Skip to main content

Synthetic Biology-Empowered Hydrogels for Medical Diagnostics

  • Chapter
  • First Online:
Tunable Hydrogels

Abstract

Synthetic biology is strongly inspired by concepts of engineering science and aims at the design and generation of artificial biological systems in different fields of research such as diagnostics, analytics, biomedicine, or chemistry. To this aim, synthetic biology uses an engineering approach relying on a toolbox of molecular sensors and switches that endows cellular hosts with non-natural computing functions and circuits. Importantly, this concept is not only limited to cellular approaches. Synthetic biological building blocks have also conferred sensing and switching capability to otherwise inactive materials. This principle has attracted high interest for the development of biohybrid materials capable of sensing and responding to specific molecular stimuli, such as disease biomarkers, antibiotics, or heavy metals. Moreover, the interconnection of individual sense-and-respond materials to complex materials systems has enabled the processing of, for example, multiple inputs or the amplification of signals using feedback topologies. Such systems holding high potential for applications in the analytical and diagnostic sectors will be described in this chapter.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sevenler D, Bardon A, Fernandez Suarez M et al (2020) Immunoassay for HIV drug metabolites Tenofovir and Tenofovir diphosphate. ACS Infect Dis 6:1635–1642. https://doi.org/10.1021/acsinfecdis.0c00010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Broto M, McCabe R, Galve R, Marco M-P (2019) A high-specificity immunoassay for the therapeutic drug monitoring of cyclophosphamide. Analyst 144:5172–5178. https://doi.org/10.1039/C9AN00576E

    Article  CAS  PubMed  Google Scholar 

  3. Chen Z, Liu X, Xiao Z et al (2020) Production of a specific monoclonal antibody for 1-naphthol based on novel hapten strategy and development of an easy-to-use ELISA in urine samples. Ecotoxicol Environ Saf 196:110533. https://doi.org/10.1016/j.ecoenv.2020.110533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Salvador J-P, Tassies D, Reverter J, Marco M-P (2018) Enzyme-linked immunosorbent assays for therapeutic drug monitoring coumarin oral anticoagulants in plasma. Anal Chim Acta 1028:59–65. https://doi.org/10.1016/j.aca.2018.04.042

    Article  CAS  PubMed  Google Scholar 

  5. Alshawawreh F, Lisi F, Ariotti N et al (2019) The use of a personal glucose meter for detecting procalcitonin through glucose encapsulated within liposomes. Analyst 144:6225–6230. https://doi.org/10.1039/C9AN01519A

    Article  CAS  PubMed  Google Scholar 

  6. Yang L, Xue J, Jia Y et al (2019) Construction of well-ordered electrochemiluminescence sensing interface using peptide-based specific antibody immobilizer and N-(aminobutyl)-N-(ethylisoluminol) functionalized ferritin as signal indicator for procalcitonin analysis. Biosens Bioelectron 142:111562. https://doi.org/10.1016/j.bios.2019.111562

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Dzakah EE, Kang Y et al (2019) Development of anti-Müllerian hormone immunoassay based on biolayer interferometry technology. Anal Bioanal Chem 411:5499–5507. https://doi.org/10.1007/s00216-019-01928-6

    Article  CAS  PubMed  Google Scholar 

  8. Leivo J, Kivimäki L, Juntunen E et al (2019) Development of anti-immunocomplex specific antibodies and non-competitive time-resolved fluorescence immunoassay for the detection of estradiol. Anal Bioanal Chem 411:5633–5639. https://doi.org/10.1007/s00216-019-01952-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. von Berg L, Stern D, Pauly D et al (2019) Functional detection of botulinum neurotoxin serotypes A to F by monoclonal neoepitope-specific antibodies and suspension array technology. Sci Rep 9:5531. https://doi.org/10.1038/s41598-019-41722-z

    Article  CAS  Google Scholar 

  10. He X, Patfield S, Cheng L et al (2017) Detection of Abrin Holotoxin using novel monoclonal antibodies. Toxins (Basel) 9:386. https://doi.org/10.3390/toxins9120386

    Article  CAS  PubMed Central  Google Scholar 

  11. Turner K, Hardy S, Liu J et al (2017) Pairing alpaca and llama-derived single domain antibodies to enhance immunoassays for ricin. Antibodies 6:3. https://doi.org/10.3390/antib6010003

    Article  CAS  PubMed Central  Google Scholar 

  12. Azri F, Sukor R, Selamat J et al (2018) Electrochemical Immunosensor for detection of aflatoxin B1 based on indirect competitive ELISA. Toxins (Basel) 10:196. https://doi.org/10.3390/toxins10050196

    Article  CAS  Google Scholar 

  13. Courbet A, Endy D, Renard E et al (2015) Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates. Sci Transl Med 7:289ra83–289ra83. https://doi.org/10.1126/scitranslmed.aaa3601

    Article  CAS  PubMed  Google Scholar 

  14. Kemmer C, Gitzinger M, Daoud-El Baba M et al (2010) Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat Biotechnol 28:355–360. https://doi.org/10.1038/nbt.1617

    Article  CAS  PubMed  Google Scholar 

  15. Ostrov N, Jimenez M, Billerbeck S et al (2017) A modular yeast biosensor for low-cost point-of-care pathogen detection. Sci Adv 3:e1603221. https://doi.org/10.1126/sciadv.1603221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hutchison CA, Chuang R-Y, Noskov VN et al (2016) Design and synthesis of a minimal bacterial genome. Science 351:aad6253-1–aad6253-11. https://doi.org/10.1126/science.aad6253

  17. van Roekel HWH, Rosier BJHM, Meijer LHH et al (2015) Programmable chemical reaction networks: emulating regulatory functions in living cells using a bottom-up approach. Chem Soc Rev 44:7465–7483. https://doi.org/10.1039/C5CS00361J

    Article  PubMed  Google Scholar 

  18. Bashor CJ, Collins JJ (2018) Understanding biological regulation through synthetic biology. Annu Rev Biophys 47:399–423. https://doi.org/10.1146/annurev-biophys-070816-033903

    Article  CAS  PubMed  Google Scholar 

  19. Wang L-Z, Wu F, Flores K et al (2016) Build to understand: synthetic approaches to biology. Integr Biol 8:394–408. https://doi.org/10.1039/C5IB00252D

    Article  Google Scholar 

  20. Pardee K, Green AA, Ferrante T et al (2014) Paper-based synthetic gene networks. Cell 159:940–954. https://doi.org/10.1016/j.cell.2014.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roybal KT, Rupp LJ, Morsut L et al (2016) Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164:770–779. https://doi.org/10.1016/j.cell.2016.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xie M, Ye H, Wang H et al (2016) β-cell–mimetic designer cells provide closed-loop glycemic control. Science 354:1296–1301. https://doi.org/10.1126/science.aaf4006

    Article  CAS  PubMed  Google Scholar 

  23. Nielsen J, Keasling JD (2016) Engineering cellular metabolism. Cell 164:1185–1197. https://doi.org/10.1016/j.cell.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  24. Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356. https://doi.org/10.1016/S0022-2836(61)80072-7

    Article  CAS  PubMed  Google Scholar 

  25. Hillen W, Gatz C, Altschmied L et al (1983) Control of expression of the Tn10-encoded tetracycline resistance genes: equilibrium and kinetic investigation of the regulatory reactions. J Mol Biol 169:707–721. https://doi.org/10.1016/S0022-2836(83)80166-1

    Article  CAS  PubMed  Google Scholar 

  26. Salah-Bey K, Thompson CJ (1995) Unusual regulatory mechanism for a Streptomyces multidrug resistance gene, ptr, involving three homologous protein-binding sites overlapping the promoter region. Mol Microbiol 17:1109–1119. https://doi.org/10.1111/j.1365-2958.1995.mmi_17061109.x

    Article  CAS  PubMed  Google Scholar 

  27. Noguchi N, Takada K, Katayama J et al (2000) Regulation of transcription of themph(A) gene for macrolide 2′-phosphotransferase I in Escherichia coli: characterization of the regulatory gene mphR(A). J Bacteriol 182:5052–5058. https://doi.org/10.1128/JB.182.18.5052-5058.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci 89:5547–5551. https://doi.org/10.1073/pnas.89.12.5547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deuschle U, Meyer WK, Thiesen HJ (1995) Tetracycline-reversible silencing of eukaryotic promoters. Mol Cell Biol 15:1907–1914. https://doi.org/10.1128/MCB.15.4.1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brown EJ, Albers MW, Bum Shin T et al (1994) A mammalian protein targeted by G1-arresting rapamycin–receptor complex. Nature 369:756–758. https://doi.org/10.1038/369756a0

    Article  CAS  PubMed  Google Scholar 

  31. Sabers CJ, Martin MM, Brunn GJ et al (1995) Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 270:815–822. https://doi.org/10.1074/jbc.270.2.815

    Article  CAS  PubMed  Google Scholar 

  32. Farrar MA, Alberol-Ila J, Perlmutter RM (1996) Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature 383:178–181. https://doi.org/10.1038/383178a0

    Article  CAS  PubMed  Google Scholar 

  33. Farrar MA, Olson SH, Perlmutter RM (2000) Coumermycin-induced dimerization of GyrB-containing fusion proteins. Methods Enzymol 327:421–429. https://doi.org/10.1016/s0076-6879(00)27293-5

    Article  CAS  PubMed  Google Scholar 

  34. Rollins CT, Rivera VM, Woolfson DN et al (2000) A ligand-reversible dimerization system for controlling protein-protein interactions. Proc Natl Acad Sci 97:7096–7101. https://doi.org/10.1073/pnas.100101997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rivera VM, Clackson T, Natesan S et al (1996) A humanized system for pharmacologic control of gene expression. Nat Med 2:1028–1032. https://doi.org/10.1038/nm0996-1028

    Article  CAS  PubMed  Google Scholar 

  36. Karginov AV, Ding F, Kota P et al (2010) Engineered allosteric activation of kinases in living cells. Nat Biotechnol 28:743–747. https://doi.org/10.1038/nbt.1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wend S, Wagner HJ, Müller K et al (2014) Optogenetic control of protein kinase activity in mammalian cells. ACS Synth Biol 3:280–285. https://doi.org/10.1021/sb400090s

    Article  CAS  PubMed  Google Scholar 

  38. Hirosawa M, Fujita Y, Saito H (2019) Cell-type-specific CRISPR activation with MicroRNA-responsive AcrllA4 switch. ACS Synth Biol 8:1575–1582. https://doi.org/10.1021/acssynbio.9b00073

    Article  CAS  PubMed  Google Scholar 

  39. Yu Y, Wu X, Guan N et al (2020) Engineering a far-red light–activated split-Cas9 system for remote-controlled genome editing of internal organs and tumors. Sci Adv 6:eabb1777. https://doi.org/10.1126/sciadv.abb1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hörner M, Raute K, Hummel B et al (2019) Phytochrome-based extracellular matrix with reversibly tunable mechanical properties. Adv Mater 31:1806727. https://doi.org/10.1002/adma.201806727

    Article  CAS  Google Scholar 

  41. Baaske J, Mühlhäuser WWD, Yousefi OS et al (2019) Optogenetic control of integrin-matrix interaction. Commun Biol 2:15. https://doi.org/10.1038/s42003-018-0264-7

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kolar K, Weber W (2017) Synthetic biological approaches to optogenetically control cell signaling. Curr Opin Biotechnol 47:112–119. https://doi.org/10.1016/j.copbio.2017.06.010

    Article  CAS  PubMed  Google Scholar 

  43. Kolar K, Knobloch C, Stork H et al (2018) OptoBase: a web platform for molecular optogenetics. ACS Synth Biol 7:1825–1828. https://doi.org/10.1021/acssynbio.8b00120

    Article  CAS  PubMed  Google Scholar 

  44. Shalem O, Sanjana NE, Zhang F (2015) High-throughput functional genomics using CRISPR–Cas9. Nat Rev Genet 16:299–311. https://doi.org/10.1038/nrg3899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pickar-Oliver A, Gersbach CA (2019) The next generation of CRISPR–Cas technologies and applications. Nat Rev Mol Cell Biol 20:490–507. https://doi.org/10.1038/s41580-019-0131-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Weber CC, Link N, Fux C et al (2005) Broad-spectrum protein biosensors for class-specific detection of antibiotics. Biotechnol Bioeng 89:9–17. https://doi.org/10.1002/bit.20224

    Article  CAS  PubMed  Google Scholar 

  47. Korpela MT, Kurittu JS, Karvinen JT, Karp MT (1998) A recombinant Escherichia coli sensor strain for the detection of tetracyclines. Anal Chem 70:4457–4462. https://doi.org/10.1021/ac980740e

    Article  CAS  PubMed  Google Scholar 

  48. Valtonen SJ, Kurittu JS, Karp MT (2002) A luminescent Escherichia coli biosensor for the high throughput detection of β-lactams. J Biomol Screen 7:127–134. https://doi.org/10.1177/108705710200700205

    Article  CAS  PubMed  Google Scholar 

  49. Espinosa-Urgel M, Serrano L, Ramos JL, Fernández-Escamilla AM (2015) Engineering biological approaches for detection of toxic compounds: a new microbial biosensor based on the pseudomonas putida TtgR repressor. Mol Biotechnol 57:558–564. https://doi.org/10.1007/s12033-015-9849-2

    Article  CAS  PubMed  Google Scholar 

  50. Rebets Y, Schmelz S, Gromyko O et al (2018) Design, development and application of whole-cell based antibiotic-specific biosensor. Metab Eng 47:263–270. https://doi.org/10.1016/j.ymben.2018.03.019

    Article  CAS  PubMed  Google Scholar 

  51. Wan X, Volpetti F, Petrova E et al (2019) Cascaded amplifying circuits enable ultrasensitive cellular sensors for toxic metals. Nat Chem Biol 15:540–548. https://doi.org/10.1038/s41589-019-0244-3

    Article  CAS  PubMed  Google Scholar 

  52. Wang B, Barahona M, Buck M (2013) A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals. Biosens Bioelectron 40:368–376. https://doi.org/10.1016/j.bios.2012.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ma Z, Liu J, Li H et al (2020) A fast and easily parallelizable biosensor method for measuring extractable Tetracyclines in soils. Environ Sci Technol 54:758–767. https://doi.org/10.1021/acs.est.9b04051

    Article  CAS  PubMed  Google Scholar 

  54. Stocker J, Balluch D, Gsell M et al (2003) Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environ Sci Technol 37:4743–4750. https://doi.org/10.1021/es034258b

    Article  CAS  PubMed  Google Scholar 

  55. Tauriainen S, Virta MP, Karp M (2000) Detecting bioavailable toxic metals and metalloids from natural water samples using luminescent sensor bacteria. Water Res 34:2661–2666. https://doi.org/10.1016/S0043-1354(00)00005-1

    Article  CAS  Google Scholar 

  56. Chong H, Ching CB (2016) Development of colorimetric-based whole-cell biosensor for organophosphorus compounds by engineering transcription regulator DmpR. ACS Synth Biol 5:1290–1298. https://doi.org/10.1021/acssynbio.6b00061

    Article  CAS  PubMed  Google Scholar 

  57. Whangsuk W, Thiengmag S, Dubbs J et al (2016) Specific detection of the pesticide chlorpyrifos by a sensitive genetic-based whole cell biosensor. Anal Biochem 493:11–13. https://doi.org/10.1016/j.ab.2015.09.022

    Article  CAS  PubMed  Google Scholar 

  58. Yao Y, Li S, Cao J et al (2018) A novel signal transduction system for development of uric acid biosensors. Appl Microbiol Biotechnol 102:7489–7497. https://doi.org/10.1007/s00253-018-9056-8

    Article  CAS  PubMed  Google Scholar 

  59. Zhao G, Hu T, Li J et al (2015) A novel strategy to analyze L-tryptophan through allosteric Trp repressor based on rolling circle amplification. Biosens Bioelectron 71:103–107. https://doi.org/10.1016/j.bios.2015.04.017

    Article  CAS  PubMed  Google Scholar 

  60. Fan Y, Pedersen O (2020) Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. https://doi.org/10.1038/s41579-020-0433-9

  61. Daeffler KN, Galley JD, Sheth RU et al (2017) Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Mol Syst Biol 13:923. https://doi.org/10.15252/msb.20167416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Landry BP, Palanki R, Dyulgyarov N et al (2018) Phosphatase activity tunes two-component system sensor detection threshold. Nat Commun 9:1433. https://doi.org/10.1038/s41467-018-03929-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mimee M, Nadeau P, Hayward A et al (2018) An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360:915–918. https://doi.org/10.1126/science.aas9315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mao N, Cubillos-Ruiz A, Cameron DE, Collins JJ (2018) Probiotic strains detect and suppress cholera in mice. Sci Transl Med 10:eaao2586. https://doi.org/10.1126/scitranslmed.aao2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gupta S, Bram EE, Weiss R (2013) Genetically programmable pathogen sense and destroy. ACS Synth Biol 2:715–723. https://doi.org/10.1021/sb4000417

    Article  CAS  PubMed  Google Scholar 

  66. Daniel R, Rubens JR, Sarpeshkar R, Lu TK (2013) Synthetic analog computation in living cells. Nature 497:619–623. https://doi.org/10.1038/nature12148

    Article  CAS  PubMed  Google Scholar 

  67. Tamsir A, Tabor JJ, Voigt CA (2011) Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 469:212–215. https://doi.org/10.1038/nature09565

    Article  CAS  PubMed  Google Scholar 

  68. Du P, Zhao H, Zhang H et al (2020) De novo design of an intercellular signaling toolbox for multi-channel cell–cell communication and biological computation. Nat Commun 11:4226. https://doi.org/10.1038/s41467-020-17993-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Weiss R, Knight TF (2001) Engineered communications for microbial robotics. Springer, Berlin, pp 1–16. https://doi.org/10.1007/3-540-44992-2_1

  70. Anderson JC, Clarke EJ, Arkin AP, Voigt CA (2006) Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol 355:619–627. https://doi.org/10.1016/j.jmb.2005.10.076

    Article  CAS  PubMed  Google Scholar 

  71. Wang B, Barahona M, Buck M (2014) Engineering modular and tunable genetic amplifiers for scaling transcriptional signals in cascaded gene networks. Nucleic Acids Res 42:9484–9492. https://doi.org/10.1093/nar/gku593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Becskei A (2001) Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J 20:2528–2535. https://doi.org/10.1093/emboj/20.10.2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Woo S, Moon S, Kim SK et al (2020) A designed whole-cell biosensor for live diagnosis of gut inflammation through nitrate sensing. Biosens Bioelectron 168:112523. https://doi.org/10.1016/j.bios.2020.112523

    Article  CAS  PubMed  Google Scholar 

  74. Nguyen PQ, Courchesne N-MD, Duraj-Thatte A et al (2018) Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv Mater 30:1704847. https://doi.org/10.1002/adma.201704847

    Article  CAS  Google Scholar 

  75. Gilbert C, Ellis T (2019) Biological engineered living materials: growing functional materials with genetically programmable properties. ACS Synth Biol 8:1–15. https://doi.org/10.1021/acssynbio.8b00423

    Article  CAS  PubMed  Google Scholar 

  76. Rössger K, Charpin-El-Hamri G, Fussenegger M (2013) A closed-loop synthetic gene circuit for the treatment of diet-induced obesity in mice. Nat Commun 4:2825. https://doi.org/10.1038/ncomms3825

    Article  CAS  PubMed  Google Scholar 

  77. Bai P, Ye H, Xie M et al (2016) A synthetic biology-based device prevents liver injury in mice. J Hepatol 65:84–94. https://doi.org/10.1016/j.jhep.2016.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bojar D, Scheller L, Hamri GC-E et al (2018) Caffeine-inducible gene switches controlling experimental diabetes. Nat Commun 9:2318. https://doi.org/10.1038/s41467-018-04744-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gerber LC, Koehler FM, Grass RN, Stark WJ (2012) Incorporation of penicillin-producing fungi into living materials to provide chemically active and antibiotic-releasing surfaces. Angew Chemie Int Ed 51:11293–11296. https://doi.org/10.1002/anie.201204337

    Article  CAS  Google Scholar 

  80. Mora CA, Herzog AF, Raso RA, Stark WJ (2015) Programmable living material containing reporter micro-organisms permits quantitative detection of oligosaccharides. Biomaterials 61:1–9. https://doi.org/10.1016/j.biomaterials.2015.04.054

    Article  CAS  PubMed  Google Scholar 

  81. González LM, Mukhitov N, Voigt CA (2020) Resilient living materials built by printing bacterial spores. Nat Chem Biol 16:126–133. https://doi.org/10.1038/s41589-019-0412-5

    Article  CAS  PubMed  Google Scholar 

  82. Liu X, Yuk H, Lin S et al (2018) 3D printing of living responsive materials and devices. Adv Mater 30:1704821. https://doi.org/10.1002/adma.201704821

    Article  CAS  Google Scholar 

  83. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108. https://doi.org/10.1038/nrmicro821

    Article  CAS  PubMed  Google Scholar 

  84. Branda SS, Vik Å, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26. https://doi.org/10.1016/j.tim.2004.11.006

    Article  CAS  PubMed  Google Scholar 

  85. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chemie Int Ed 44:3358–3393. https://doi.org/10.1002/anie.200460587

    Article  CAS  Google Scholar 

  86. Lee K, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 14:10–32. https://doi.org/10.1002/mabi.201300298

    Article  CAS  PubMed  Google Scholar 

  87. Knowles TP, Fitzpatrick AW, Meehan S et al (2007) Role of intermolecular forces in defining material properties of protein Nanofibrils. Science 318:1900–1903. https://doi.org/10.1126/science.1150057

    Article  CAS  PubMed  Google Scholar 

  88. Chapman MR (2002) Role of Escherichia coli Curli operons in directing amyloid Fiber formation. Science 295:851–855. https://doi.org/10.1126/science.1067484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cao B, Zhao Y, Kou Y et al (2014) Structure of the nonameric bacterial amyloid secretion channel. Proc Natl Acad Sci 111:E5439–E5444. https://doi.org/10.1073/pnas.1411942111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Barnhart MM, Chapman MR (2006) Curli biogenesis and function. Annu Rev Microbiol 60:131–147. https://doi.org/10.1146/annurev.micro.60.080805.142106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vijay K, Murmu M, Deo SV (2017) Bacteria based self healing concrete – a review. Constr Build Mater 152:1008–1014. https://doi.org/10.1016/j.conbuildmat.2017.07.040

    Article  CAS  Google Scholar 

  92. Raut SH, Sarode DD, Lele SS (2014) Biocalcification using B. pasteurii for strengthening brick masonry civil engineering structures. World J Microbiol Biotechnol 30:191–200. https://doi.org/10.1007/s11274-013-1439-5

    Article  CAS  PubMed  Google Scholar 

  93. Valentini L, Bon SB, Signetti S et al (2016) Fermentation based carbon nanotube multifunctional bionic composites. Sci Rep 6:27031. https://doi.org/10.1038/srep27031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sankaran S, Becker J, Wittmann C, del Campo A (2019) Optoregulated drug release from an engineered living material: self-replenishing drug depots for long-term, light-regulated delivery. Small 15:1804717. https://doi.org/10.1002/smll.201804717

    Article  CAS  Google Scholar 

  95. Sankaran S, Zhao S, Muth C et al (2018) Toward light-regulated living biomaterials. Adv Sci 5:1800383. https://doi.org/10.1002/advs.201800383

    Article  CAS  Google Scholar 

  96. Duraj-Thatte AM, Courchesne ND, Praveschotinunt P et al (2019) Genetically programmable self-regenerating bacterial hydrogels. Adv Mater 31:1901826. https://doi.org/10.1002/adma.201901826

    Article  CAS  Google Scholar 

  97. An B, Wang Y, Jiang X et al (2020) Programming living glue systems to perform autonomous mechanical repairs. Matter:1–13. https://doi.org/10.1016/j.matt.2020.09.006

  98. Magennis EP, Fernandez-Trillo F, Sui C et al (2014) Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling. Nat Mater 13:748–755. https://doi.org/10.1038/nmat3949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003. https://doi.org/10.1038/nmat3776

    Article  CAS  PubMed  Google Scholar 

  100. Döring A, Birnbaum W, Kuckling D (2013) Responsive hydrogels – structurally and dimensionally optimized smart frameworks for applications in catalysis, micro-system technology and material science. Chem Soc Rev 42:7391–7420. https://doi.org/10.1039/c3cs60031a

    Article  CAS  PubMed  Google Scholar 

  101. Tsitsilianis C (2010) Responsive reversible hydrogels from associative “smart” macromolecules. Soft Matter 6:2372. https://doi.org/10.1039/b923947b

    Article  CAS  Google Scholar 

  102. Ullah F, Othman MBH, Javed F et al (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433. https://doi.org/10.1016/j.msec.2015.07.053

    Article  CAS  Google Scholar 

  103. Wagner HJ, Sprenger A, Rebmann B, Weber W (2016) Upgrading biomaterials with synthetic biological modules for advanced medical applications. Adv Drug Deliv Rev 105:77–95. https://doi.org/10.1016/j.addr.2016.05.004

    Article  CAS  PubMed  Google Scholar 

  104. Hochuli E, Bannwarth W, Döbeli H et al (1988) Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Nat Biotechnol 6:1321–1325. https://doi.org/10.1038/nbt1188-1321

    Article  CAS  Google Scholar 

  105. Duret D, Haftek-Terreau Z, Carretier M et al (2017) Fluorescent RAFT polymers bearing a nitrilotriacetic acid (NTA) ligand at the α-chain-end for the site-specific labeling of histidine-tagged proteins. Polym Chem 8:1611–1615. https://doi.org/10.1039/C6PY02222G

    Article  CAS  Google Scholar 

  106. Kreutz JE, Li L, Roach LS et al (2009) Laterally mobile, functionalized self-assembled monolayers at the fluorous−aqueous interface in a plug-based microfluidic system: characterization and testing with membrane protein crystallization. J Am Chem Soc 131:6042–6043. https://doi.org/10.1021/ja808697e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kang E, Park J-W, McClellan SJ et al (2007) Specific adsorption of histidine-tagged proteins on silica surfaces modified with Ni2+ /NTA-Derivatized poly(ethylene glycol). Langmuir 23:6281–6288. https://doi.org/10.1021/la063719e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang C, Stewart RJ, KopeČek J (1999) Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397:417–420. https://doi.org/10.1038/17092

    Article  CAS  PubMed  Google Scholar 

  109. Ehrbar M, Schoenmakers R, Christen EH et al (2008) Drug-sensing hydrogels for the inducible release of biopharmaceuticals. Nat Mater 7:800–804. https://doi.org/10.1038/nmat2250

    Article  CAS  PubMed  Google Scholar 

  110. Weber P, Ohlendorf D, Wendoloski J, Salemme F (1989) Structural origins of high-affinity biotin binding to streptavidin. Science 243:85–88. https://doi.org/10.1126/science.2911722

    Article  CAS  PubMed  Google Scholar 

  111. Akkapeddi P, Azizi S-A, Freedy AM et al (2016) Construction of homogeneous antibody–drug conjugates using site-selective protein chemistry. Chem Sci 7:2954–2963. https://doi.org/10.1039/C6SC00170J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lyon RP, Setter JR, Bovee TD et al (2014) Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates. Nat Biotechnol 32:1059–1062. https://doi.org/10.1038/nbt.2968

    Article  CAS  PubMed  Google Scholar 

  113. Masri MS, Friedman M (1988) Protein reactions with methyl and ethyl vinyl sulfones. J Protein Chem 7:49–54. https://doi.org/10.1007/BF01025413

    Article  CAS  PubMed  Google Scholar 

  114. Koniev O, Wagner A (2015) Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev 44:5495–5551. https://doi.org/10.1039/C5CS00048C

    Article  CAS  PubMed  Google Scholar 

  115. Hermanson GT (1996) The chemistry of reactive groups. In: Bioconjugate techniques. Elsevier, Amsterdam, pp 137–166. https://doi.org/10.1016/B978-0-12-342335-1.X5000-3

  116. Chen I, Howarth M, Lin W, Ting AY (2005) Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat Methods 2:99–104. https://doi.org/10.1038/nmeth735

    Article  CAS  PubMed  Google Scholar 

  117. Slavoff SA, Chen I, Choi Y-A, Ting AY (2008) Expanding the substrate tolerance of biotin ligase through exploration of enzymes from diverse species. J Am Chem Soc 130:1160–1162. https://doi.org/10.1021/ja076655i

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Voloshchuk N, Liang D, Liang J (2016) Sortase A mediated protein modifications and peptide conjugations. Curr Drug Discov Technol 12:205–213. https://doi.org/10.2174/1570163812666150903115601

    Article  CAS  Google Scholar 

  119. Lotze J, Reinhardt U, Seitz O, Beck-Sickinger AG (2016) Peptide-tags for site-specific protein labelling in vitro and in vivo. Mol BioSyst 12:1731–1745. https://doi.org/10.1039/C6MB00023A

    Article  CAS  PubMed  Google Scholar 

  120. Zhou Z, Cironi P, Lin AJ et al (2007) Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. ACS Chem Biol 2:337–346. https://doi.org/10.1021/cb700054k

    Article  CAS  PubMed  Google Scholar 

  121. Carrico IS, Carlson BL, Bertozzi CR (2007) Introducing genetically encoded aldehydes into proteins. Nat Chem Biol 3:321–322. https://doi.org/10.1038/nchembio878

    Article  CAS  PubMed  Google Scholar 

  122. Rush JS, Bertozzi CR (2008) New aldehyde tag sequences identified by screening formylglycine generating enzymes in vitro and in vivo. J Am Chem Soc 130:12240–12241. https://doi.org/10.1021/ja804530w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kho Y, Kim SC, Jiang C et al (2004) A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc Natl Acad Sci 101:12479–12484. https://doi.org/10.1073/pnas.0403413101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lin C, Ting AY (2006) Transglutaminase-catalyzed site-specific conjugation of small-molecule probes to proteins in vitro and on the surface of living cells. J Am Chem Soc 128:4542–4543. https://doi.org/10.1021/ja0604111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kulkarni C, Kinzer-Ursem TL, Tirrell DA (2013) Selective functionalization of the protein N terminus with N-Myristoyl transferase for bioconjugation in cell lysate. Chembiochem 14:1958–1962. https://doi.org/10.1002/cbic.201300453

    Article  CAS  PubMed  Google Scholar 

  126. Fernández-Suárez M, Baruah H, Martínez-Hernández L et al (2007) Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nat Biotechnol 25:1483–1487. https://doi.org/10.1038/nbt1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Keppler A, Gendreizig S, Gronemeyer T et al (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89. https://doi.org/10.1038/nbt765

    Article  CAS  PubMed  Google Scholar 

  128. Los GV, Encell LP, McDougall MG et al (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382. https://doi.org/10.1021/cb800025k

    Article  CAS  PubMed  Google Scholar 

  129. Gautier A, Juillerat A, Heinis C et al (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15:128–136. https://doi.org/10.1016/j.chembiol.2008.01.007

    Article  CAS  PubMed  Google Scholar 

  130. Wood DW, Camarero JA (2014) Intein applications: from protein purification and labeling to metabolic control methods. J Biol Chem 289:14512–14519. https://doi.org/10.1074/jbc.R114.552653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zakeri B, Fierer JO, Celik E et al (2012) Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci 109:E690–E697. https://doi.org/10.1073/pnas.1115485109

    Article  PubMed  PubMed Central  Google Scholar 

  132. Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-Triazoles by Regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to Azides. J Org Chem 67:3057–3064. https://doi.org/10.1021/jo011148j

    Article  CAS  PubMed  Google Scholar 

  133. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of Azides and terminal alkynes. Angew Chemie Int Ed 41:2596–2599. https://doi.org/10.1002/1521-3773(20020715)41:14%3C2596::AID-ANIE2596%3E3.0.CO;2-4

    Article  CAS  Google Scholar 

  134. Sletten EM, Bertozzi CR (2011) From mechanism to mouse: a tale of two bioorthogonal reactions. Acc Chem Res 44:666–676. https://doi.org/10.1021/ar200148z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Baskin JM, Prescher JA, Laughlin ST et al (2007) Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci 104:16793–16797. https://doi.org/10.1073/pnas.0707090104

    Article  PubMed  PubMed Central  Google Scholar 

  136. Agard NJ, Prescher JA, Bertozzi CR (2004) A strain-promoted [3 + 2] Azide−alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc 126:15046–15047. https://doi.org/10.1021/ja044996f

    Article  CAS  PubMed  Google Scholar 

  137. Colombo M, Sommaruga S, Mazzucchelli S et al (2012) Site-specific conjugation of ScFvs antibodies to nanoparticles by bioorthogonal strain-promoted alkyne-Nitrone cycloaddition. Angew Chemie Int Ed 51:496–499. https://doi.org/10.1002/anie.201106775

    Article  CAS  Google Scholar 

  138. Ning X, Temming RP, Dommerholt J et al (2010) Protein modification by strain-promoted alkyne-Nitrone cycloaddition. Angew Chemie Int Ed 49:3065–3068. https://doi.org/10.1002/anie.201000408

    Article  CAS  Google Scholar 

  139. Temming RP, Eggermont L, van Eldijk MB et al (2013) N-terminal dual protein functionalization by strain-promoted alkyne–nitrone cycloaddition. Org Biomol Chem 11:2772. https://doi.org/10.1039/c3ob00043e

    Article  CAS  PubMed  Google Scholar 

  140. Kiick KL, Saxon E, Tirrell DA, Bertozzi CR (2002) Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc Natl Acad Sci 99:19–24. https://doi.org/10.1073/pnas.012583299

    Article  CAS  PubMed  Google Scholar 

  141. Tsao M-L, Tian F, Schultz PG (2005) Selective staudinger modification of proteins containing p-Azidophenylalanine. Chembiochem 6:2147–2149. https://doi.org/10.1002/cbic.200500314

    Article  CAS  PubMed  Google Scholar 

  142. Blackman ML, Royzen M, Fox JM (2008) Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels−Alder reactivity. J Am Chem Soc 130:13518–13519. https://doi.org/10.1021/ja8053805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zimmerman ES, Heibeck TH, Gill A et al (2014) Production of site-specific antibody–drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug Chem 25:351–361. https://doi.org/10.1021/bc400490z

    Article  CAS  PubMed  Google Scholar 

  144. Geoghegan KF, Stroh JG (1992) Site-directed conjugation of nonpeptide groups to peptides and proteins via periodate oxidation of a 2-amino alcohol. Application to modification at N-terminal serine. Bioconjug Chem 3:138–146. https://doi.org/10.1021/bc00014a008

    Article  CAS  PubMed  Google Scholar 

  145. Liu L, Shadish JA, Arakawa CK et al (2018) Cyclic stiffness modulation of cell-laden protein – polymer hydrogels in response to user-specified stimuli including light. Adv Biosyst. https://doi.org/10.1002/adbi.201800240

  146. Pardee K, Green AA, Takahashi MK et al (2016) Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165:1255–1266. https://doi.org/10.1016/j.cell.2016.04.059

    Article  CAS  PubMed  Google Scholar 

  147. Takahashi MK, Tan X, Dy AJ et al (2018) A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers. Nat Commun 9:3347. https://doi.org/10.1038/s41467-018-05864-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Duyen TTM, Matsuura H, Ujiie K et al (2017) Paper-based colorimetric biosensor for antibiotics inhibiting bacterial protein synthesis. J Biosci Bioeng 123:96–100. https://doi.org/10.1016/j.jbiosc.2016.07.015

    Article  CAS  PubMed  Google Scholar 

  149. Thavarajah W, Silverman AD, Verosloff MS et al (2020) Point-of-use detection of environmental fluoride via a cell-free riboswitch-based biosensor. ACS Synth Biol 9:10–18. https://doi.org/10.1021/acssynbio.9b00347

    Article  CAS  PubMed  Google Scholar 

  150. Meyer VK, Chatelle CV, Weber W et al (2020) Flow-based regenerable chemiluminescence receptor assay for the detection of tetracyclines. Anal Bioanal Chem 412:3467–3476. https://doi.org/10.1007/s00216-019-02368-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Menzel A, Gübeli RJ, Güder F et al (2013) Detection of real-time dynamics of drug–target interactions by ultralong nanowalls. Lab Chip 13:4173. https://doi.org/10.1039/c3lc50694k

    Article  CAS  PubMed  Google Scholar 

  152. Dauphin-Ducharme P, Yang K, Arroyo-Currás N et al (2019) Electrochemical aptamer-based sensors for improved therapeutic drug monitoring and high-precision, feedback-controlled drug delivery. ACS Sensors 4:2832–2837. https://doi.org/10.1021/acssensors.9b01616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ye T, Zhang Z, Yuan M et al (2020) An all-in-one Aptasensor integrating enzyme powered three-dimensional DNA machine for antibiotic detection. J Agric Food Chem 68:2826–2831. https://doi.org/10.1021/acs.jafc.9b08143

    Article  CAS  PubMed  Google Scholar 

  154. Luan Q, Gan N, Cao Y, Li T (2017) Mimicking an enzyme-based colorimetric Aptasensor for antibiotic residue detection in milk combining magnetic loop-DNA probes and CHA-assisted target recycling amplification. J Agric Food Chem 65:5731–5740. https://doi.org/10.1021/acs.jafc.7b02139

    Article  CAS  PubMed  Google Scholar 

  155. Zhang R, Wang Y, Qu X et al (2019) A label-free electrochemical platform for the detection of antibiotics based on cascade enzymatic amplification coupled with a split G-quadruplex DNAzyme. Analyst 144:4995–5002. https://doi.org/10.1039/C9AN00857H

    Article  CAS  PubMed  Google Scholar 

  156. Zhang Y, Hu Y, Deng S et al (2020) Engineering multivalence aptamer probes for amplified and label-free detection of antibiotics in aquatic products. J Agric Food Chem 68:2554–2561. https://doi.org/10.1021/acs.jafc.0c00141

    Article  CAS  PubMed  Google Scholar 

  157. Bruch R, Baaske J, Chatelle C et al (2019) CRISPR/Cas13a-powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics. Adv Mater 31:1905311. https://doi.org/10.1002/adma.201905311

    Article  CAS  Google Scholar 

  158. Broughton JP, Deng X, Yu G et al (2020) CRISPR–Cas12-based detection of SARS-CoV-2. Nat Biotechnol 38:870–874. https://doi.org/10.1038/s41587-020-0513-4

    Article  CAS  PubMed  Google Scholar 

  159. Kämpf MM, Christen EH, Ehrbar M et al (2010) A gene therapy technology-based biomaterial for the trigger-inducible release of biopharmaceuticals in mice. Adv Funct Mater 20:2534–2538. https://doi.org/10.1002/adfm.200902377

    Article  CAS  Google Scholar 

  160. Christen EH, Karlsson M, Kämpf MM et al (2011) Conditional DNA-protein interactions confer stimulus-sensing properties to biohybrid materials. Adv Funct Mater 21:2861–2867. https://doi.org/10.1002/adfm.201100731

    Article  CAS  Google Scholar 

  161. Geraths C, Christen EH, Weber W (2012) A hydrogel sensing pathological urate concentrations. Macromol Rapid Commun 33:2103–2108. https://doi.org/10.1002/marc.201200563

    Article  CAS  PubMed  Google Scholar 

  162. Geraths C, Daoud-El Baba M, Charpin-El Hamri G, Weber W (2013) A biohybrid hydrogel for the urate-responsive release of urate oxidase. J Control Release 171:57–62. https://doi.org/10.1016/j.jconrel.2013.06.037

    Article  CAS  PubMed  Google Scholar 

  163. Gübeli RJ, Schöneweis K, Huzly D et al (2013) Pharmacologically triggered hydrogel for scheduling hepatitis B vaccine administration. Sci Rep 3:2610. https://doi.org/10.1038/srep02610

    Article  PubMed  PubMed Central  Google Scholar 

  164. Gübeli RJ, Laird D, Ehrbar M et al (2013) Pharmacologically tunable polyethylene-glycol-based cell growth substrate. Acta Biomater 9:8272–8278. https://doi.org/10.1016/j.actbio.2013.05.008

    Article  CAS  PubMed  Google Scholar 

  165. Gübeli RJ, Hövermann D, Seitz H et al (2013) Remote-controlled hydrogel depots for time-scheduled vaccination. Adv Funct Mater 23:5355–5362. https://doi.org/10.1002/adfm.201300875

    Article  CAS  Google Scholar 

  166. Yang H, Liu H, Kang H, Tan W (2008) Engineering target-responsive hydrogels based on aptamer−target interactions. J Am Chem Soc 130:6320–6321. https://doi.org/10.1021/ja801339w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX – A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24:381–403. https://doi.org/10.1016/j.bioeng.2007.06.001

    Article  CAS  PubMed  Google Scholar 

  168. Ye B, Wang H, Ding H et al (2015) Colorimetric logic response based on aptamer functionalized colloidal crystal hydrogels. Nanoscale 7:7565–7568. https://doi.org/10.1039/c5nr00586h

    Article  CAS  PubMed  Google Scholar 

  169. Yan L, Zhu Z, Zou Y et al (2013) Target-responsive “sweet” hydrogel with glucometer readout for portable and quantitative detection of non-glucose targets. J Am Chem Soc 135:3748–3751. https://doi.org/10.1021/ja3114714

    Article  CAS  PubMed  Google Scholar 

  170. Liu R, Huang Y, Ma Y et al (2015) Design and synthesis of target-responsive aptamer-cross-linked hydrogel for visual quantitative detection of ochratoxin A. ACS Appl Mater Interfaces 7:6982–6990. https://doi.org/10.1021/acsami.5b01120

    Article  CAS  PubMed  Google Scholar 

  171. Wang R, Li Y (2013) Hydrogel based QCM aptasensor for detection of avian influenza virus. Biosens Bioelectron 42:148–155. https://doi.org/10.1016/j.bios.2012.10.038

    Article  CAS  PubMed  Google Scholar 

  172. Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399:766–769. https://doi.org/10.1038/21619

    Article  CAS  PubMed  Google Scholar 

  173. Simeon R, Chen Z (2018) In vitro-engineered non-antibody protein therapeutics. Protein Cell 9:3–14. https://doi.org/10.1007/s13238-017-0386-6

    Article  CAS  PubMed  Google Scholar 

  174. Nikitin MP, Shipunova VO, Deyev SM, Nikitin PI (2014) Biocomputing based on particle disassembly. Nat Nanotechnol 9:716–722. https://doi.org/10.1038/nnano.2014.156

    Article  CAS  PubMed  Google Scholar 

  175. Ikeda M, Tanida T, Yoshii T et al (2014) Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel-enzyme hybrids. Nat Chem 6:511–518. https://doi.org/10.1038/nchem.1937

    Article  CAS  PubMed  Google Scholar 

  176. Yin B-C, Ye B-C, Wang H et al (2012) Colorimetric logic gates based on aptamer-crosslinked hydrogels. Chem Commun (Camb) 48:1248–1250. https://doi.org/10.1039/c1cc15639j

    Article  CAS  Google Scholar 

  177. Geraths C, Eichstädter L, Gübeli RJ et al (2013) Synthesis and characterization of a stimulus-responsive l-ornithine-degrading hydrogel. J Control Release 165:38–43. https://doi.org/10.1016/j.jconrel.2012.10.022

    Article  CAS  PubMed  Google Scholar 

  178. Maitz MF, Freudenberg U, Tsurkan MV et al (2013) Bio-responsive polymer hydrogels homeostatically regulate blood coagulation. Nat Commun 4:2168. https://doi.org/10.1038/ncomms3168

    Article  CAS  PubMed  Google Scholar 

  179. Badeau BA, Comerford MP, Arakawa CK et al (2018) Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery. Nat Chem 10:251–258. https://doi.org/10.1038/nchem.2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Gawade PM, Shadish JA, Badeau BA, DeForest CA (2019) Logic-based delivery of site-specifically modified proteins from environmentally responsive hydrogel biomaterials. Adv Mater 31:1902462. https://doi.org/10.1002/adma.201902462

    Article  CAS  Google Scholar 

  181. Beyer HM, Engesser R, Hörner M et al (2018) Synthetic biology makes polymer materials count. Adv Mater 30:1800472. https://doi.org/10.1002/adma.201800472

    Article  CAS  Google Scholar 

  182. Stein V, Alexandrov K (2014) Protease-based synthetic sensing and signal amplification. Proc Natl Acad Sci U S A 111:15934–15939. https://doi.org/10.1073/pnas.1405220111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Stein V, Nabi M, Alexandrov K (2017) Ultrasensitive scaffold-dependent protease sensors with large dynamic range. ACS Synth Biol 6:1337–1342. https://doi.org/10.1021/acssynbio.6b00370

    Article  CAS  PubMed  Google Scholar 

  184. Wagner HJ, Engesser R, Ermes K et al (2019) Synthetic biology-inspired design of signal-amplifying materials systems. Mater Today 22:25–34. https://doi.org/10.1016/j.mattod.2018.04.006

    Article  CAS  Google Scholar 

  185. Wagner HJ, Kemmer S, Engesser R et al (2019) Biofunctionalized materials featuring feedforward and feedback circuits exemplified by the detection of botulinum toxin a. Adv Sci 6:1801320. https://doi.org/10.1002/advs.201801320

    Article  CAS  Google Scholar 

  186. Wagner HJ, Engesser R, Ermes K et al (2018) Characterization of the synthetic biology-inspired implementation of a materials-based positive feedback loop. Data Brief 19:665–677. https://doi.org/10.1016/j.dib.2018.05.074

    Article  PubMed  PubMed Central  Google Scholar 

  187. Wagner HJ, Weber W (2019) Design of a human rhinovirus-14 3C protease-inducible caspase-3. Molecules 24:1945. https://doi.org/10.3390/molecules24101945

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) grant WE 4733/7-1 and under Germany’s Excellence Strategy – EXC-2189 – Project ID: 390939984.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wagner, H.J., Mohsenin, H., Weber, W. (2020). Synthetic Biology-Empowered Hydrogels for Medical Diagnostics. In: Lavrentieva, A., Pepelanova, I., Seliktar, D. (eds) Tunable Hydrogels. Advances in Biochemical Engineering/Biotechnology, vol 178. Springer, Cham. https://doi.org/10.1007/10_2020_158

Download citation

Publish with us

Policies and ethics