Skip to main content

A Primer on Microfluidics: From Basic Principles to Microfabrication

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 179))

Abstract

Microfluidic systems enable manipulating fluids in different functional units which are integrated on a microchip. This chapter describes the basics of microfluidics, where physical effects have a different impact compared to macroscopic systems. Furthermore, an overwiew is given on the microfabrication of these systems. The focus lies on clean-room fabrication methods based on photolithography and soft lithography. Finally, an outlook on advanced maskless micro- and nanofabrication methods is given. Special attention is paid to laser structuring processes.

Graphical Abstract

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhang JXJ, Hoshino K (2019) Microfluidics and micro total analytical systems molecular sensors and nanodevices. Elsevier, Amsterdam, pp 113–179

    Google Scholar 

  2. Li D (2015) Encyclopedia of microfluidics and Nanofluidics. Springer, New York

    Book  Google Scholar 

  3. Büttgenbach S, Constantinou I, Dietzel A, Leester-Schädel M (2020) Case studies in micromechatronics. Springer, Berlin

    Book  Google Scholar 

  4. Song Y, Cheng D, Zhao L (eds) (2018) Microfluidics. Fundamentals, devices and applications. Wiley-VCH, Weinheim

    Google Scholar 

  5. Dietzel A (2016) A brief introduction to microfluidics. In: Dietzel A (ed) Microsystems for pharmatechnology, Bd 235. Springer, Cham, pp 1–21

    Chapter  Google Scholar 

  6. Bruus H (2011) Theoretical microfluidics. Oxford master series in physics condensed matter physics, Bd 18. Oxford Univ. Press, Oxford

    Google Scholar 

  7. Nguyen N-T, Wereley ST, Shaegh SAM (2019) Fundamentals and applications of microfluidics. Integrated microsystems series. Artech House, Norwood

    Google Scholar 

  8. Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507(7491):181–189. https://doi.org/10.1038/nature13118

    Article  CAS  PubMed  Google Scholar 

  9. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373. https://doi.org/10.1038/nature05058

    Article  CAS  PubMed  Google Scholar 

  10. Zhang J, Li W, Alici G (2017) Inertial microfluidics: mechanisms and applications. In: Zhang D, Wei B (eds) Advanced mechatronics and MEMS devices II, Bd 189. Springer, Cham, pp 563–593

    Chapter  Google Scholar 

  11. Ruffert C (2018) Mikrofluidische Separationsverfahren und -systeme. Ihr Einsatz zur Rückgewinnung von Katalysatorwerkstoffen. Lehrbuch. Springer, Berlin

    Book  Google Scholar 

  12. Castillo-León J, Svendsen WE (eds) (2015) Lab-on-a-chip devices and micro-total analysis systems. A practical guide. Springer, Cham

    Google Scholar 

  13. Zhang JXJ, Hoshino K (2018) Molecular sensors and nanodevices. Principles, designs and applications in biomedical engineering. Micro & nano technologies. Elsevier, Amsterdam

    Google Scholar 

  14. Zhang J, Yan S, Yuan D, Alici G, Nguyen N-T, Ebrahimi Warkiani M, Li W (2016) Fundamentals and applications of inertial microfluidics: a review. Lab Chip 16(1):10–34. https://doi.org/10.1039/c5lc01159k

    Article  CAS  PubMed  Google Scholar 

  15. Convery N, Gadegaard N (2019) 30 years of microfluidics. Micro Nano Eng 2:76–91. https://doi.org/10.1016/j.mne.2019.01.003

    Article  Google Scholar 

  16. Chen X, Wu H, Wu J (2018) Surface-tension-confined droplet microfluidics. Chinese Phys B 27(2):29202. https://doi.org/10.1088/1674-1056/27/2/029202

    Article  CAS  Google Scholar 

  17. Bashir S, XCi S, Bashir M, Rees JM, Zimmerman WBJ (2014) Dynamic wetting in microfluidic droplet formation. Biochip J 8(2):122–128. https://doi.org/10.1007/s13206-014-8207-y

    Article  CAS  Google Scholar 

  18. Nguyen N-T (2004) Mikrofluidik. Vieweg+Teubner Verlag, Wiesbaden

    Book  Google Scholar 

  19. Holmes D, Gawad S (2010) The application of microfluidics in biology. Methods Mol Biol 583:55–80. https://doi.org/10.1007/978-1-60327-106-6_2

    Article  CAS  PubMed  Google Scholar 

  20. Dietzel A (ed) (2016) Microsystems for pharmatechnology. Springer, Cham

    Google Scholar 

  21. Yildiz-Ozturk E, Yesil-Celiktas O (2015) Diffusion phenomena of cells and biomolecules in microfluidic devices. Biomicrofluidics 9(5):52606. https://doi.org/10.1063/1.4923263

    Article  CAS  Google Scholar 

  22. Chen J, Chen D, Xie Y, Yuan T, Chen X (2013) Progress of microfluidics for biology and medicine. Nano-Micro Lett 5(1):66–80. https://doi.org/10.1007/BF03354852

    Article  CAS  Google Scholar 

  23. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026. https://doi.org/10.1103/RevModPhys.77.977

    Article  CAS  Google Scholar 

  24. Amini H, Lee W, Di Carlo D (2014) Inertial microfluidic physics. Lab Chip 14(15):2739–2761. https://doi.org/10.1039/c4lc00128a

    Article  CAS  PubMed  Google Scholar 

  25. Wang L, Dandy DS (2017) A microfluidic concentrator for cyanobacteria harvesting. Algal Res 26:481–489. https://doi.org/10.1016/j.algal.2017.03.018

    Article  Google Scholar 

  26. Gou Y, Jia Y, Wang P, Sun C (2018) Progress of inertial microfluidics in principle and application. Sensors (Basel) 18(6). https://doi.org/10.3390/s18061762

  27. Betancourt T, Brannon-Peppas L (2006) Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices. Int J Nanomedicine 1(4):483–495. https://doi.org/10.2147/nano.2006.1.4.483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gatzen HH, Saile V, Leuthold J (2015) Micro and nano fabrication. Springer, Berlin

    Book  Google Scholar 

  29. Madou MJ (2011) Fundamentals of microfabrication and nanotechnology, three-volume set. CRC Press, Boca Raton

    Google Scholar 

  30. Purr F, Bassu M, Lowe RD, Thürmann B, Dietzel A, Burg TP (2017) Asymmetric nanofluidic grating detector for differential refractive index measurement and biosensing. Lab Chip 17(24):4265–4272. https://doi.org/10.1039/c7lc00929a

    Article  CAS  PubMed  Google Scholar 

  31. Purr F, Eckardt M-F, Kieserling J, Gronwald P-L, Burg TP, Dietzel A (2019) Robust smartphone assisted biosensing based on asymmetric nanofluidic grating interferometry. Sensors (Basel) 19(9). https://doi.org/10.3390/s19092065

  32. Purr F, Lowe RD, Stehr M, Singh M, Burg TP, Dietzel A (2020) Biosensing based on optimized asymmetric optofluidic nanochannel gratings. Micro Nano Eng 8:100056. https://doi.org/10.1016/j.mne.2020.100056

    Article  Google Scholar 

  33. Erfle P, Riewe J, Bunjes H, Dietzel A (2019) Stabilized production of lipid nanoparticles of tunable size in Taylor flow glass devices with high-surface-quality 3D microchannels. Micromachines (Basel) 10(4). https://doi.org/10.3390/mi10040220

  34. Erfle P, Riewe J, Bunjes H, Dietzel A (2017) Optically monitored segmented flow for controlled ultra-fast mixing and nanoparticle precipitation. Microfluid Nanofluid 21(12):1089. https://doi.org/10.1007/s10404-017-2016-2

    Article  Google Scholar 

  35. Büttgenbach S (2016) Mikrosystemtechnik. Springer, Berlin

    Book  Google Scholar 

  36. Fiorini GS, Chiu DT (2005) Disposable microfluidic devices: fabrication, function, and application. Biotechniques 38(3):429–446. https://doi.org/10.2144/05383RV02

    Article  CAS  PubMed  Google Scholar 

  37. Kim E, Xia Y, Whitesides GM (1996) Micromolding in capillaries: applications in materials science. J Am Chem Soc 118(24):5722–5731. https://doi.org/10.1021/ja960151v

    Article  CAS  Google Scholar 

  38. King E, Xia Y, Zhao X-M, Whitesides GM (1997) Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers. Adv Mater 9(8):651–654. https://doi.org/10.1002/adma.19970090814

    Article  Google Scholar 

  39. Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28(1):153–184. https://doi.org/10.1146/annurev.matsci.28.1.153

    Article  CAS  Google Scholar 

  40. Kaufmann T, Ravoo BJ (2010) Stamps, inks and substrates: polymers in microcontact printing. Polym Chem 1(4):371. https://doi.org/10.1039/b9py00281b

    Article  CAS  Google Scholar 

  41. Lipomi DJ, Martinez RV, Cademartiri L, Whitesides GM (2012) Soft lithographic approaches to nanofabrication polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 211–231

    Book  Google Scholar 

  42. Demming S (2011) Disposable lab-on-chip systems for biotechnological screening. Shaker

    Google Scholar 

  43. Eddings MA, Johnson MA, Gale BK (2008) Determining the optimal PDMS–PDMS bonding technique for microfluidic devices. Prog Biomed Eng 18(6):67001. https://doi.org/10.1088/0960-1317/18/6/067001

    Article  CAS  Google Scholar 

  44. Gale B, Jafek A, Lambert C, Goenner B, Moghimifam H, Nze U, Kamarapu S (2018) A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions 3(3):60. https://doi.org/10.3390/inventions3030060

    Article  Google Scholar 

  45. Sima F, Sugioka K, Vázquez RM, Osellame R, Kelemen L, Ormos P (2018) Three-dimensional femtosecond laser processing for lab-on-a-chip applications. Nanophotonics 7(3):613–634. https://doi.org/10.1515/nanoph-2017-0097

    Article  CAS  Google Scholar 

  46. Guo B, Sun J, Hua Y, Zhan N, Jia J, Chu K (2020) Femtosecond laser micro/nano-manufacturing: theories, measurements, methods, and applications. Nanomanuf Metrol 3(1):26–67. https://doi.org/10.1007/s41871-020-00056-5

    Article  CAS  Google Scholar 

  47. Meinen S, Frey LJ, Krull R, Dietzel A (2019) Resonant mixing in glass bowl microbioreactor investigated by microparticle image velocimetry. Micromachines (Basel) 10(5). https://doi.org/10.3390/mi10050284

  48. Sugioka K, Xu J, Wu D, Hanada Y, Wang Z, Cheng Y, Midorikawa K (2014) Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Lab Chip 14(18):3447–3458. https://doi.org/10.1039/c4lc00548a

    Article  CAS  PubMed  Google Scholar 

  49. Wlodarczyk KL, Carter RM, Jahanbakhsh A, Lopes AA, Mackenzie MD, Maier RRJ, Hand DP, Maroto-Valer MM (2018) Rapid laser manufacturing of microfluidic devices from glass substrates. Micromachines (Basel) 9(8). https://doi.org/10.3390/mi9080409

  50. Kotz F, Helmer D, Rapp BE (2020) Emerging technologies and materials for high-resolution 3D printing of microfluidic chips. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2020_141

  51. Burmeister F, Steenhusen S, Houbertz R, Asche TS, Nickel J, Nolte S, Tucher N, Josten P, Obel K, Wolter H, Fessel S, am Schneider, Gärtner K-H, Beck C, Behrens P, Tünnermann A, Walles H (2015) Optically induced nanostructures: biomedical and technical applications. Two-photon polymerization of inorganic-organic polymers for biomedical and microoptical applications, Berlin

    Google Scholar 

  52. Seniutinas G, Weber A, Padeste C, Sakellari I, Farsari M, David C (2018) Beyond 100 nm resolution in 3D laser lithography – post processing solutions. Microelectron Eng 191:25–31. https://doi.org/10.1016/J.MEE.2018.01.018

    Article  CAS  Google Scholar 

  53. Nguyen AK, Narayan RJ (2017) Two-photon polymerization for biological applications. Mater Today 20(6):314–322. https://doi.org/10.1016/j.mattod.2017.06.004

    Article  CAS  Google Scholar 

  54. Land KJ, McCabe LAND (2019) Paper-based diagnostics, 1. Aufl. Springer, Cham

    Book  Google Scholar 

  55. Bhattacharya S, Kumar S, Agarwal AK (eds) (2019) Paper microfluidics. Advanced functional materials and sensors. Springer, Singapore

    Google Scholar 

  56. Hecht L, van Rossum D, Dietzel A (2016) Femtosecond-laser-structured nitrocellulose membranes for multi-parameter point-of-care tests. Microelectron Eng 158:52–58. https://doi.org/10.1016/j.mee.2016.03.020

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Dietzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klein, AK., Dietzel, A. (2020). A Primer on Microfluidics: From Basic Principles to Microfabrication. In: Bahnemann, J., Grünberger, A. (eds) Microfluidics in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 179. Springer, Cham. https://doi.org/10.1007/10_2020_156

Download citation

Publish with us

Policies and ethics