Abstract
Typically, bioprocesses on an industrial scale are dynamic systems with a certain degree of variability, system inhomogeneities, and even population heterogeneities. Therefore, the scaling of such processes from laboratory to industrial scale and vice versa is not a trivial task. Traditional scale-down methodologies consider several technical parameters, so that systems on the laboratory scale tend to qualitatively reflect large-scale effects, but not the dynamic situation in an industrial bioreactor over the entire process, from the perspective of a cell. Supported by the enormous increase in computing power, the latest scientific focus is on the application of dynamic models, in combination with computational fluid dynamics to quantitatively describe cell behavior. These models allow the description of possible cellular lifelines which in turn can be used to derive a regime analysis for scale-down experiments. However, the approaches described so far, which were for a very few process examples, are very labor- and time-intensive and cannot be validated easily. In parallel, alternatives have been developed based on the description of the industrial process with hybrid process models, which describe a process mechanistically as far as possible in order to determine the essential process parameters with their respective variances. On-line analytical methods allow the characterization of population heterogeneity directly in the process. This detailed information from the industrial process can be used in laboratory screening systems to select relevant conditions in which the cell and process related parameters reflect the situation in the industrial scale. In our opinion, these technologies, which are available in research for modeling biological systems, in combination with process analytical techniques are so far developed that they can be implemented in industrial routines for faster development of new processes and optimization of existing ones.
Graphical Abstract

Keywords
- Bioprocess scale-up
- Process analytical techniques
- Process modeling
- Scale-down
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Anane E, Sawatzki A, Neubauer P, Cruz Bournazou MN (2019) Modelling concentration gradients in fed-batch cultivations of E. coli – towards the flexible design of scale-down experiments. J Chem Technol Biotechnol 94:516–526
Neubauer P, Cruz N, Glauche F, Junne S, Knepper A, Raven M (2013) Consistent development of bioprocesses from microliter cultures to the industrial scale. Eng Life Sci 13:224–238
Neubauer P, Junne S (2016) Scale-up and scale-down methodologies for bioreactors. In: Mandenius CF (ed) Bioreactors: design, operation and novel applications. Wiley-VCH Verlag GmbH, Weinheim, pp 323–354
Reitz C, Fan Q, Neubauer P (2018) Synthesis of non-canonical branched-chain amino acids in Escherichia coli and approaches to avoid their incorporation into recombinant proteins. Curr Opin Biotechnol 53:248–253
Wang G, Haringa C, Tang W, Noorman H, Chu J, Zhuang Y, Zhang S (2020) Coupled metabolic-hydrodynamic modeling enabling rational scale-up of industrial bioprocesses. Biotechnol Bioeng 117:844–867
Grieves M, Vickers J (2016) Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. In: Transdisciplinary perspectives on complex systems: new findings and approaches, pp 85–113
Grossmann I (2005) Enterprise-wide optimization: a new frontier in process systems engineering. AIChE J:1846–1857
Qi Q, Tao F (2018) Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison. IEEE Access 6:3585–3593
Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002) The IWA anaerobic digestion model no 1(ADM 1). Water Sci Technol 45:65–73
Tsugawa H (2018) Advances in computational metabolomics and databases deepen the understanding of metabolisms. Curr Opin Biotechnol 54:10
Kitano H (2002) Computational systems biology. Nature 420:206–210
Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Review of cellular metabolism. In: Metabolic engineering. Academic Press, San Diego, pp 21–79
Varma A, Palsson BO (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Bio/Technology 12:994–998
Marchisio MA, Stelling J (2009) Computational design tools for synthetic biology. Curr Opin Biotechnol 20:479–485
Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23:2507–2517
Bailey JE (1998) Mathematical modeling and analysis in biochemical engineering: past accomplishments and future opportunities. Biotechnol Prog 14:8–20
Koutinas M, Kiparissides A, Pistikopoulos EN, Mantalaris A (2012) Bioprocess systems engineering: transferring traditional process engineering principles to industrial biotechnology. Comput Struct Biotechnol J 3:e201210022
Anane E, López CDC, Barz T, Sin G, Gernaey KV, Neubauer P, Cruz Bournazou MN (2019) Output uncertainty of dynamic growth models: effect of uncertain parameter estimates on model reliability. Biochem Eng J 150:107247
Muñoz-Tamayo R, Puillet L, Daniel JB, Sauvant D, Martin O, Taghipoor M, Blavy P (2018) Review: to be or not to be an identifiable model. Is this a relevant question in animal science modelling? Animal 12:701–712
Villaverde AF, Barreiro A, Papachristodoulou A (2016) Structural identifiability of dynamic systems biology models. PLoS Comput Biol 12:1–22
Brubaker TA (1979) Nonlinear parameter estimation. Anal Chem 51:1385A
Brun R, Kühni M, Siegrist H, Gujer W, Reichert P (2002) Practical identifiability of ASM2d parameters – systematic selection and tuning of parameter subsets. Water Res 36:4113–4127
Kravaris C, Hahn J, Chu Y (2013) Advances and selected recent developments in state and parameter estimation. Comput Chem Eng 51:111–123
Vajda S, Rabitz H, Walter E, Lecourtier Y (1989) Qualitative and quantitative identifiability analysis of nonlinear chemical kinetic models. Chem Eng Commun 83:191–219
Bellman R, Astrom KJ (1970) On structural identifiability. Math Biosci 7:329–339
Cobelli C, DiStefano JJ (1980) Parameter and structural identifiability concepts and ambiguities: a critical review and analysis. Am J Phys 239:R7–R24
Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25:1923–1929
Neubauer P, Cruz-Bournazou MN (2017) Continuous bioprocess development: methods for control and characterization of the biological system. In: Subramanian G (ed) Continuous biomanufacturing – innovative technologies and methods. Wiley, Hoboken, pp 1–30
Anane E, García ÁC, Haby B, Hans S, Krausch N, Krewinkel M, Hauptmann P, Neubauer P, Cruz Bournazou MN (2019) A model-based framework for parallel scale-down fed-batch cultivations in mini-bioreactors for accelerated phenotyping. Biotechnol Bioeng 116:2906–2918
Neubauer P, Glauche F, Cruz-Bournazou MN (2017) Editorial: bioprocess development in the era of digitalization. Eng Life Sci 17:1140–1141
Narayanan H, Luna MF, von Stosch M, Cruz Bournazou MN, Polotti G, Morbidelli M, Butté A, Sokolov M (2020) Bioprocessing in the digital age: the role of process models. Biotechnol J 15:1–10
Noorman H (2011) An industrial perspective on bioreactor scale-down: what we can learn from combined large-scale bioprocess and model fluid studies. Biotechnol J 6:934–943
Petsagkourakis P, Sandoval IO, Bradford E, Zhang D, del Rio-Chanona EA (2020) Reinforcement learning for batch bioprocess optimization. Comput Chem Eng 133:106649
Mandenius CF, Brundin A (2008) Bioprocess optimization using design-of-experiments methodology. Biotechnol Prog 24:1191–1203
Wechselberger P, Sagmeister P, Herwig C (2013) Model-based analysis on the extractability of information from data in dynamic fed-batch experiments. Biotechnol Prog 29:285–296
Covert MW, Xiao N, Chen TJ, Karr JR (2008) Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 24:2044–2050
Haringa C, Deshmukh AT, Mudde RF, Noorman HJ (2017) Euler-Lagrange analysis towards representative down-scaling of a 22 m3 aerobic S. cerevisiae fermentation. Chem Eng Sci 170:653–669
Delvigne F, Goffin P (2014) Microbial heterogeneity affects bioprocess robustness: dynamic single-cell analysis contributes to understanding of microbial populations. Biotechnol J 9:61–72
Barz T, Lopez Cardenas DC, Cruz Bournazou MN, Körkel S, Walter SF (2016) Real-time adaptive input design for the determination of competitive adsorption isotherms in liquid chromatography. Comput Chem Eng 94:104–116
Cruz Bournazou MN, Barz T, Nickel DB, Lopez Cárdenas DC, Glauche F, Knepper A, Neubauer P (2017) Online optimal experimental re-design in robotic parallel fed-batch cultivation facilities. Biotechnol Bioeng 114:610–619
Dörr M, Fibinger MPC, Last D, Schmidt S, Santos-Aberturas J, Böttcher D, Hummel A, Vickers C, Voss M, Bornscheuer UT (2016) Fully automatized high-throughput enzyme library screening using a robotic platform. Biotechnol Bioeng 113:1421–1432
Haby B, Hans S, Anane E, Sawatzki A, Krausch N, Neubauer P, Cruz Bournazou MN (2019) Integrated robotic mini bioreactor platform for automated, parallel microbial cultivation with online data handling and process control. SLAS Technol 24:569–582
Unthan S, Radek A, Wiechert W, Oldiges M, Noack S (2015) Bioprocess automation on a mini pilot plant enables fast quantitative microbial phenotyping. Microb Cell Factories 14:32
Lattermann C, Büchs J (2015) Microscale and miniscale fermentation and screening. Curr Opin Biotechnol 35:1–6
Hemmerich J, Noack S, Wiechert W, Oldiges M (2018) Microbioreactor systems for accelerated bioprocess development. Biotechnol J 13:1–9
Lara AR, Galindo E, Ramírez OT, Palomares LA (2006) Living with heterogeneities in bioreactors: understanding the effects of environmental gradients on cells. Mol Biotechnol 34:355–382
Oldshue JY (1966) Fermentation mixing scale-up techniques. Biotechnol Bioeng 8:3–24
Oosterhuis NMG (1984) Scale-up of bioreactors. TU Delft 162
Enfors SO, Jahic M, Rozkov A, Xu B, Hecker M, Jürgen B, Krüger E, Schweder T, Hamer G, O’Beirne D, Noisommit-Rizzi N, Reuss M, Boone L, Hewitt C, McFarlane C, Nienow A, Kovacs T, Trägårdh C, Fuchs L, Revstedt J, Friberg PC, Hjertager B, Blomsten G, Skogman H, Hjort S, Hoeks F, Lin HY, Neubauer P, Van der Lans R, Luyben K, Vrabel P, Manelius A, Manelius Å (2001) Physiological responses to mixing in large scale bioreactors. J Biotechnol 85:175–185
Larsson G, Törnkvist M, Ståhl Wernersson E, Trägårdh C, Noorman H, Enfors SO (1996) Substrate gradients in bioreactors: origin and consequences. Bioprocess Eng 14:281–289
Brand E, Junne S, Anane E, Cruz-Bournazou MN, Neubauer P (2018) Importance of the cultivation history for the response of Escherichia coli to oscillations in scale-down experiments. Bioprocess Biosyst Eng 41:1305–1313
Sweere APJ, Luyben KCAM, Kossen NWF (1987) Regime analysis and scale-down: tools to investigate the performance of bioreactors. Enzym Microb Technol 9:386–398
Lin HY, Mathiszik B, Xu B, Enfors SO, Neubauer P (2001) Determination of the maximum specific uptake capacities for glucose and oxygen in glucose-limited fed-batch cultivations of Escherichia coli. Biotechnol Bioeng 73:347–357
Bylund F, Collet E, Larsson G, Enfors SO, Larsson G (1998) Substrate gradient formation in the large-scale bioreactor lowers cell yield and increases by-product formation. Bioprocess Eng 18:171–180
Neubauer P, Häggström L, Enfors SO (1995) Influence of substrate oscillations on acetate formation and growth yield in Escherichia coli glucose limited fed-batch cultivations. Biotechnol Bioeng 47:139–146
Xu B, Jahic M, Blomsten G, Enfors SO (1999) Glucose overflow metabolism and mixed-acid fermentation in aerobic large-scale fed-batch processes with Escherichia coli. Appl Microbiol Biotechnol 51:564–571
Nienow AW (2006) Reactor engineering in large scale animal cell culture. Cytotechnology 50:9–33
Simen JD, Löffler M, Jäger G, Schäferhoff K, Freund A, Matthes J, Müller J, Takors R, Feuer R, von Wulffen J, Lischke J, Ederer M, Knies D, Kunz S, Sawodny O, Riess O, Sprenger G, Trachtmann N, Nieß A, Broicher A (2017) Transcriptional response of Escherichia coli to ammonia and glucose fluctuations. Microb Biotechnol 10:858–872
Spann R, Glibstrup J, Pellicer-Alborch K, Junne S, Neubauer P, Roca C, Kold D, Lantz AE, Sin G, Gernaey KV, Krühne U (2019) CFD predicted pH gradients in lactic acid bacteria cultivations. Biotechnol Bioeng 116:769–780
Paul K, Böttinger K, Mitic BM, Scherfler G, Posch C, Behrens D, Huber CG, Herwig C (2020) Development, characterization, and application of a 2-compartment system to investigate the impact of pH inhomogeneities in large-scale CHO-based processes. Eng Life Sci 20:368–378
Paul K, Hartmann T, Posch C, Behrens D, Herwig C (2020) Investigation of cell line specific responses to pH inhomogeneity and consequences for process design. Eng Life Sci 20:412–421
Buchholz J, Graf M, Freund A, Busche T, Kalinowski J, Blombach B, Takors R (2014) CO 2/HCO 3− perturbations of simulated large scale gradients in a scale-down device cause fast transcriptional responses in Corynebacterium glutamicum. Appl Microbiol Biotechnol 98:8563–8572
Spadiut O, Rittmann S, Dietzsch C, Herwig C (2013) Dynamic process conditions in bioprocess development. Eng Life Sci 13:88–101
Limberg MH, Joachim M, Klein B, Wiechert W, Oldiges M (2017) pH fluctuations imperil the robustness of C. glutamicum to short term oxygen limitation. J Biotechnol 259:248–260
Xu S, Jiang R, Mueller R, Hoesli N, Kretz T, Bowers J, Chen H (2018) Probing lactate metabolism variations in large-scale bioreactors. Biotechnol Prog 34:756–766
Brunner M, Doppler P, Klein T, Herwig C, Fricke J (2018) Elevated pCO2 affects the lactate metabolic shift in CHO cell culture processes. Eng Life Sci 18:204–214
Delvigne F, Noorman H (2017) Scale-up/scale-down of microbial bioprocesses: a modern light on an old issue. Microb Biotechnol 10:685–687
Cortés JT, Flores N, Bolívar F, Lara AR, Ramírez OT (2016) Physiological effects of pH gradients on Escherichia coli during plasmid DNA production. Biotechnol Bioeng 113:598–611
Junne S, Klingner A, Kabisch J, Schweder T, Neubauer P (2011) A two-compartment bioreactor system made of commercial parts for bioprocess scale-down studies: impact of oscillations on Bacillus subtilis fed-batch cultivations. Biotechnol J 6:1009–1017
Käß F, Hariskos I, Michel A, Brandt HJ, Spann R, Junne S, Wiechert W, Neubauer P, Oldiges M (2014) Assessment of robustness against dissolved oxygen/substrate oscillations for C. glutamicum DM1933 in two-compartment bioreactor. Bioprocess Biosyst Eng 37:1151–1162
Schilling BM, Pfefferle W, Bachmann B, Leuchtenberger W, Deckwer W-DD (1999) A special reactor design for investigations of mixing time effects in a scaled-down industrial L-lysine fed-batch fermentation process. Biotechnol Bioeng 64:599–606
Delvigne F, Boxus M, Ingels S, Thonart P (2009) Bioreactor mixing efficiency modulates the activity of a prpoS::GFP reporter gene in E. coli. Microb Cell Fact 8:15
Junne S, Neubauer P (2018) How scalable and suitable are single-use bioreactors? Curr Opin Biotechnol 53:240–247
Löffler M, Simen JD, Jäger G, Schäferhoff K, Freund A, Takors R (2016) Engineering E. coli for large-scale production – strategies considering ATP expenses and transcriptional responses. Metab Eng 38:73–85
Delvigne F, Baert J, Sassi H, Fickers P, Grünberger A, Dusny C (2017) Taking control over microbial populations: current approaches for exploiting biological noise in bioprocesses. Biotechnol J 12:1600549
Lemoine A, Delvigne F, Bockisch A, Neubauer P, Junne S (2017) Tools for the determination of population heterogeneity caused by inhomogeneous cultivation conditions. J Biotechnol 251:84–93
Avery SV (2006) Microbial cell individuality and the underlying sources of heterogeneity. Nat Rev Microbiol 4:577–587
Binder D, Drepper T, Jaeger KE, Delvigne F, Wiechert W, Kohlheyer D, Grünberger A (2017) Homogenizing bacterial cell factories: analysis and engineering of phenotypic heterogeneity. Metab Eng 42:145–156
Lieder S, Jahn M, Seifert J, von Bergen M, Müller S, Takors R (2014) Subpopulation-proteomics reveal growth rate, but not cell cycling, as a major impact on protein composition in Pseudomonas putida KT2440. AMB Express 4:1–10
Delvigne F, Zune Q, Lara AR, Al-Soud W, Sørensen SJ (2014) Metabolic variability in bioprocessing: implications of microbial phenotypic heterogeneity. Trends Biotechnol 32:608–616
Van Heerden JH, Wortel MT, Bruggeman FJ, Heijnen JJ, Bollen YJM, Planqué R, Hulshof J, O’Toole TG, Wahl SA, Teusink B (2014) Lost in transition: start-up of glycolysis yields subpopulations of nongrowing cells. Science 343:1245114
Brognaux A, Han S, Sørensen SJ, Lebeau F, Thonart P, Delvigne F (2013) A low-cost, multiplexable, automated flow cytometry procedure for the characterization of microbial stress dynamics in bioreactors. Microb Cell Fact 12
Lieder S, Jahn M, Koepff J, Muller S, Takors R (2016) Environmental stress speeds up DNA replication in Pseudomonas putida in chemostat cultivations. Biotechnol J 11:155–163
Hewitt CJ, von Caron GN, Axelsson B, McFarlane CM, Nienow AW (2000) Studies related to the scale-up of high-cell-density E. coli fed-batch fermentations using multiparameter flow cytometry: effect of a changing microenvironment with respect to glucose and dissolved oxygen concentration. Biotechnol Bioeng 70:381–390
Patel A, Antonopoulou I, Enman J, Rova U, Christakopoulos P, Matsakas L (2019) Lipids detection and quantification in oleaginous microorganisms: an overview of the current state of the art. BMC Chem Eng 1
Marbà-Ardébol AM, Emmerich J, Neubauer P, Junne S (2017) Single-cell-based monitoring of fatty acid accumulation in Crypthecodinium cohnii with three-dimensional holographic and in situ microscopy. Process Biochem 52:223–232
Marbà-Ardébol AM, Bockisch A, Neubauer P, Junne S (2018) Sterol synthesis and cell size distribution under oscillatory growth conditions in Saccharomyces cerevisiae scale-down cultivations. Yeast 35:213–223
Lemoine A, Limberg MHMH, Kästner S, Oldiges M, Neubauer P, Junne S (2016) Performance loss of Corynebacterium glutamicum cultivations under scale-down conditions using complex media. Eng Life Sci 16:620–632
Nachin L, Nannmark U, Nyström T (2005) Differential roles of the universal stress proteins of Escherichia coli in oxidative stress resistance, adhesion, and motility. J Bacteriol 187:6265–6272
Trivedi A, Mavi PS, Bhatt D, Kumar A (2016) Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis. Nat Commun 7
Kurt T, Marbà-Ardébol AM, Turan Z, Neubauer P, Junne S, Meyer V (2018) Rocking Aspergillus: morphology-controlled cultivation of Aspergillus niger in a wave-mixed bioreactor for the production of secondary metabolites. Microb Cell Factories 17:128
Lin PJ, Scholz A, Krull R (2010) Effect of volumetric power input by aeration and agitation on pellet morphology and product formation of Aspergillus niger. Biochem Eng J 49:213–220
Gómez-Ríos D, Junne S, Neubauer P, Ochoa S, Ríos-Estepa R, Ramírez-Malule H (2019) Characterization of the metabolic response of Streptomyces clavuligerus to shear stress in stirred tanks and single-use 2D rocking motion bioreactors for clavulanic acid production. Antibiotics 8
Hardy N, Moreaud M, Guillaume D, Augier F, Nienow A, Béal C, Chaabane FB (2017) Advanced digital image analysis method dedicated to the characterization of the morphology of filamentous fungus. J Microsc 266:126–140
Kuschel M, Siebler F, Takors R (2017) Lagrangian trajectories to predict the formation of population heterogeneity in large-scale bioreactors. Bioengineering 4:27
Ladner T, Grünberger A, Probst C, Kohlheyer D, Büchs J, Delvigne F (2017) Application of mini- and micro-bioreactors for microbial bioprocesses. In: Current developments in biotechnology and bioengineering: bioprocesses, bioreactors and controls. Elsevier, Amsterdam, pp 433–461
Morchain J, Gabelle J-C, Cockx A (2013) Coupling of biokinetic and population balance models to account for biological heterogeneity in bioreactors. AICHE J 59:369–379
Pigou M, Morchain J (2015) Investigating the interactions between physical and biological heterogeneities in bioreactors using compartment, population balance and metabolic models. Chem Eng Sci 126:267–282
Lapin A, Müller D, Reuss M (2004) Dynamic behavior of microbial populations in stirred bioreactors simulated with Euler−Lagrange methods: traveling along the lifelines of single cells. Ind Eng Chem Res 43:4647–4656
Lapin A, Klann M, Reuss M (2010) Multi-scale spatio-temporal modeling: lifelines of microorganisms in bioreactors and tracking molecules in cells. Adv Biochem Eng Biotechnol 121:23–43
Anane E, López DC, Neubauer P, Cruz Bournazou MN (2017) Modelling overflow metabolism in Escherichia coli by acetate cycling. Biochem Eng J 125:23–30
Lara AR, Taymaz-Nikerel H, Mashego MR, Van Gulik WM, Heijnen JJ, Ramirez OT, van Winden WA, Van Gulik WM, Heijnen JJ, Van Winden WA, Ramírez OT, van Winden WA (2009) Fast dynamic response of the fermentative metabolism of Escherichia coli to aerobic and anaerobic glucose pulses. Biotechnol Bioeng 104:1153–1161
Soini J, Ukkonen K, Neubauer P (2011) Accumulation of amino acids deriving from pyruvate in Escherichia coli W3110 during fed-batch cultivation in a two-compartment scale-down bioreactor. Adv Biosci Biotechnol 02:336–339
Barz T, Sommer A, Wilms T, Neubauer P, Cruz Bournazou MN (2018) Adaptive optimal operation of a parallel robotic liquid handling station. IFAC-PapersOnLine 51:765–770
Lemoine A, Martnez-Iturralde NM, Spann R, Neubauer P, Junne S (2015) Response of Corynebacterium glutamicum exposed to oscillating cultivation conditions in a two- and a novel three-compartment scale-down bioreactor. Biotechnol Bioeng 112:1220–1231
Korneli C, Bolten CJ, Godard T, Franco-Lara E, Wittmann C, Universita T (2012) Debottlenecking recombinant protein production in Bacillus megaterium under large-scale conditions—targeted precursor feeding designed from metabolomics. Biotechnol Bioeng 109:1538–1550
Janakiraman V, Kwiatkowski C, Kshirsagar R, Ryll T, Huang YM (2015) Application of high-throughput mini-bioreactor system for systematic scale-down modeling, process characterization, and control strategy development. Biotechnol Prog 31:1623–1632
Gábor A, Banga JR (2015) Robust and efficient parameter estimation in dynamic models of biological systems. BMC Syst Biol 9:74
Rollié S, Mangold M, Sundmacher K (2012) Designing biological systems: systems engineering meets synthetic biology. Chem Eng Sci 69:1–29
Bareither R, Pollard D (2011) A review of advanced small-scale parallel bioreactor technology for accelerated process development: current state and future need. Biotechnol Prog 27:2–14
Rameez S, Mostafa SS, Miller C, Shukla AA (2014) High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control. Biotechnol Prog 30:718–727
Herwig C, Garcia-Aponte OF, Golabgir A, Rathore AS (2015) Knowledge management in the QbD paradigm: manufacturing of biotech therapeutics. Trends Biotechnol 33:381–387
Rathore AS (2009) Roadmap for implementation of quality by design (QbD) for biotechnology products. Trends Biotechnol 27:546–553
Velez-Suberbie ML, Betts JPJ, Walker KL, Robinson C, Zoro B, Keshavarz-Moore E (2017) High-throughput automated microbial bioreactor system used for clone selection and rapid scale-down process optimization. Biotechnol Prog 15:1–11
de Lorenzo V, Schmidt M (2018) Biological standards for the knowledge-based BioEconomy: what is at stake. New Biotechnol 40:170–180
Schallmey M, Frunzke J, Eggeling L, Marienhagen J (2014) Looking for the pick of the bunch: high-throughput screening of producing microorganisms with biosensors. Curr Opin Biotechnol 26:148–154
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Neubauer, P., Anane, E., Junne, S., Cruz Bournazou, M.N. (2020). Potential of Integrating Model-Based Design of Experiments Approaches and Process Analytical Technologies for Bioprocess Scale-Down. In: Herwig, C., Pörtner, R., Möller, J. (eds) Digital Twins. Advances in Biochemical Engineering/Biotechnology, vol 177. Springer, Cham. https://doi.org/10.1007/10_2020_154
Download citation
DOI: https://doi.org/10.1007/10_2020_154
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-71655-4
Online ISBN: 978-3-030-71656-1
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)