech.2008.12.046

    CAS  CrossRef  PubMed  Google Scholar 

  96. Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958. https://doi.org/10.1021/es803531g

    CAS  CrossRef  PubMed  Google Scholar 

  97. Kracke F, Wong AB, Maegaard K, Deutzmann JS, Hubert MA, Hahn C, Jaramillo TF, Spormann AM (2019) Robust and biocompatible catalysts for efficient hydrogen-driven microbial electrosynthesis. Commun Chem 2:45. https://doi.org/10.1038/s42004-019-0145-0

    CAS  CrossRef  Google Scholar 

  98. Götz M, Lefebvre J, Mörs F, McDaniel Koch A, Graf F, Bajohr S, Reimert R, Kolb T (2016) Renewable power-to-gas: a technological and economic review. Renew Energy 85:1371–1390. https://doi.org/10.1016/j.renene.2015.07.066

    CAS  CrossRef  Google Scholar 

  99. Bär K, Mörs F, Götz M, Graf F (2015) Vergleich der biologischen und katalytischen Methanisierung für den Einsatz bei PtG-Konzepten. Gwf-Gas 7:1–8

    Google Scholar 

  100. Xu H, Wang K, Holmes DE (2014) Bioelectrochemical removal of carbon dioxide (CO2): an innovative method for biogas upgrading. Bioresour Technol 173:392–398. https://doi.org/10.1016/j.biortech.2014.09.127

    CAS  CrossRef  PubMed  Google Scholar 

  101. Liu C, Sun D, Zhao Z, Dang Y, Holmes DE (2019) Methanothrix enhances biogas upgrading in microbial electrolysis cell via direct electron transfer. Bioresour Technol 291:121877. https://doi.org/10.1016/j.biortech.2019.121877

    CAS  CrossRef  PubMed  Google Scholar 

  102. Zhen G, Kobayashi T, Lu X, Xu K (2015) Understanding methane bioelectrosynthesis from carbon dioxide in a two-chamber microbial electrolysis cells (MECs) containing a carbon biocathode. Bioresour Technol 186:141–148. https://doi.org/10.1016/j.biortech.2015.03.064

    CAS  CrossRef  PubMed  Google Scholar 

  103. Guo X, Liu J, Xiao B (2013) Bioelectrochemical enhancement of hydrogen and methane production from the anaerobic digestion of sewage sludge in single-chamber membrane-free microbial electrolysis cells. Int J Hydrogen Energy 38:1342–1347. https://doi.org/10.1016/j.ijhydene.2012.11.087

    CAS  CrossRef  Google Scholar 

  104. Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T, Shima S (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem 79. https://doi.org/10.1146/annurev.biochem.030508.152103

  105. Vignais PM, Billoud B (2007) Occurrence, classification , and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272. https://doi.org/10.1021/cr050196r

    CAS  CrossRef  PubMed  Google Scholar 

  106. Lohner ST, Deutzmann JS, Logan BE, Leigh J, Spormann AM (2014) Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis. ISME J 8:1673–1681. https://doi.org/10.1038/ismej.2014.82

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  107. Blasco-Gómez R, Batlle-Vilanova P, Villano M, Balaguer M, Colprim J, Puig S (2017) On the edge of research and technological application: a critical review of electromethanogenesis. Int J Mol Sci 18:874. https://doi.org/10.3390/ijms18040874

    CAS  CrossRef  PubMed Central  Google Scholar 

  108. Zeng M, Li Y (2015) Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 3:14942–14962. https://doi.org/10.1039/C5TA02974K

    CAS  CrossRef  Google Scholar 

  109. Kracke F, Deutzmann JS, Gu W, Spormann AM (2020) In situ electrochemical H2 production for efficient and stable power-to-gas electromethanogenesis. Green Chem 22:6194–6203. https://doi.org/10.1039/D0GC01894E

    CAS  CrossRef  Google Scholar 

  110. Geppert F, Liu D, van Eerten-Jansen M, Weidner E, Buisman C, ter Heijne A (2016) Bioelectrochemical power-to-gas: state of the art and future perspectives. Trends Biotechnol 34:879–894. https://doi.org/10.1016/j.tibtech.2016.08.010

    CAS  CrossRef  PubMed  Google Scholar 

  111. Baek G, Kim J, Lee S, Lee C (2017) Development of biocathode during repeated cycles of bioelectrochemical conversion of carbon dioxide to methane. Bioresour Technol 241:1201–1207. https://doi.org/10.1016/j.biortech.2017.06.125

    CAS  CrossRef  PubMed  Google Scholar 

  112. Song H, Choi O, Pandey A, Kim YG, Joo JS, Sang B-I (2019) Simultaneous production of methane and acetate by thermophilic mixed culture from carbon dioxide in bioelectrochemical system. Bioresour Technol 281:474–479. https://doi.org/10.1016/j.biortech.2019.02.115

    CAS  CrossRef  PubMed  Google Scholar 

  113. Liu D, Roca-Puigros M, Geppert F, Caizan L, Palakawong S, Buisman C, Heijne A (2018) Granular carbon-based electrodes as cathodes in methane-producing bioelectrochemical systems. Front Bioeng Biotechnol 6. https://doi.org/10.3389/fbioe.2018.00078

  114. Mayer F, Enzmann F, Lopez AM, Holtmann D (2019) Performance of different methanogenic species for the microbial electrosynthesis of methane from carbon dioxide. Bioresour Technol:121706. https://doi.org/10.1016/j.biortech.2019.121706

  115. Fu Q, Kuramochi Y, Fukushima N, Maeda H, Sato K, Kobayashi H (2015) Bioelectrochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis. Environ Sci Technol 49:1225–1232. https://doi.org/10.1021/es5052233

    CAS  CrossRef  PubMed  Google Scholar 

  116. Marshall CW, Ross DE, Fichot EB, Norman RS, May HD (2012) Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl Environ Microbiol 78:8412–8420. https://doi.org/10.1128/AEM.02401-12

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  117. Kleerebezem R, van Loosdrecht MCM (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207–212. https://doi.org/10.1016/j.copbio.2007.05.001

    CAS  CrossRef  PubMed  Google Scholar 

  118. Yang HY, Bao BL, Liu J, Qin Y, Wang YR, Su KZ, Han JC, Mu Y (2018) Temperature dependence of bioelectrochemical CO2 conversion and methane production with a mixed-culture biocathode. Bioelectrochemistry 119:180–188. https://doi.org/10.1016/j.bioelechem.2017.10.002

    CAS  CrossRef  PubMed  Google Scholar 

  119. Jourdin L, Grieger T, Monetti J, Flexer V, Freguia S, Lu Y, Chen J, Romano M, Wallace GG, Keller J (2015) High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide. Environ Sci Technol 49:13566–13574. https://doi.org/10.1021/acs.est.5b03821

    CAS  CrossRef  PubMed  Google Scholar 

  120. Aryal N, Tremblay PL, Lizak DM, Zhang T (2017) Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide. Bioresour Technol 233:184–190. https://doi.org/10.1016/j.biortech.2017.02.128

    CAS  CrossRef  PubMed  Google Scholar 

  121. Blanchet E, Duquenne F, Rafrafi Y, Etcheverry L, Erable B, Bergel A (2015) Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction. Energ Environ Sci 8:3731–3744. https://doi.org/10.1039/C5EE03088A

    CAS  CrossRef  Google Scholar 

  122. Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Microbiol Biotechnol 77:2882–2886. https://doi.org/10.1128/AEM.02642-10

    CAS  CrossRef  Google Scholar 

  123. Jung T, Hackbarth M, Horn H, Gescher J (2020) Improving the cathodic biofilm growth capabilities of Kyrpidia spormannii EA-1 by undirected mutagenesis. Microorganisms 9:77. https://doi.org/10.3390/microorganisms9010077

    CAS  CrossRef  PubMed Central  Google Scholar 

  124. Schuster E, Schlegel HG (1967) Chemolithotrophes Wachstum von Hydrogenomonas H16 im Chemostaten mit elektrolytischer Knallgaserzeugung. Arch Mikrobiol 58:380–409

    CAS  CrossRef  Google Scholar 

  125. Torella JP, Gagliardi CJ, Chen JS, Bediako DK, Colón B, Way JC, Silver PA, Nocera DG (2015) Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system. Proc Natl Acad Sci 112:2337–2342. https://doi.org/10.1073/pnas.1424872112

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  126. Liu C, Colón BC, Ziesack M, Silver PA, Nocera DG (2016) Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352:1210–1213. https://doi.org/10.1126/science.aaf5039

    CAS  CrossRef  PubMed  Google Scholar 

  127. Sydow A, Krieg T, Ulber R, Holtmann D (2017) Growth medium and electrolyte-how to combine the different requirements on the reaction solution in bioelectrochemical systems using Cupriavidus necator. Eng Life Sci 17:781–791. https://doi.org/10.1002/elsc.201600252

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  128. Reiner JE, Jung T, Lapp CJ, Siedler M, Bunk B, Overmann J, Gescher J (2018) Kyrpidia spormannii sp. nov., a thermophilic, hydrogen-oxidizing, facultative autotroph, isolated from hydrothermal systems at São Miguel Island, and emended description of the genus Kyrpidia. Int J Syst Evol Microbiol 68:3735–3740. https://doi.org/10.1099/ijsem.0.003037

    CAS  CrossRef  PubMed  Google Scholar 

  129. Hackbarth M, Jung T, Reiner JE, Gescher J, Horn H, Hille-Reichel A, Wagner M (2020) Monitoring and quantification of bioelectrochemical Kyrpidia spormannii biofilm development in a novel flow cell setup. Chem Eng J 390:124604. https://doi.org/10.1016/j.cej.2020.124604

    CAS  CrossRef  Google Scholar 

  130. Bajracharya S, ter Heijne A, Dominguez Benetton X, Vanbroekhoven K, Buisman CJN, Strik DPBTB, Pant D (2015) Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode. Bioresour Technol 195:14–24. https://doi.org/10.1016/j.biortech.2015.05.081

    CAS  CrossRef  PubMed  Google Scholar 

  131. del Pilar Anzola Rojas M, Mateos R, Sotres A, Zaiat M, Gonzalez ER, Escapa A, De Wever H, Pant D (2018) Microbial electrosynthesis (MES) from CO2 is resilient to fluctuations in renewable energy supply. Energ Conver Manage 177:272–279. https://doi.org/10.1016/j.enconman.2018.09.064

    CAS  CrossRef  Google Scholar 

  132. Rotaru A-E, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin KP, Lovley DR (2014) Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl Environ Microbiol 80:4599–4605. https://doi.org/10.1128/AEM.00895-14

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  133. ter Heijne A, Geppert F, Sleutels THJA, Batlle-Vilanova P, Liu D, Puig S (2017) Mixed culture biocathodes for production of hydrogen, methane, and carboxylates. In: Harnisch F, Holtmann D (eds) Bioelectrosynthesis. Advances in biochemical engineering/biotechnology, vol 167. Springer, Cham, pp 203–229. https://doi.org/10.1007/10_2017_15

    CrossRef  Google Scholar 

  134. Enzmann F, Gronemeier D, Holtmann D (2019) Process stability examinations of bioelectromethanogenesis using a pure culture of M. maripaludis. Biochem Eng J 151:107321. https://doi.org/10.1016/j.bej.2019.107321

    CAS  CrossRef  Google Scholar 

  135. Chu N, Liang Q, Zhang W, Ge Z, Hao W, Jiang Y, Zeng RJ (2020) Waste C1 gases as alternatives to pure CO2 improved the microbial electrosynthesis of C4 and C6 carboxylates. ACS Sustain Chem Eng 8:8773–8782. https://doi.org/10.1021/acssuschemeng.0c02515

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Holtmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Enzmann, F., Stöckl, M., Pfitzer, M., Holtmann, D. (2021). Empower C1: Combination of Electrochemistry and Biology to Convert C1 Compounds. In: Zeng, AP., Claassens, N.J. (eds) One-Carbon Feedstocks for Sustainable Bioproduction. Advances in Biochemical Engineering/Biotechnology, vol 180. Springer, Cham. https://doi.org/10.1007/10_2021_171

Download citation