Abstract
The automation of processes in all areas of the life sciences will continue to increase in the coming years due to an ever increasing number of samples to be processed, an increasing need to protect laboratory personnel from infectious material and increasing cost pressure. Depending on the requirements of the respective application, different concepts for automation systems are available, which have a different degree of automation with regard to data handling, transportation tasks, and the processing of the samples. Robots form a central component of these automation concepts. Classic stationary robots from the industrial sector will increasingly be replaced by new developments in the field of light-weight robots. In addition, mobile robots will also be of particular importance in the automation of life science laboratories in the future, especially for transportation tasks between different manual and (partially) automated stations. With an increasing number of different, highly diverse processes, the need for special devices and system components will also increase. This applies to both, the handling of the labware and the processing of the samples. In contrast to previous automation strategies with a highly parallel approach, future developments will increasingly be characterized by individual sample handling.
Graphical Abstract
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
DIN IEC 60050-351 (2014) International electrotechnical vocabulary – part 351: control technology
Kand’ar R, Zakova P (2009) Determination of 25-hydroxyvitamin D3 in human plasma using HPLC with UV detection based on SPE sample preparation. Liq Chromatogr 32(17):2953–2957
Frutig M (2012) Leichtbauroboter sind im Kommen. technica 6/7:44–49
ISO 10218-1 (2011) Robots and robotic devices – safety requirements for industrial robots – part 1: robots
Thurow K (2020) Cobots in the analytical laboratory – useful tool or gadget? Wiley Analytical Science, https://analyticalscience.wiley.com/do/10.1002/gitlab.19090
Yaskawa (2017) Flexible lab automation with Motoman SDA10F. Yaskawa Europe, A-No 163287
Ghandour M, Liu H, Stoll N et al (2017) Human robot interaction for hybrid collision avoidance system for indoor mobile robots. Adv Sci Technol Eng Syst J 2(3):650–657
Liu H, Stoll N, Junginger S (2013) Mobile robot for life science automation. Int J Adv Robot Syst 10:288
Fritzsche M, Schulenburg E, Elkmann N et al (2007) Safe human-robot interaction in a life science environment. In: Proceedings of the IEEE international workshop on safety security and rescue robotics (SSRR 2007)
Fraunhofer IFF (2016) Mobile manipulation: Der Assistenzroboter “ANNIE”. https://www.iff.fraunhofer.de/content/dam/iff/de/dokumente/publikationen/mobile-manipulation-der-assistenzroboter-annie-fraunhofer-iff.pdf
Kittmann R, Fröhlich T, Schäfer J et al (2015) Let me introduce myself: I am care-O-bot 4, a gentleman robot. In: Diefenbach S, Henze N, Pielot M (eds) Mensch und computer 2015 – proceedings. De Gruyter Oldenbourg, Berlin, pp 223–232
Burger B, Maffettone PM, Gusev V et al (2020) A mobile robotic chemist. Nature 583:237–241
Thurow K, Roddelkopf T (2019) Automationslösungen für das Analytiklabor 2020. BIOspektrum 25(5):520–522
Syndicate Market Research (2019) Solid phase extraction (SPE) market by type (normal phase SPE, reversed phase SPE), by application (pharma, academia, hospital & clinical, environmental), and by region – overall in-depth analysis, global market share, top trends, professional & technical industry insights 2020–2026
Thurow K, Bach A, Junginger S (2020) Parallele positive-pressure Festphasen-Extraktion – Eine Übersicht. BIOspektrum 26(5):550–552
Kinsella B, Fanning T, Searfoss J et al (2016) Analysis of 47 pesticides in Cannabis for high-throughout analysis: traditional dSPE vs. positive pressure dSPE in a 96-well plate. Appl Note Hamilton Lit. No. L50159 v1.0 09/2016
Kristoffersen L, Oiestad EL, Opdal MS et al (2007) Simultaneous determination of 6 beta-blockers, 3 calcium-channel antagonists, 4 angiotensin-II antagonists and 1 antiarrhythmic drug in post-mortem whole blood by automated solid phase extraction and liquid chromatography mass spectrometry: method development and robustness testing by experimental design. J Chromatogr B 850(1–2):147–160
Wolff C, von Bohl A, Pustelny C et al (2019) High-throughput plasmid DNA purification using the [MPE]2 positive pressure module. Appl Note Hamilton Lit. No. AN-1905-20v1.0 - 05/2019
Gallert C, Vorberg E, Roddelkopf T et al (2015) Evaluation of an automated solid-phase extraction method using positive pressure. Am Pharmaceut Rev https://www.americanpharmaceuticalreview.com/Featured-Articles/174342-Evaluation-of-an-Automated-Solid-Phase-Extraction-Method-Using-Positive-Pressure/
Thurow K, Roddelkopf T, Rohde M (2020) Automatisierte Bestimmung von Dentalmaterialien in Speichel. BIOspektrum 26:170–173
Goebel C, Trout G, Kazlauskas R (2004) Rapid screening method for diuretics in doping control using automated solid phase extraction and liquid chromatography-electrospray tandem mass spectrometry. Anal Chim Acta 502(1):65–74
Fleischer H, Ramani K, Blitti K et al (2018) Flexible automation system for determination of elemental composition of incrustations in clogged biliary endoprostheses using ICP/MS. SLAS Technol 23(1):83–96
Shukla SJ, Huang R, Austin CP et al (2010) The future of toxicity testing: a focus on in vitro methods using a high-throughput screening platform. Drug Discov Today 15(23–24):997–1007
Attene-Ramos MS, Miller N, Huang R et al (2013) The Tox21 robotic platform for the assessment of environmental chemicals – from vision to reality. Drug Discov Today 18(15–16):716–723
Nam G, Kim YJ, Kim YJ et al (2016) Development of dual-arm anticancer drug compounding robot and preparation system with adaptability and high-speed. J Int Soc Simul Surg 3(2):64–68
Schmid FF, Schwarz T, Klos M et al (2016) Applicability of a dual-arm robotic system for automated downstream analysis of epidermal models. Appl Vitr Toxicol 2(2):118–125
Chu X, Fleischer H, Klos M (2015) Application of dual-arm robot in biomedical analysis: sample preparation and transport. IEEE instrumentation and measurement technology conference I2MTC 2015: 500–504
Fleischer H, Thurow K (2017) Automation solutions for analytical measurement. Wiley VCH, 260 p
Haghi M, Neubert S, Geissler A et al (2020) A flexible and pervasive IoT-based healthcare platform for physiological and environmental parameters monitoring. IEEE Internet Things J 7(6):5628–5647
Haghi M, Stoll R, Thurow K (2018) A low cost standalone multi tasking layer watch in environmental parameter monitoring. IEEE Trans Biomed Circ Syst 12(5):1144–1154
Wang T, Huang D, Yang Z (2016) A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett 8(2):95–119
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Thurow, K. (2021). Automation for Life Science Laboratories. In: Beutel, S., Lenk, F. (eds) Smart Biolabs of the Future. Advances in Biochemical Engineering/Biotechnology, vol 182. Springer, Cham. https://doi.org/10.1007/10_2021_170
Download citation
DOI: https://doi.org/10.1007/10_2021_170
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-12581-2
Online ISBN: 978-3-031-12582-9
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)