Skip to main content

Automation for Life Science Laboratories

  • Chapter
  • First Online:
Smart Biolabs of the Future

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 182))

Abstract

The automation of processes in all areas of the life sciences will continue to increase in the coming years due to an ever increasing number of samples to be processed, an increasing need to protect laboratory personnel from infectious material and increasing cost pressure. Depending on the requirements of the respective application, different concepts for automation systems are available, which have a different degree of automation with regard to data handling, transportation tasks, and the processing of the samples. Robots form a central component of these automation concepts. Classic stationary robots from the industrial sector will increasingly be replaced by new developments in the field of light-weight robots. In addition, mobile robots will also be of particular importance in the automation of life science laboratories in the future, especially for transportation tasks between different manual and (partially) automated stations. With an increasing number of different, highly diverse processes, the need for special devices and system components will also increase. This applies to both, the handling of the labware and the processing of the samples. In contrast to previous automation strategies with a highly parallel approach, future developments will increasingly be characterized by individual sample handling.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. DIN IEC 60050-351 (2014) International electrotechnical vocabulary – part 351: control technology

    Google Scholar 

  2. Kand’ar R, Zakova P (2009) Determination of 25-hydroxyvitamin D3 in human plasma using HPLC with UV detection based on SPE sample preparation. Liq Chromatogr 32(17):2953–2957

    Google Scholar 

  3. Frutig M (2012) Leichtbauroboter sind im Kommen. technica 6/7:44–49

    Google Scholar 

  4. ISO 10218-1 (2011) Robots and robotic devices – safety requirements for industrial robots – part 1: robots

    Google Scholar 

  5. Thurow K (2020) Cobots in the analytical laboratory – useful tool or gadget? Wiley Analytical Science, https://analyticalscience.wiley.com/do/10.1002/gitlab.19090

  6. Yaskawa (2017) Flexible lab automation with Motoman SDA10F. Yaskawa Europe, A-No 163287

    Google Scholar 

  7. Ghandour M, Liu H, Stoll N et al (2017) Human robot interaction for hybrid collision avoidance system for indoor mobile robots. Adv Sci Technol Eng Syst J 2(3):650–657

    Article  Google Scholar 

  8. Liu H, Stoll N, Junginger S (2013) Mobile robot for life science automation. Int J Adv Robot Syst 10:288

    Article  Google Scholar 

  9. Fritzsche M, Schulenburg E, Elkmann N et al (2007) Safe human-robot interaction in a life science environment. In: Proceedings of the IEEE international workshop on safety security and rescue robotics (SSRR 2007)

    Google Scholar 

  10. Fraunhofer IFF (2016) Mobile manipulation: Der Assistenzroboter “ANNIE”. https://www.iff.fraunhofer.de/content/dam/iff/de/dokumente/publikationen/mobile-manipulation-der-assistenzroboter-annie-fraunhofer-iff.pdf

  11. Kittmann R, Fröhlich T, Schäfer J et al (2015) Let me introduce myself: I am care-O-bot 4, a gentleman robot. In: Diefenbach S, Henze N, Pielot M (eds) Mensch und computer 2015 – proceedings. De Gruyter Oldenbourg, Berlin, pp 223–232

    Google Scholar 

  12. Burger B, Maffettone PM, Gusev V et al (2020) A mobile robotic chemist. Nature 583:237–241

    Article  CAS  Google Scholar 

  13. Thurow K, Roddelkopf T (2019) Automationslösungen für das Analytiklabor 2020. BIOspektrum 25(5):520–522

    Article  Google Scholar 

  14. Syndicate Market Research (2019) Solid phase extraction (SPE) market by type (normal phase SPE, reversed phase SPE), by application (pharma, academia, hospital & clinical, environmental), and by region – overall in-depth analysis, global market share, top trends, professional & technical industry insights 2020–2026

    Google Scholar 

  15. Thurow K, Bach A, Junginger S (2020) Parallele positive-pressure Festphasen-Extraktion – Eine Übersicht. BIOspektrum 26(5):550–552

    Article  Google Scholar 

  16. Kinsella B, Fanning T, Searfoss J et al (2016) Analysis of 47 pesticides in Cannabis for high-throughout analysis: traditional dSPE vs. positive pressure dSPE in a 96-well plate. Appl Note Hamilton Lit. No. L50159 v1.0 09/2016

    Google Scholar 

  17. Kristoffersen L, Oiestad EL, Opdal MS et al (2007) Simultaneous determination of 6 beta-blockers, 3 calcium-channel antagonists, 4 angiotensin-II antagonists and 1 antiarrhythmic drug in post-mortem whole blood by automated solid phase extraction and liquid chromatography mass spectrometry: method development and robustness testing by experimental design. J Chromatogr B 850(1–2):147–160

    Article  CAS  Google Scholar 

  18. Wolff C, von Bohl A, Pustelny C et al (2019) High-throughput plasmid DNA purification using the [MPE]2 positive pressure module. Appl Note Hamilton Lit. No. AN-1905-20v1.0 - 05/2019

    Google Scholar 

  19. Gallert C, Vorberg E, Roddelkopf T et al (2015) Evaluation of an automated solid-phase extraction method using positive pressure. Am Pharmaceut Rev https://www.americanpharmaceuticalreview.com/Featured-Articles/174342-Evaluation-of-an-Automated-Solid-Phase-Extraction-Method-Using-Positive-Pressure/

  20. Thurow K, Roddelkopf T, Rohde M (2020) Automatisierte Bestimmung von Dentalmaterialien in Speichel. BIOspektrum 26:170–173

    Article  Google Scholar 

  21. Goebel C, Trout G, Kazlauskas R (2004) Rapid screening method for diuretics in doping control using automated solid phase extraction and liquid chromatography-electrospray tandem mass spectrometry. Anal Chim Acta 502(1):65–74

    Article  CAS  Google Scholar 

  22. Fleischer H, Ramani K, Blitti K et al (2018) Flexible automation system for determination of elemental composition of incrustations in clogged biliary endoprostheses using ICP/MS. SLAS Technol 23(1):83–96

    Article  CAS  Google Scholar 

  23. Shukla SJ, Huang R, Austin CP et al (2010) The future of toxicity testing: a focus on in vitro methods using a high-throughput screening platform. Drug Discov Today 15(23–24):997–1007

    Article  CAS  Google Scholar 

  24. Attene-Ramos MS, Miller N, Huang R et al (2013) The Tox21 robotic platform for the assessment of environmental chemicals – from vision to reality. Drug Discov Today 18(15–16):716–723

    Article  CAS  Google Scholar 

  25. Nam G, Kim YJ, Kim YJ et al (2016) Development of dual-arm anticancer drug compounding robot and preparation system with adaptability and high-speed. J Int Soc Simul Surg 3(2):64–68

    Google Scholar 

  26. Schmid FF, Schwarz T, Klos M et al (2016) Applicability of a dual-arm robotic system for automated downstream analysis of epidermal models. Appl Vitr Toxicol 2(2):118–125

    Article  Google Scholar 

  27. Chu X, Fleischer H, Klos M (2015) Application of dual-arm robot in biomedical analysis: sample preparation and transport. IEEE instrumentation and measurement technology conference I2MTC 2015: 500–504

    Google Scholar 

  28. Fleischer H, Thurow K (2017) Automation solutions for analytical measurement. Wiley VCH, 260 p

    Google Scholar 

  29. Haghi M, Neubert S, Geissler A et al (2020) A flexible and pervasive IoT-based healthcare platform for physiological and environmental parameters monitoring. IEEE Internet Things J 7(6):5628–5647

    Article  Google Scholar 

  30. Haghi M, Stoll R, Thurow K (2018) A low cost standalone multi tasking layer watch in environmental parameter monitoring. IEEE Trans Biomed Circ Syst 12(5):1144–1154

    Article  Google Scholar 

  31. Wang T, Huang D, Yang Z (2016) A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett 8(2):95–119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Thurow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thurow, K. (2021). Automation for Life Science Laboratories. In: Beutel, S., Lenk, F. (eds) Smart Biolabs of the Future. Advances in Biochemical Engineering/Biotechnology, vol 182. Springer, Cham. https://doi.org/10.1007/10_2021_170

Download citation

Publish with us

Policies and ethics