Skip to main content

Aptamer-Modified Hydrogels

  • Chapter
  • First Online:
Tunable Hydrogels

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 178))

Abstract

Hydrogels have attracted much attention especially due to their biocompatibility and their potential for stimulus responsiveness. By combining hydrogels with aptamers, biological recognition and responsiveness can be added to hydrogels, thereby opening path to advanced applications in biosensing and biomedicine. Within this chapter aptamers will be introduced and their contributions to biological responsiveness of hydrogels will be described. Especially the aptamer-based mechanisms that result in biological responsiveness will be explained and examples for the application of these mechanisms will be given ranging from rather simple sensing approaches to advanced materials for tissue engineering and drug delivery. Since aptamers are not only highly specific bioreceptors, but represent switchable structures that can be easily manipulated using well-known DNA techniques, the combination of aptamers and hydrogels facilitates the rational design of well-programmable and target-responsive smart hydrogels.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

AuNP:

Gold nanoparticle

bFGF:

Basic fibroblast growth factor

CTC:

Circulating tumor cell

DNA:

Deoxyribonucleic acid

ECM:

Extracellular matrix

FNA:

Functional nucleic acid

HUVEC:

Human umbilical cord cells

PCR:

Polymerase chain reaction

PDGF:

Platelet-derived growth factor

PEG:

Polyethylene glycol

QD:

Quantum dot

RNA :

Ribonucleic acid

SELEX:

Systematic evolution of ligands by exponential enrichment

TID:

Target-induced dissociation

TISS:

Target-induced structure switch

VEGF:

Vascular endothelial growth factor

References

  1. Li J et al (2016) Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chem Soc Rev 45(5):1410–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mastronardi E et al (2014) Smart materials based on DNA aptamers: taking aptasensing to the next level. Sensors (Basel) 14(2):3156–3171

    Article  Google Scholar 

  3. Xiong X et al (2013) Responsive DNA-based hydrogels and their applications. Macromol Rapid Commun 34(16):1271–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. You K et al (2003) Aptamers as functional nucleic acids: in vitro selection and biotechnological applications. Biotechnol Bioprocess Eng 8:505–510

    Article  Google Scholar 

  5. Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287(5454):820–825

    Article  CAS  PubMed  Google Scholar 

  6. Li T, Li B, Dong S (2007) Adaptive recognition of small molecules by nucleic acid aptamers through a label-free approach. Chemistry 13(23):6718–6723

    Article  CAS  PubMed  Google Scholar 

  7. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  CAS  PubMed  Google Scholar 

  8. Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344(6265):467–468

    Article  CAS  PubMed  Google Scholar 

  9. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  CAS  PubMed  Google Scholar 

  10. Blind M, Blank M (2015) Aptamer selection technology and recent advances. Mol Ther Nucl Acids 4:e223

    Article  Google Scholar 

  11. Stoltenburg R, Nikolaus N, Strehlitz B (2012) Capture-SELEX: selection of DNA aptamers for aminoglycoside antibiotics. J Anal Methods Chem 2012:415697

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stoltenburg R, Reinemann C, Strehlitz B (2005) FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal Bioanal Chem 383(1):83–91

    Article  CAS  PubMed  Google Scholar 

  13. Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24(4):381–403

    Article  CAS  PubMed  Google Scholar 

  14. Walter JG et al (2012) Aptasensors for small molecule detection. Zeitschrift Fur Naturforschung Sect B J Chem Sci 67(10):976–986

    Article  CAS  Google Scholar 

  15. Schuling T et al (2018) Aptamer-based lateral flow assays. Aims Bioeng 5(2):78–102

    Article  Google Scholar 

  16. Walter JG, Stahl F, Scheper T (2012) Aptamers as affinity ligands for downstream processing. Eng Life Sci 12(5):496–506

    Article  CAS  Google Scholar 

  17. Meyer M, Scheper T, Walter JG (2013) Aptamers: versatile probes for flow cytometry. Appl Microbiol Biotechnol 97(16):7097–7109

    Article  CAS  PubMed  Google Scholar 

  18. Nagahara S, Matsuda T (1996) Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers. Polym Gels Networks 4(2):111–127

    Article  CAS  Google Scholar 

  19. Um SH et al (2006) Enzyme-catalysed assembly of DNA hydrogel. Nat Mater 5(10):797–801

    Article  CAS  PubMed  Google Scholar 

  20. Huang Z et al (2017) An RNA aptamer capable of forming a hydrogel by self-assembly. Biomacromolecules 18(7):2056–2063

    Article  CAS  PubMed  Google Scholar 

  21. Han S et al (2020) Double controlled release of therapeutic RNA modules through injectable DNA-RNA hybrid hydrogel. ACS Appl Mater Interfaces 12(50):55554–55563

    Article  CAS  PubMed  Google Scholar 

  22. Di Y et al (2020) Design, bioanalytical, and biomedical applications of aptamer-based hydrogels. Front Med (Lausanne) 7:456

    Article  Google Scholar 

  23. Yang H et al (2008) Engineering target-responsive hydrogels based on aptamer-target interactions. J Am Chem Soc 130(20):6320–6321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ye BF et al (2012) Colorimetric photonic hydrogel aptasensor for the screening of heavy metal ions. Nanoscale 4(19):5998–6003

    Article  CAS  PubMed  Google Scholar 

  25. Bai W, Gariano NA, Spivak DA (2013) Macromolecular amplification of binding response in superaptamer hydrogels. J Am Chem Soc 135(18):6977–6984

    Article  CAS  PubMed  Google Scholar 

  26. Bai W, Spivak DA (2014) A double-imprinted diffraction-grating sensor based on a virus-responsive super-aptamer hydrogel derived from an impure extract. Angew Chem Int Ed Engl 53(8):2095–2098

    Article  CAS  PubMed  Google Scholar 

  27. Oishi M, Nakatani K (2019) Dynamically programmed switchable DNA hydrogels based on a DNA circuit mechanism. Small 15(15):e1900490

    Article  PubMed  Google Scholar 

  28. Yin BC et al (2012) Colorimetric logic gates based on aptamer-crosslinked hydrogels. Chem Commun (Camb) 48(9):1248–1250

    Article  CAS  Google Scholar 

  29. Zhu Z et al (2010) An aptamer cross-linked hydrogel as a colorimetric platform for visual detection. Angew Chem Int Ed Engl 49(6):1052–1056

    Article  CAS  PubMed  Google Scholar 

  30. Yan L et al (2013) Target-responsive "sweet" hydrogel with glucometer readout for portable and quantitative detection of non-glucose targets. J Am Chem Soc 135(10):3748–3751

    Article  CAS  PubMed  Google Scholar 

  31. Zhu Z et al (2014) Au@Pt nanoparticle encapsulated target-responsive hydrogel with volumetric bar-chart chip readout for quantitative point-of-care testing. Angew Chem Int Ed Engl 53(46):12503–12507

    CAS  PubMed  Google Scholar 

  32. Liu R et al (2015) Design and synthesis of target-responsive aptamer-cross-linked hydrogel for visual quantitative detection of ochratoxin A. ACS Appl Mater Interfaces 7(12):6982–6990

    Article  CAS  PubMed  Google Scholar 

  33. Zhang L et al (2013) Self-assembled DNA hydrogel as switchable material for aptamer-based fluorescent detection of protein. Anal Chem 85(22):11077–11082

    Article  CAS  PubMed  Google Scholar 

  34. Wang X, Wang X (2013) Aptamer-functionalized hydrogel diffraction gratings for the human thrombin detection. Chem Commun (Camb) 49(53):5957–5959

    Article  CAS  Google Scholar 

  35. Wang R, Li Y (2013) Hydrogel based QCM aptasensor for detection of avian influenza virus. Biosens Bioelectron 42:148–155

    Article  PubMed  Google Scholar 

  36. Soontornworajit B et al (2011) Affinity hydrogels for controlled protein release using nucleic acid aptamers and complementary oligonucleotides. Biomaterials 32(28):6839–6849

    Article  CAS  PubMed  Google Scholar 

  37. Abune L et al (2019) Macroporous hydrogels for stable sequestration and sustained release of vascular endothelial growth factor and basic fibroblast growth factor using nucleic acid aptamers. ACS Biomater Sci Eng 5(5):2382–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Soontornworajit B et al (2010) Aptamer-functionalized in situ injectable hydrogel for controlled protein release. Biomacromolecules 11(10):2724–2730

    Article  CAS  PubMed  Google Scholar 

  39. Zhao N et al (2019) Dual aptamer-functionalized in situ injectable fibrin hydrogel for promotion of angiogenesis via codelivery of vascular endothelial growth factor and platelet-derived growth factor-BB. ACS Appl Mater Interfaces 11(20):18123–18132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Battig MR, Soontornworajit B, Wang Y (2012) Programmable release of multiple protein drugs from aptamer-functionalized hydrogels via nucleic acid hybridization. J Am Chem Soc 134(30):12410–12413

    Article  CAS  PubMed  Google Scholar 

  41. Li S et al (2013) Endonuclease-responsive aptamer-functionalized hydrogel coating for sequential catch and release of cancer cells. Biomaterials 34(2):460–469

    Article  PubMed  Google Scholar 

  42. Lai J et al (2017) Displacement and hybridization reactions in aptamer-functionalized hydrogels for biomimetic protein release and signal transduction. Chem Sci 8(11):7306–7311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li W et al (2015) Endogenous signalling control of cell adhesion by using aptamer functionalized biocompatible hydrogel. Chem Sci 6(12):6762–6768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Song P et al (2017) DNA hydrogel with aptamer-toehold-based recognition, cloaking, and decloaking of circulating tumor cells for live cell analysis. Nano Lett 17(9):5193–5198

    Article  CAS  PubMed  Google Scholar 

  45. Chen N et al (2012) Cell adhesion on an artificial extracellular matrix using aptamer-functionalized PEG hydrogels. Biomaterials 33(5):1353–1362

    Article  CAS  PubMed  Google Scholar 

  46. Zhang X et al (2016) Chimeric aptamer-gelatin hydrogels as an extracellular matrix mimic for loading cells and growth factors. Biomacromolecules 17(3):778–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao N et al (2019) Assembly of bifunctional aptamer-fibrinogen macromer for VEGF delivery and skin wound healing. Chem Mater 31(3):1006–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Roy T, James BD, Allen JB (2020) Anti-VEGF-R2 aptamer and RGD peptide synergize in a bifunctional hydrogel for enhanced angiogenic potential. Macromol Biosci:e2000337

    Google Scholar 

  49. Hu X et al (2017) A difunctional regeneration scaffold for knee repair based on aptamer-directed cell recruitment. Adv Mater 29(15)

    Google Scholar 

  50. Wang X et al (2019) Aptamer-functionalized bioscaffold enhances cartilage repair by improving stem cell recruitment in osteochondral defects of rabbit knees. Am J Sports Med 47(10):2316–2326

    Article  PubMed  Google Scholar 

  51. Wang Z et al (2015) Aptamer-functionalized hydrogel as effective anti-cancer drugs delivery agents. Coll Surf B Biointerf 134:40–46

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna-Gabriela Walter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walter, JG. (2021). Aptamer-Modified Hydrogels. In: Lavrentieva, A., Pepelanova, I., Seliktar, D. (eds) Tunable Hydrogels. Advances in Biochemical Engineering/Biotechnology, vol 178. Springer, Cham. https://doi.org/10.1007/10_2021_166

Download citation

Publish with us

Policies and ethics