Skip to main content

Self-Assembly and Genetically Engineered Hydrogels

  • Chapter
  • First Online:
Tunable Hydrogels

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 178))

Abstract

The past few decades have witnessed the emergence of a variety of hydrogel materials for applications ranging from health to solutions for restoring natural environments. Among the numerous ways to synthesize these materials, directly assembling genetically engineered proteins into higher-order structures turned out to be a powerful strategy for hydrogel design. In recent years, the resulting genetically engineered (GE) hydrogels, noted for their modularity, versatility, and genetic programmability, are gaining traction with materials scientists and synthetic biologists who are eyeing the prospect of mass producing these materials via biosynthesis. In this chapter, we review the recent progresses in creating GE hydrogels, especially those enabled by self-assembling protein motifs, as well as their applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879

    Article  CAS  PubMed  Google Scholar 

  2. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19:375–398

    CAS  Google Scholar 

  3. Burdick JA, Murphy WL (2012) Moving from static to dynamic complexity in hydrogel design. Nat Commun 3

    Google Scholar 

  4. Tessmar JK, Gopferich AM (2007) Matrices and scaffolds for protein delivery in tissue engineering. Adv Drug Deliv Rev 59:274–291

    Article  CAS  PubMed  Google Scholar 

  5. Burdick JA, Mauck RL, Gerecht S (2016) To serve and protect: hydrogels to improve stem cell-based therapies. Cell Stem Cell 18:13–15

    Article  CAS  PubMed  Google Scholar 

  6. DeForest CA, Polizzotti BD, Anseth KS (2009) Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat Mater 8:659–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Banta S, Wheeldon IR, Blenner M (2010) Protein engineering in the development of functional hydrogels. Annu Rev Biomed Eng 12(12):167–186

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, Xue B, Cao Y (2020) 100th anniversary of macromolecular science viewpoint: synthetic protein hydrogels. ACS Macro Lett 9:512–524

    Article  CAS  Google Scholar 

  9. Huang PS, Boyken SE, Baker D (2016) The coming of age of de novo protein design. Nature 537:320–327

    Article  CAS  PubMed  Google Scholar 

  10. Marsh JA, Teichmann SA (2015) Structure, dynamics, assembly, and evolution of protein complexes. Annu Rev Biochem 84(84):551–575

    Article  CAS  PubMed  Google Scholar 

  11. Lupas A (1996) Coiled coils: new structures and new functions. Trends Biochem Sci 21:375–382

    Article  CAS  PubMed  Google Scholar 

  12. Lapenta F, Aupic J, Strmsek Z, Jerala R (2018) Coiled coil protein origami: from modular design principles towards biotechnological applications. Chem Soc Rev 47:3530–3542

    Article  CAS  PubMed  Google Scholar 

  13. Lupas AN, Gruber M (2005) The structure of alpha-helical coiled coils. Fibrous proteins: coiled-coils, collagen and elastomers, vol 70, pp 37−78

    Google Scholar 

  14. Liu JF, Rost B (2001) Comparing function and structure between entire proteomes. Protein Sci 10:1970–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang C, Stewart RJ, Kopecek J (1999) Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397:417–420

    Article  CAS  PubMed  Google Scholar 

  16. Petka WA, Harden JL, McGrath KP, Wirtz D, Tirrell DA (1998) Reversible hydrogels from self-assembling artificial proteins. Science 281:389–392

    Article  CAS  PubMed  Google Scholar 

  17. Dooling LJ, Buck ME, Zhang WB, Tirrell DA (2016) Programming molecular association and viscoelastic behavior in protein networks. Adv Mater 28:4651–4657

    Article  CAS  PubMed  Google Scholar 

  18. Shen W, Zhang KC, Kornfield JA, Tirrell DA (2006) Tuning the erosion rate of artificial protein hydrogels through control of network topology. Nat Mater 5:153–158

    Article  CAS  PubMed  Google Scholar 

  19. Dooling LJ, Tirrell DA (2016) Engineering the dynamic properties of protein networks through sequence variation. ACS Cent Sci 2:812–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tunn I, Harrington MJ, Blank KG (2019) Bioinspired histidine(−)Zn(2+) coordination for tuning the mechanical properties of self-healing coiled coil cross-linked hydrogels. Biomimetics (Basel) 4

    Google Scholar 

  21. Yan XJ et al (2009) Molecular mechanism of inward rectifier potassium channel 2.3 regulation by tax-interacting protein-1. J Mol Biol 392:967–976

    Article  CAS  PubMed  Google Scholar 

  22. Wu JH et al (2018) Rationally designed synthetic protein hydrogels with predictable mechanical properties. Nat Commun 9

    Google Scholar 

  23. Liu D et al (2017) Topology engineering of proteins in vivo using genetically encoded, mechanically interlocking SpyX modules for enhanced stability. Acs Central Sci 3:473–481

    Article  CAS  Google Scholar 

  24. Cabantous S, Terwilliger TC, Waldo GS (2005) Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol 23:102–107

    Article  CAS  PubMed  Google Scholar 

  25. Yang ZG et al (2020) Dynamically tunable, macroscopic molecular networks enabled by cellular synthesis of 4-Arm star-like proteins. Matter 2

    Google Scholar 

  26. Grindy SC et al (2015) Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. Nat Mater 14:1210–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wegner SV, Schenk FC, Witzel S, Bialas F, Spatz JP (2016) Cobalt cross-linked redox-responsive PEG hydrogels: from viscoelastic liquids to elastic solids. Macromolecules 49:4229–4235

    Article  CAS  Google Scholar 

  28. Kou SZ et al (2019) Cobalt-cross-linked, redox-responsive Spy network protein hydrogels. Acs Macro Lett 8:773–778

    Article  CAS  Google Scholar 

  29. Jiang B et al (2020) Injectable, photoresponsive hydrogels for delivering neuroprotective proteins enabled by metal-directed protein assembly. Sci Adv 6

    Google Scholar 

  30. Cao YJ, Wei X, Lin Y, Sun F (2020) Synthesis of bio-inspired viscoelastic molecular networks by metal-induced protein assembly. Mol Syst Des Eng 5:117–124

    Article  CAS  Google Scholar 

  31. Liu XT et al (2018) Versatile engineered protein hydrogels enabling decoupled mechanical and biochemical tuning for cell adhesion and neurite growth. Acs Appl Nano Mater 1:1579–1585

    Article  CAS  Google Scholar 

  32. Elvin CM et al (2005) Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437:999–1002

    Article  CAS  PubMed  Google Scholar 

  33. Jus S et al (2011) Cross-linking of collagen with laccases and tyrosinases. Mat Sci Eng C-Mater 31:1068–1077

    Article  CAS  Google Scholar 

  34. Choi YS, Yang YJ, Yang B, Cha HJ (2012) In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli. Microb Cell Fact 11:139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Park BM, Luo JR, Sun F (2019) Enzymatic assembly of adhesive molecular networks with sequence-dependent mechanical properties inspired by mussel foot proteins. Polym Chem 10:823–826

    Article  CAS  Google Scholar 

  36. Luo JR, Liu X, Yang ZG, Sun F (2018) Synthesis of entirely protein-based hydrogels by enzymatic oxidation enabling water-resistant bioadhesion and stem cell encapsulation. ACS Appl Bio Mater 1:1735–1740

    Article  CAS  PubMed  Google Scholar 

  37. Asai D et al (2012) Protein polymer hydrogels by in situ, rapid and reversible self-gelation. Biomaterials 33:5451–5458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nair DP et al (2014) The Thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem Mater 26:724–744

    Article  CAS  Google Scholar 

  39. Salinas CN, Anseth KS (2008) Mixed mode thiol-acrylate photopolymerizations for the synthesis of PEG-peptide hydrogels. Macromolecules 41:6019–6026

    Article  CAS  Google Scholar 

  40. Kou SZ, Yang ZG, Sun F (2017) Protein hydrogel microbeads for selective uranium mining from seawater. ACS Appl Mater Interfaces 9:2035–2039

    Article  CAS  PubMed  Google Scholar 

  41. Horner M et al (2019) Phytochrome-based extracellular matrix with reversibly tunable mechanical properties. Adv Mater 31:e1806727

    Article  PubMed  CAS  Google Scholar 

  42. Charati MB, Ifkovits JL, Burdick JA, Linhardt JG, Kiick KL (2009) Hydrophilic elastomeric biomaterials based on resilin-like polypeptides. Soft Matter 5:3412–3416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chung C, Lampe KJ, Heilshorn SC (2012) Tetrakis(hydroxymethyl) phosphonium chloride as a covalent cross-linking agent for cell encapsulation within protein-based hydrogels. Biomacromolecules 13:3912–3916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schmidt M, Toplak A, Quaedflieg PJLM, Nuijens T (2017) Enzyme-mediated ligation technologies for peptides and proteins. Curr Opin Chem Biol 38:1–7

    Article  CAS  PubMed  Google Scholar 

  45. Shah NH, Muir TW (2014) Inteins: nature’s gift to protein chemists. Chem Sci 5:446–461

    Article  CAS  PubMed  Google Scholar 

  46. Nguyen GKT et al (2014) Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nat Chem Biol 10:732–738

    Article  CAS  PubMed  Google Scholar 

  47. Shadish JA, Benuska GM, DeForest CA (2019) Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials. Nat Mater 18:1005–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang WB, Sun F, Tirrell DA, Arnold FH (2013) Controlling macromolecular topology with genetically encoded SpyTag-SpyCatcher chemistry. J Am Chem Soc 135:13988–13997

    Article  CAS  PubMed  Google Scholar 

  49. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021

    Article  CAS  Google Scholar 

  50. Barner-Kowollik C et al (2011) “Clicking” polymers or just efficient linking: what is the difference? Angew Chem Int Ed 50:60–62

    Article  CAS  Google Scholar 

  51. Zakeri B, Howarth M (2010) Spontaneous intermolecular amide bond formation between side chains for irreversible peptide targeting. J Am Chem Soc 132:4526–4527

    Article  CAS  PubMed  Google Scholar 

  52. Zakeri B et al (2012) Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A 109:E690–E697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tan LL, Hoon SS, Wong FT (2016) Kinetic controlled tag-catcher interactions for directed covalent protein assembly. Plos One 11

    Google Scholar 

  54. Veggiani G et al (2016) Programmable polyproteams built using twin peptide superglues. Proc Natl Acad Sci U S A 113:1202–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Keeble AH et al (2017) Evolving accelerated amidation by SpyTag/SpyCatcher to analyze membrane dynamics. Angew Chem Int Ed Engl 56:16521–16525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Keeble AH et al (2019) Approaching infinite affinity through engineering of peptide-protein interaction. Proc Natl Acad Sci U S A 116:26523–26533

    Article  CAS  PubMed Central  Google Scholar 

  57. Veggiani G, Zakeri B, Howarth M (2014) Superglue from bacteria: unbreakable bridges for protein nanotechnology. Trends Biotechnol 32:506–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sun F, Zhang WB, Mahdavi A, Arnold FH, Tirrell DA (2014) Synthesis of bioactive protein hydrogels by genetically encoded SpyTag-SpyCatcher chemistry. Proc Natl Acad Sci U S A 111:11269–11274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gao XY, Fang J, Xue B, Fu LL, Li HB (2016) Engineering protein hydrogels using SpyCatcher-SpyTag chemistry. Biomacromolecules 17:2812–2819

    Article  CAS  PubMed  Google Scholar 

  60. Joshi J, Rubart M, Zhu W (2019) Optogenetics: background, methodological advances and potential applications for cardiovascular research and medicine. Front Bioeng Biotechnol 7:466

    Article  PubMed  Google Scholar 

  61. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  62. Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431

    Article  CAS  PubMed  Google Scholar 

  63. Christie JM et al (2012) Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335:1492–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Heijde M, Ulm R (2013) Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state. Proc Natl Acad Sci U S A 110:1113–1118

    Article  CAS  PubMed  Google Scholar 

  65. Zhang XL et al (2015) Rational design of a photo-responsive UVR8-derived protein and a self-assembling peptide-protein conjugate for responsive hydrogel formation. Nanoscale 7:16666–16670

    Article  CAS  PubMed  Google Scholar 

  66. Ortiz-Guerrero JM, Polanco MC, Murillo FJ, Padmanabhan S, Elias-Arnanz M (2011) Light-dependent gene regulation by a coenzyme B12-based photoreceptor. Proc Natl Acad Sci U S A 108:7565–7570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kutta RJ et al (2015) The photochemical mechanism of a B12-dependent photoreceptor protein. Nat Commun 6:7907

    Article  CAS  PubMed  Google Scholar 

  68. Jost M et al (2015) Structural basis for gene regulation by a B12-dependent photoreceptor. Nature 526:536–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang R, Yang ZG, Luo JR, Hsing IM, Sun F (2017) B12-dependent photoresponsive protein hydrogels for controlled stem cell/protein release. Proc Natl Acad Sci U S A 114:5912–5917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Andresen M et al (2007) Structural basis for reversible photoswitching in Dronpa. Proc Natl Acad Sci U S A 104:13005–13009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhou XX, Chung HK, Lam AJ, Lin MZ (2012) Optical control of protein activity by fluorescent protein domains. Science 338:810–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mizuno H et al (2010) Higher resolution in localization microscopy by slower switching of a photochromic protein. Photochem Photobiol Sci 9:239–248

    Article  CAS  PubMed  Google Scholar 

  73. Wu X et al (2018) Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Res 11:5556–5565

    Article  CAS  Google Scholar 

  74. Lyu SS et al (2017) Optically controlled reversible protein hydrogels based on photoswitchable fluorescent protein Dronpa. Chem Commun 53:13375–13378

    Article  CAS  Google Scholar 

  75. McEvoy AL et al (2012) mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities. Plos One 7

    Google Scholar 

  76. Zhang W et al (2017) Optogenetic control with a photocleavable protein, PhoCl. Nat Methods 14:391–394

    Article  PubMed  CAS  Google Scholar 

  77. Xiang DF et al (2020) Hydrogels with tunable mechanical properties based on photocleavable proteins. Front Chem 8

    Google Scholar 

  78. Rockwell NC, Su YS, Lagarias JC (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57:837–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Legris M, Ince YC, Fankhauser C (2019) Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat Commun 10:5219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mailliet J et al (2011) Spectroscopy and a high-resolution crystal structure of Tyr263 mutants of cyanobacterial phytochrome Cph1. J Mol Biol 413:115–127

    Article  CAS  PubMed  Google Scholar 

  81. Chilkoti A, Christensen T, MacKay JA (2006) Stimulus responsive elastin biopolymers: applications in medicine and biotechnology. Curr Opin Chem Biol 10:652–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chilkoti A, Dreher MR, Meyer DE (2002) Design of thermally responsive, recombinant polypeptide carriers for targeted drug delivery. Adv Drug Deliv Rev 54:1093–1111

    Article  CAS  PubMed  Google Scholar 

  83. Hultschig C, Hecht HJ, Frank R (2004) Systematic delineation of a calmodulin peptide interaction. J Mol Biol 343:559–568

    Article  CAS  PubMed  Google Scholar 

  84. Cook WJ, Walter LJ, Walter MR (1994) Drug binding by calmodulin: crystal structure of a calmodulin-trifluoperazine complex. Biochemistry 33:15259–15265

    Article  CAS  PubMed  Google Scholar 

  85. Kuboniwa H et al (1995) Solution structure of calcium-free calmodulin. Nat Struct Biol 2:768–776

    Article  CAS  PubMed  Google Scholar 

  86. Ikura M et al (1992) Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 256:632–638

    Article  CAS  PubMed  Google Scholar 

  87. Murphy WL, Dillmore WS, Modica J, Mrksich M (2007) Dynamic hydrogels: translating a protein conformational change into macroscopic motion. Angew Chem Int Ed 46:3066–3069

    Article  CAS  Google Scholar 

  88. Luo JR, Sun F (2020) Calcium-responsive hydrogels enabled by inducible protein-protein interactions. Polym Chem 11:4973–4977

    Article  CAS  Google Scholar 

  89. Annabi N et al (2014) 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater 26:85–123

    Article  CAS  PubMed  Google Scholar 

  90. Mizuguchi Y, Mashimo Y, Mie M, Kobatake E (2020) Temperature-responsive multifunctional protein hydrogels with elastin-like polypeptides for 3-D angiogenesis. Biomacromolecules 21:1126–1135

    Article  CAS  PubMed  Google Scholar 

  91. Khetan S et al (2013) Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat Mater 12:458–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Murphy WL, McDevitt TC, Engler AJ (2014) Materials as stem cell regulators. Nat Mater 13:547–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Crowder SW, Leonardo V, Whittaker T, Papathanasiou P, Stevens MM (2016) Material cues as potent regulators of epigenetics and stem cell function. Cell Stem Cell 18:39–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chaudhuri O et al (2015) Substrate stress relaxation regulates cell spreading. Nat Commun 6:6364

    Article  PubMed  CAS  Google Scholar 

  95. Chaudhuri O et al (2016) Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 15:326–334

    Article  CAS  PubMed  Google Scholar 

  96. Darnell MC et al (2013) Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials 34:8042–8048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  PubMed  Google Scholar 

  98. Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nature 462:433–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Guimaraes CF, Gasperini L, Marques AP, Reis RL (2020) The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater 5:351–370

    Article  Google Scholar 

  100. Okamoto RJ et al (2002) Mechanical properties of dilated human ascending aorta. Ann Biomed Eng 30:624–635

    Article  PubMed  Google Scholar 

  101. Chung J, Kushner AM, Weisman AC, Guan ZB (2014) Direct correlation of single-molecule properties with bulk mechanical performance for the biomimetic design of polymers. Nat Mater 13:1055–1062

    Article  CAS  PubMed  Google Scholar 

  102. Yang ZG et al (2018) Genetically programming stress-relaxation behavior in entirely protein-based molecular networks. ACS Macro Lett 7:1468–1474

    Article  CAS  Google Scholar 

  103. Lv S et al (2010) Designed biomaterials to mimic the mechanical properties of muscles. Nature 465:69–73

    Article  CAS  PubMed  Google Scholar 

  104. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Polymeric systems for controlled drug release. Chem Rev 99:3181–3198

    Article  CAS  PubMed  Google Scholar 

  105. Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1

    Google Scholar 

  106. Peng HT, Shek PN (2010) Novel wound sealants: biomaterials and applications. Expert Rev Med Devices 7:639–659

    Article  CAS  PubMed  Google Scholar 

  107. Mehdizadeh M, Yang J (2013) Design strategies and applications of tissue bioadhesives. Macromol Biosci 13:271–288

    Article  CAS  PubMed  Google Scholar 

  108. Trott AT (1997) Cyanoacrylate tissue adhesives – an advance in wound care. JAMA 277:1559–1560

    Article  CAS  PubMed  Google Scholar 

  109. Martinowitz U, Saltz R (1996) Fibrin sealant. Curr Opin Hematol 3:395–402

    Article  CAS  PubMed  Google Scholar 

  110. Albes JM et al (1993) Biophysical properties of the gelatin-resorcinol-formaldehyde glutaraldehyde adhesive. Ann Thorac Surg 56:910–915

    Article  CAS  PubMed  Google Scholar 

  111. Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29:322–337

    Article  CAS  PubMed  Google Scholar 

  112. Lee BP, Messersmith PB, Israelachvili JN, Waite JH (2011) Mussel-inspired adhesives and coatings. Annu Rev Mat Res 41:99–132

    Article  CAS  Google Scholar 

  113. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yang B et al (2014) In vivo residue-specific Dopa-incorporated engineered mussel bioglue with enhanced adhesion and water resistance. Angew Chem Int Ed 53:13360–13364

    Article  CAS  Google Scholar 

  115. Sun F, He C (2021) Engineer biology for uranium. Chem 7:274–275

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, Z., Sun, F. (2021). Self-Assembly and Genetically Engineered Hydrogels. In: Lavrentieva, A., Pepelanova, I., Seliktar, D. (eds) Tunable Hydrogels. Advances in Biochemical Engineering/Biotechnology, vol 178. Springer, Cham. https://doi.org/10.1007/10_2021_165

Download citation

Publish with us

Policies and ethics