Skip to main content

Mechanistic Mathematical Models as a Basis for Digital Twins

  • Chapter
  • First Online:
Digital Twins

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 176))

Abstract

A future-oriented approach is the application of Digital Twins for process development, optimization and finally during manufacturing. Digital Twins are detailed virtual representations of bioprocesses with predictive capabilities. In biotechnology, Digital Twins can be used to monitor processes and to provide data for process control and optimization. Central and crucial components of Digital Twins are mathematical process models, which are capable to describe and predict cultivations with high fidelity. Detailed mechanistic models in particular are suitable for both use in Digital Twins and for the development of process control strategies.

In this chapter the requirements that process models must fulfil in order to be used for process optimization and finally in Digital Twins will be described. Different types of models, including mechanistic as well as compartmentalized models, are outlined and their application in Digital Twins and for process optimization is explained. Finally, a structured, compartmentalized process model, which was specifically designed for process optimization and has already been used in Digital Twins, is highlighted.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    “State variables” is a set of variables describing the (dynamic) state of a system. “State variables” are resulting from differential or algebraic equations, often the corresponding real quantities are measureable. “Parameters” in models are constant values in time. “Influencing factors” are factors that have an impact on the bioprocess quantities, examples are feeding rates, pH, temperature, etc.

Abbreviations

AA:

Amino acids

AI:

Artificial intelligence

Amm:

Ammonia

ANMPC:

Adaptive nonlinear model predictive control

ANN:

Artificial neural network

CHO:

Chinese hamster ovary

DNA:

Deoxyribonucleic acid

DO:

Dissolved oxygen

DTP:

Digital twin prototype

EtOH:

Ethanol

GFP:

Green fluorescent protein

Glc:

Glucose

Gln:

Glutamine

GSM:

Generalized structured modular

HAc:

Acetic acid

Ind:

Induction

IPTG:

Isopropyl-β-D-thiogalactopyranoside

Lac:

Lactate

mAb:

Monoclonal antibody

Mal:

Maltose

MPC:

Model predictive controller

NaCl:

Sodium chloride

NMPC:

Nonlinear model predictive control

OLFO:

Open-loop-feedback-optimal strategy

OTS:

Operator training simulator

OUR:

Oxygen uptake rate

P:

Product

PAT:

Process analytical technology

PC:

Product carbon

RNA:

Ribonucleic acid

SAA:

Substrate amino acid

SC:

Substrate carbon

SCM:

Structured compartment model

SM:

Structured model

SN:

Substrate nitrogen

Str:

Striatine

UI:

User interface

USM:

Unstructured model

YE:

Yeast extract

FV, in [m3 s−1]:

Total feed rate

Fi [m3 s−1]:

Feed rate of component i

KS [kg L−1]:

Half saturation constant

Ksl [−]:

Slope parameter (sigmoidal parameter)

X50, h [unit of x]:

Location parameter, high side of function (sigmoidal parameter)

X50, l [unit of x]:

Location parameter, low side of function (sigmoidal parameter)

Yh [−]:

Value at high x (sigmoidal parameter)

Yi/S [−]:

Yield coefficient

Yl [−]:

Value at low x (sigmoidal parameter)

Ymid [−]:

Value between X50,l and X50,h (sigmoidal parameter)

cS [g L−1]:

Concentration of substrate

ci, Feed [g L−1]:

Feed concentration of component i

ci [g L−1]:

Concentration of component i

ri [s−1]:

Uptake rate

ri+ [s−1]:

Production rate

vi [−]:

Stoichiometric coefficient

μd [s−1]:

Specific death rate

F [m3 s−1]:

Feed rate

MWi [kg mol−1]:

Molecular weight of component i

S [g L−1]:

Substrate concentration

T [K]:

Temperature

V [m3]:

Volume

X [g L−1]:

Biomass

Xd [g L−1]:

Dead biomass

Xi [g L−1]:

Inactive biomass

Xp [g L−1]:

Product forming biomass

Xpri [g L−1]:

Active primary biomass

Xs [g L−1]:

Structural biomass

Xsi [g L−1]:

Structural inactive biomass

Xv [g L−1]:

Viable Biomass

n [−]:

Kinetic parameter

r [s−1]:

Rate

t [s]:

Time

α, β, γ, δ, ε [−]:

Stoichiometric parameters

μ [s−1]:

Specific growth rate

References

  1. Stanbury PF, Whitaker A, Hall SJ (2017) Principles of fermentation technology. Butterworth-Heinemann is an imprint of Elsevier, Oxford, p 2016

    Google Scholar 

  2. Chmiel H, Takors R, Weuster-Botz D (2018) Bioprozesstechnik. Springer, Berlin

    Book  Google Scholar 

  3. Grieves M (2016) Origins of the digital twin concept. https://www.researchgate.net/publication/307509727_Origins_of_the_Digital_Twin_Concept

  4. Glaessgen EH, Stargel DS (2012) The digital twin paradigm for future NASA and U.S. Air Force Vehicles. Honolulu

    Google Scholar 

  5. El Saddik A (2018) Digital twins: the convergence of multimedia technologies. IEEE MultiMedia 25(2):87–92. https://doi.org/10.1109/MMUL.2018.023121167

    Article  Google Scholar 

  6. Grieves M (2015) Digital twin: manufacturing excellence through virtual factory replication: a whitepaper by Michael Grieves

    Google Scholar 

  7. Madni A, Madni C, Lucero S (2019) Leveraging digital twin technology in model-based systems engineering. Systems 7(1):7. https://doi.org/10.3390/systems7010007

    Article  Google Scholar 

  8. Söderberg R, Wärmefjord K, Carlson JS, Lindkvist L (2017) Toward a digital twin for real-time geometry assurance in individualized production. CIRP Ann 66(1):137–140. https://doi.org/10.1016/j.cirp.2017.04.038

    Article  Google Scholar 

  9. Boschert S, Rosen R (2016) Digital twin – the simulation aspect. In: Hehenberger P, Bradley D (eds) Mechatronic futures: challenges and solutions for mechatronic systems and their designers. Springer, Cham, pp 59–74

    Google Scholar 

  10. Rosen R, von Wichert G, Lo G, Bettenhausen KD (2015) About the importance of autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine 48(3):567–572. https://doi.org/10.1016/j.ifacol.2015.06.141

    Article  Google Scholar 

  11. Zobel-Roos S, Schmidt A, Mestmäcker F, Mouellef M, Huter M, Uhlenbrock L, Kornecki M, Lohmann L, Ditz R, Strube J (2019) Accelerating biologics manufacturing by modeling or: is approval under the QbD and PAT approaches demanded by authorities acceptable without a digital-twin? PRO 7(2):94. https://doi.org/10.3390/pr7020094

    Article  Google Scholar 

  12. Pörtner R, Platas Barradas O, Frahm B, Hass VC (2017) Advanced process and control strategies for bioreactors. In: Current developments in biotechnology and bioengineering. Elsevier, pp 463–493

    Google Scholar 

  13. Blesgen A (2009) Entwicklung und Einsatz eines interaktiven Biogas-Echtzeit-Simulators. Bremen

    Google Scholar 

  14. Brüning S (2016) Development of a generalized process model for optimization of biotechnological processes. Information Resource Center der Jacobs University Bremen, Bremen

    Google Scholar 

  15. Blesgen A, Hass VC (2010) Operator training simulator for anaerobic digestion processes. IFAC Proc 43(6):353–358. https://doi.org/10.3182/20100707-3-BE-2012.0024

    Article  Google Scholar 

  16. Gerlach I, Hass VC, Brüning S, Mandenius C-F (2013) Virtual bioreactor cultivation for operator training and simulation: application to ethanol and protein production. J Chem Technol Biotechnol 88(12):2159–2168. https://doi.org/10.1002/jctb.4079

    Article  CAS  Google Scholar 

  17. Witte VC (1996) Mathematische Modellierung und adaptive Prozeßsteuerung der Kultivierung von Cyathus striatus. Zugl.: Hamburg-Harburg, Techn. Univ., Arbeitsbereich Regelungstechnik und Systemdynamik [i.e. Arbeitsbereich Regelungstechnik] und Arbeitsbereich Bioprozess- und Bioverfahrenstechnik, Diss., 1996. Düsseldorf: VDI-Verl

    Google Scholar 

  18. Himmelblau DM, Riggs JB (2012) Basic principles and calculations in chemical engineering, 8th edn. Prentice Hall, Boston

    Google Scholar 

  19. Hass VC (2016) Operator training simulators for bioreactors. In: Bioreactors. Wiley, pp 453–486

    Google Scholar 

  20. Kuntzsch S (2014) Energy efficiency investigations with a new operator training simulator for biorefineries. Bremen

    Google Scholar 

  21. Isimite J, Baganz F, Hass VC (2018) Operator training simulators for biorefineries: current position and future directions. J Chem Technol Biotechnol 93(6):1529–1541. https://doi.org/10.1002/jctb.5583

    Article  CAS  Google Scholar 

  22. Gerlach I, Brüning S, Gustavsson R, Mandenius C-F, Hass VC (2014) Operator training in recombinant protein production using a structured simulator model. J Biotechnol 177:53–59. https://doi.org/10.1016/j.jbiotec.2014.02.022

    Article  CAS  PubMed  Google Scholar 

  23. Patle DS, Ahmad Z, Rangaiah GP (2014) Operator training simulators in the chemical industry: review, issues, and future directions. Rev Chem Eng 30(2). https://doi.org/10.1515/revce-2013-0027

  24. Moran EF, Ostrom E (2005) Seeing the forest and the trees. MIT Press

    Google Scholar 

  25. Bailer-Jones CAL (2017) Practical Bayesian inference: a primer for physical scientists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  26. Leifheit J, Heine T, Kawohl M, King R (2007) Rechnergestützte halbautomatische Modellierung biotechnologischer Prozesse (Semiautomatic Modeling of Biotechnical Processes). Automatisierungstechnik 55(5). https://doi.org/10.1524/auto.2007.55.5.211

  27. Moser A (1988) Bioprocess technology: kinetics and reactors. Springer, New York

    Book  Google Scholar 

  28. Ludewig D (1999) Expertensystem zur Entwicklung von Prozeßmodellen für biotechnologische Prozesse. VDI-Verlag, Düsseldorf

    Google Scholar 

  29. Hass VC, Munack A (1990) Experimental design of fermentations for model identification. In: 1990 American control conference, pp 1528–1533

    Google Scholar 

  30. Frahm B, Lane P, Atzert H, Munack A, Hoffmann M, Hass VC, Pörtner R (2002) Adaptive, model-based control by the open-loop-feedback-optimal (OLFO) controller for the effective fed-batch cultivation of hybridoma cells. Biotechnol Prog 18(5):1095–1103. https://doi.org/10.1021/bp020035y

    Article  CAS  PubMed  Google Scholar 

  31. Alford JS (2006) Bioprocess control: advances and challenges. Comput Chem Eng 30(10–12):1464–1475. https://doi.org/10.1016/j.compchemeng.2006.05.039

    Article  CAS  Google Scholar 

  32. Sonnleitner B (2013) Automated measurement and monitoring of bioprocesses: key elements of the M3C strategy. In: Mandenius C-F, Titchener-Hooker NJ (eds) Measurement, monitoring, modelling and control of bioprocesses. Springer, Berlin, pp 1–33

    Google Scholar 

  33. Madigan MT, Bender KS, Buckley DH, Sattley WM, Stahl DA (2019) Brock biology of microorganisms, 15th edn. Pearson, New York

    Google Scholar 

  34. de DRH (1966) The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44(2):149–156. https://doi.org/10.1099/00221287-44-2-149

    Article  Google Scholar 

  35. de Mey M, de Maeseneire S, Soetaert W, Vandamme E (2007) Minimizing acetate formation in E. coli fermentations. J Ind Microbiol Biotechnol 34(11):689–700. https://doi.org/10.1007/s10295-007-0244-2

    Article  CAS  PubMed  Google Scholar 

  36. Amribt Z, Niu H, Bogaerts P (2012) Macroscopic modelling of overflow metabolism in fed-batch cultures of hybridoma cells. IFAC Proc 45(2):641–646. https://doi.org/10.3182/20120215-3-AT-3016.00114

    Article  Google Scholar 

  37. González-Figueredo C, Alejandro Flores-Estrella R, Rojas-Rejón OA (2019) Fermentation: metabolism, kinetic models, and bioprocessing. In: Shiomi N (ed) Current topics in biochemical engineering. IntechOpen

    Google Scholar 

  38. Craven S, Shirsat N, Whelan J, Glennon B (2013) Process model comparison and transferability across bioreactor scales and modes of operation for a mammalian cell bioprocess. Biotechnol Prog 29(1):186–196. https://doi.org/10.1002/btpr.1664

    Article  CAS  PubMed  Google Scholar 

  39. Ramkrishna D (1979) Statistical models of cell populations. Adv Biochem Eng 11:1–47. https://doi.org/10.1007/3-540-08990-X_21

    Article  Google Scholar 

  40. Tsuchiya HM, Fredrickson AG, Aris R (1966) Dynamics of microbial cell populations. In: Advances in chemical engineering, vol 6. Elsevier, pp 125–206

    Google Scholar 

  41. Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3(1):371–394. https://doi.org/10.1146/annurev.mi.03.100149.002103

    Article  CAS  Google Scholar 

  42. Andrews JF (1968) A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol Bioeng 10(6):707–723. https://doi.org/10.1002/bit.260100602

    Article  CAS  Google Scholar 

  43. Contois DE (1959) Kinetics of bacterial growth: relationship between population density and specific growth rate of continuous cultures. J Gen Microbiol 21:40–50. https://doi.org/10.1099/00221287-21-1-40

    Article  CAS  PubMed  Google Scholar 

  44. Shuler ML, Kargı F, DeLisa M (2017) Bioprocess engineering: basic concepts. Prentice Hall, Boston

    Google Scholar 

  45. Blackman FF (1905) Optima and limiting factors. Ann Bot 1905(19):281

    Article  Google Scholar 

  46. Teissier G (1936) Les lois quantitatives de la croissance. Ann Physiol Physiochim Biol 1936(12):527–573

    Google Scholar 

  47. Moser H (1958) The dynamics of bacterial populations maintained in the chemostat: publication 614. Washington

    Google Scholar 

  48. Ming F, Howell JA, Canovas-Diaz M (1988) Mathematical simulation of anaerobic stratified biofilm processes. Comput Appl Ferment Technol:69–77. https://doi.org/10.1007/978-94-009-1141-3_9

  49. Moser A (1985) Kinetics of batch fermentations. Biotechnology:243–283

    Google Scholar 

  50. O’Neil DG, Lyberatos G (1990) Dynamic model development for a continuous culture of Saccharomyces cerevisiae. Biotechnol Bioeng 36(5):437–445. https://doi.org/10.1002/bit.260360502

    Article  PubMed  Google Scholar 

  51. Williams FM (1967) A model of cell growth dynamics. J Theor Biol 15(2):190–207. https://doi.org/10.1016/0022-5193(67)90200-7

    Article  CAS  PubMed  Google Scholar 

  52. Shuler ML, Leung S, Dick CC (1979) A mathematical model for the growth of a single bacterial cell. Ann N Y Acad Sci 326(1):35–52. https://doi.org/10.1111/j.1749-6632.1979.tb14150.x

    Article  CAS  Google Scholar 

  53. Batt BC, Kompala DS (1989) A structured kinetic modeling framework for the dynamics of hybridoma growth and monoclonal antibody production in continuous suspension cultures. Biotechnol Bioeng 34(4):515–531. https://doi.org/10.1002/bit.260340412

    Article  CAS  PubMed  Google Scholar 

  54. Nielsen J (1993) A simple morphologically structured model describing the growth of filamentous microorganisms. Biotechnol Bioeng 41(7):715–727. https://doi.org/10.1002/bit.260410706

    Article  CAS  PubMed  Google Scholar 

  55. Nielsen J, Nikolajsen K, Villadsen J (1991) Structured modeling of a microbial system: I. a theoretical study of lactic acid fermentation. Biotechnol Bioeng 38(1):1–10. https://doi.org/10.1002/bit.260380102

    Article  CAS  PubMed  Google Scholar 

  56. Agger T, Spohr AB, Carlsen M, Nielsen J (1998) Growth and product formation ofAspergillus oryzae during submerged cultivations: verification of a morphologically structured model using fluorescent probes. Biotechnol Bioeng 57(3):321–329. https://doi.org/10.1002/(sici)1097-0290(19980205)57:3<321:aid-bit9>3.0.co;2-j

    Article  CAS  PubMed  Google Scholar 

  57. Brüning S, Gerlach I, Pörtner R, Mandenius C-F, Hass VC (2017) Modeling suspension cultures of microbial and mammalian cells with an adaptable six-compartment model. Chem Eng Technol 40(5):956–966. https://doi.org/10.1002/ceat.201600639

    Article  CAS  Google Scholar 

  58. Blanch HW, Rogers PL (1971) Production of gramicidin S in batch and continuous culture. Biotechnol Bioeng 13(6):843–864. https://doi.org/10.1002/bit.260130609

    Article  CAS  PubMed  Google Scholar 

  59. Shu P (1961) Mathematical models for the product accumulation in microbiological processes. Biotechnol Bioeng 3(1):95–109. https://doi.org/10.1002/jbmte.390030111

    Article  CAS  Google Scholar 

  60. Megee RD, Kinoshita S, Fredrickson AG, Tsuchiya HM (1970) Differentiation and product formation in molds. Biotechnol Bioeng 12(5):771–801. https://doi.org/10.1002/bit.260120507

    Article  CAS  PubMed  Google Scholar 

  61. Roeva O, Pencheva T, Tzonkov S, Arndt M, Hitzmann B, Kleist S, Miksch G, Friehs K, Flaschel E (2007) Multiple model approach to modelling of Escherichia coli fed-batch cultivation extracellular production of bacterial phytase. Electron J Biotechnol 10(4):0. https://doi.org/10.2225/vol10-issue4-fulltext-5

    Article  Google Scholar 

  62. Hristozov I, Pencheva T, Staerk E, Hitzmann B, Scheper T, Tzonkov S (2001) Functional states modelling of batch aerobic yeast growth process. Biotechnol Biotechnol Equip 15(2):132–135. https://doi.org/10.1080/13102818.2001.10819145

    Article  Google Scholar 

  63. Roeva O, Pencheva T (2014) Functional state modelling approach validation for yeast and bacteria cultivations. Biotechnol Biotechnol Equip 28(5):968–974. https://doi.org/10.1080/13102818.2014.934550

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhang X-C, Visala A, Halme A, Linko P (1994) Functional state modeling and fuzzy control of fed-batch aerobic baker’s yeast process. J Biotechnol 37(1):1–10. https://doi.org/10.1016/0168-1656(94)90196-1

    Article  CAS  Google Scholar 

  65. Hjersted J, Henson MA (2005) Population modeling for ethanol productivity optimization in fed-batch yeast fermenters. In: Proceedings of the 2005, American control conference, 2005. IEEE, pp 3253–3258

    Google Scholar 

  66. Jia L, Luo NS, Yuan JQ (2007) A model-based estimation of the profit function for the continuous fermentation of baker’s yeast. Chem Eng Process Process Intensif 46(11):1215–1222. https://doi.org/10.1016/j.cep.2007.02.030

    Article  CAS  Google Scholar 

  67. Sonnleitner B, Käppeli O (1986) Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: formulation and verification of a hypothesis. Biotechnol Bioeng 28(6):927–937. https://doi.org/10.1002/bit.260280620

    Article  CAS  PubMed  Google Scholar 

  68. Renard F, Wouwer AV, Valentinotti S, Dumur D (2006) A practical robust control scheme for yeast fed-batch cultures – an experimental validation. J Process Control 16(8):855–864. https://doi.org/10.1016/j.jprocont.2006.02.003

    Article  CAS  Google Scholar 

  69. Karakuzu C, Türker M, Öztürk S (2006) Modelling, on-line state estimation and fuzzy control of production scale fed-batch baker’s yeast fermentation. Control Eng Pract 14(8):959–974. https://doi.org/10.1016/j.conengprac.2005.05.007

    Article  Google Scholar 

  70. Klockow C, Hüll D, Hitzmann B (2008) Model based substrate set point control of yeast cultivation processes based on FIA measurements. Anal Chim Acta 623(1):30–37. https://doi.org/10.1016/j.aca.2008.06.011

    Article  CAS  PubMed  Google Scholar 

  71. Richelle A, Bogaerts P (2014) Off-line optimization of baker′s yeast production process. Chem Eng Sci 119:40–52. https://doi.org/10.1016/j.ces.2014.07.059

    Article  CAS  Google Scholar 

  72. Nicolaï BM, van Impe JF, Vanrolleghem PA, Vandewalle J (1991) A modified unstructured mathematical model for the penicillin G fed-batch fermentation. Biotechnol Lett 13(7):489–494. https://doi.org/10.1007/BF01049205

    Article  Google Scholar 

  73. Birol G, Ündey C, Çinar A (2002) A modular simulation package for fed-batch fermentation: penicillin production. Comput Chem Eng 26(11):1553–1565. https://doi.org/10.1016/S0098-1354(02)00127-8

    Article  CAS  Google Scholar 

  74. Bodizs L, Titica M, Faria N, Srinivasan B, Dochain D, Bonvin D (2007) Oxygen control for an industrial pilot-scale fed-batch filamentous fungal fermentation. J Process Control 17(7):595–606. https://doi.org/10.1016/j.jprocont.2007.01.019

    Article  CAS  Google Scholar 

  75. Passos FV, Fleming HP, Ollis DF, Felder RM, McFeeters RF (1994) Kinetics and modeling of lactic acid production by lactobacillus plantarum. Appl Environ Microbiol 60(7):2627–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dutta S, Mukherjee A, Chakraborty P (1996) Effect of product inhibition on lactic acid fermentation: simulation and modelling. Appl Microbiol Biotechnol 46(4):410–413. https://doi.org/10.1007/BF00166238

    Article  Google Scholar 

  77. Cheirsilp B, Shimizu H, Shioya S (2001) Modelling and optimization of environmental conditions for kefiran production by lactobacillus kefiranofaciens. Appl Microbiol Biotechnol 57(5–6):639–646. https://doi.org/10.1007/s00253-001-0846-y

    Article  CAS  PubMed  Google Scholar 

  78. Welman AD (2002) Metabolic model of exopolysaccharide production of lactobacillus delbrueckii subsp. bulgaricus. Dissertation, Palmerston North, New Zealand

    Google Scholar 

  79. Bouguettoucha A, Balannec B, Nacef S, Amrane A (2007) A generalised unstructured model for batch cultures of lactobacillus helveticus. Enzym Microb Technol 41(3):377–382. https://doi.org/10.1016/j.enzmictec.2007.03.005

    Article  CAS  Google Scholar 

  80. Vázquez JA, Murado MA (2008) Unstructured mathematical model for biomass, lactic acid and bacteriocin production by lactic acid bacteria in batch fermentation. J Chem Technol Biotechnol 83(1):91–96. https://doi.org/10.1002/jctb.1789

    Article  CAS  Google Scholar 

  81. Aghababaie M, Khanahmadi M, Beheshti M (2015) Developing a detailed kinetic model for the production of yogurt starter bacteria in single strain cultures. Food Bioprod Process 94:657–667. https://doi.org/10.1016/j.fbp.2014.09.007

    Article  CAS  Google Scholar 

  82. Lopes MB, Martins G, Calado CRC (2014) Kinetic modeling of plasmid bioproduction in Escherichia coli DH5α cultures over different carbon-source compositions. J Biotechnol 186:38–48. https://doi.org/10.1016/j.jbiotec.2014.06.022

    Article  CAS  PubMed  Google Scholar 

  83. Levisauskas D, Galvanauskas V, Henrich S, Wilhelm K, Volk N, Lübbert A (2003) Model-based optimization of viral capsid protein production in fed-batch culture of recombinant Escherichia coli. Bioprocess Biosyst Eng 25(4):255–262. https://doi.org/10.1007/s00449-002-0305-x

    Article  CAS  PubMed  Google Scholar 

  84. Santos LO, Dewasme L, Coutinho D, Wouwer AV (2012) Nonlinear model predictive control of fed-batch cultures of micro-organisms exhibiting overflow metabolism: assessment and robustness. Comput Chem Eng 39:143–151. https://doi.org/10.1016/j.compchemeng.2011.12.010

    Article  CAS  Google Scholar 

  85. Galvanauskas V, Grigs O, Vanags J, Dubencovs K, Stepanova V (2013) Model-based optimization and pO2 control of fed-batch Escherichia coli and Saccharomyces cerevisiae cultivation processes. Eng Life Sci 13(2):172–184. https://doi.org/10.1002/elsc.201200012

    Article  CAS  Google Scholar 

  86. Tremblay M, Perrier M, Chavarie C, Archambault J (1992) Optimization of fed-batch culture of hybridoma cells using dynamic programming: single and multi feed cases. Bioprocess Eng 7(5):229–234. https://doi.org/10.1007/BF00369551

    Article  Google Scholar 

  87. Pörtner R, Schäfer T (1996) Modelling hybridoma cell growth and metabolism – a comparison of selected models and data. J Biotechnol 49(1–3):119–135. https://doi.org/10.1016/0168-1656(96)01535-0

    Article  PubMed  Google Scholar 

  88. Amribt Z, Niu H, Bogaerts P (2013) Macroscopic modelling of overflow metabolism and model based optimization of hybridoma cell fed-batch cultures. Biochem Eng J 70:196–209. https://doi.org/10.3182/20120215-3-AT-3016.00114

    Article  CAS  Google Scholar 

  89. Kiparissides A, Pistikopoulos EN, Mantalaris A (2015) On the model-based optimization of secreting mammalian cell (GS-NS0) cultures. Biotechnol Bioeng 112(3):536–548. https://doi.org/10.1002/bit.25457

    Article  CAS  PubMed  Google Scholar 

  90. Jang JD, Barford JP (2000) An unstructured kinetic model of macromolecular metabolism in batch and fed-batch cultures of hybridoma cells producing monoclonal antibody. Biochem Eng J 4(2):153–168. https://doi.org/10.1016/S1369-703X(99)00041-8

    Article  CAS  Google Scholar 

  91. Möller J, Bhat K, Riecken K, Pörtner R, Zeng A-P, Jandt U (2019) Process-induced cell cycle oscillations in CHO cultures: online monitoring and model-based investigation. Biotechnol Bioeng 116(11):2931–2943. https://doi.org/10.1002/bit.27124

    Article  CAS  PubMed  Google Scholar 

  92. Möller J, Korte K, Pörtner R, Zeng A-P, Jandt U (2018) Model-based identification of cell-cycle-dependent metabolism and putative autocrine effects in antibody producing CHO cell culture. Biotechnol Bioeng 115(12):2996–3008. https://doi.org/10.1002/bit.26828

    Article  CAS  PubMed  Google Scholar 

  93. Xing Z, Bishop N, Leister K, Li ZJ (2010) Modeling kinetics of a large-scale fed-batch CHO cell culture by Markov chain Monte Carlo method. Biotechnol Prog 26(1):208–219. https://doi.org/10.1002/btpr.284

    Article  CAS  PubMed  Google Scholar 

  94. Aehle M, Kuprijanov A, Schaepe S, Simutis R, Lübbert A (2011) Increasing batch-to-batch reproducibility of CHO cultures by robust open-loop control. Cytotechnology 63(1):41–47. https://doi.org/10.1007/s10616-010-9320-y

    Article  CAS  PubMed  Google Scholar 

  95. Möller J, Kuchemüller KB, Steinmetz T, Koopmann KS, Pörtner R (2019) Model-assisted design of experiments as a concept for knowledge-based bioprocess development. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-019-02089-7

  96. Luedeking R, Piret EL (1959) Transient and steady states in continuous fermentaion. Theory and experiment. J Biochem Microbiol Technol Eng 1(4):431–459. https://doi.org/10.1002/jbmte.390010408

    Article  CAS  Google Scholar 

  97. Jandt U, Barradas OP, Pörtner R, Zeng A-P (2015) Synchronized mammalian cell culture: part II--population ensemble modeling and analysis for development of reproducible processes. Biotechnol Prog 31(1):175–185. https://doi.org/10.1002/btpr.2006

    Article  CAS  PubMed  Google Scholar 

  98. Konstantinov KB, Yoshida T (1990) An expert approach for control of fermentation processes as variable structure plants. J Ferment Bioeng 70(1):48–57. https://doi.org/10.1016/0922-338X(90)90030-Z

    Article  CAS  Google Scholar 

  99. von Stosch M, Oliveira R, Peres J, Feyo de Azevedo S (2014) Hybrid semi-parametric modeling in process systems engineering: past, present and future. Comput Chem Eng 60:86–101. https://doi.org/10.1016/j.compchemeng.2013.08.008

    Article  CAS  Google Scholar 

  100. Schubert J, Simutis R, Dors M, Havlik I, Lübbert A (1994) Bioprocess optimization and control: application of hybrid modelling. J Biotechnol 35(1):51–68. https://doi.org/10.1016/0168-1656(94)90189-9

    Article  CAS  Google Scholar 

  101. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  Google Scholar 

  102. Ying H (1995) Essentials of fuzzy modeling and control. J Am Soc Inf Sci 46(10):791–792. https://doi.org/10.1002/(SICI)1097-4571(199512)46:10<791:AID-ASI12>3.0.CO;2-H

    Article  Google Scholar 

  103. Shi Z, Shimizu K (1992) Neuro-fuzzy control of bioreactor systems with pattern recognition. J Ferment Bioeng 74(1):39–45. https://doi.org/10.1016/0922-338X(92)90265-V

    Article  CAS  Google Scholar 

  104. Horiuchi J-I (2002) Fuzzy modeling and control of biological processes. J Biosci Bioeng 94(6):574–578. https://doi.org/10.1016/S1389-1723(02)80197-9

    Article  CAS  PubMed  Google Scholar 

  105. Filev DP, Kishimoto M, Sengupta S, Yoshida T, Taguchi H (1985) Application of the fuzzy theory to simulation of batch fermentation. J Ferment Technol 1985(63:6):545–553

    Google Scholar 

  106. Ronen M, Shabtai Y, Guterman H (2002) Hybrid model building methodology using unsupervised fuzzy clustering and supervised neural networks. Biotechnol Bioeng 77(4):420–429. https://doi.org/10.1002/bit.10132

    Article  CAS  PubMed  Google Scholar 

  107. Mears L, Stocks SM, Sin G, Gernaey KV (2017) A review of control strategies for manipulating the feed rate in fed-batch fermentation processes. J Biotechnol 245:34–46. https://doi.org/10.1016/j.jbiotec.2017.01.008

    Article  CAS  PubMed  Google Scholar 

  108. Ławryńczuk M (2008) Modelling and nonlinear predictive control of a yeast fermentation biochemical reactor using neural networks. Chem Eng J 145(2):290–307. https://doi.org/10.1016/j.cej.2008.08.005

    Article  CAS  Google Scholar 

  109. Grahovac J, Jokić A, Dodić J, Vučurović D, Dodić S (2016) Modelling and prediction of bioethanol production from intermediates and byproduct of sugar beet processing using neural networks. Renew Energy 85:953–958. https://doi.org/10.1016/j.renene.2015.07.054

    Article  CAS  Google Scholar 

  110. Nagy ZK (2007) Model based control of a yeast fermentation bioreactor using optimally designed artificial neural networks. Chem Eng J 127(1–3):95–109. https://doi.org/10.1016/j.cej.2006.10.015

    Article  CAS  Google Scholar 

  111. Franco-Lara E, Weuster-Botz D (2005) Estimation of optimal feeding strategies for fed-batch bioprocesses. Bioprocess Biosyst Eng 27(4):255–262. https://doi.org/10.1007/s00449-005-0415-3

    Article  CAS  PubMed  Google Scholar 

  112. Chen L, Nguang SK, Chen XD, Li XM (2004) Modelling and optimization of fed-batch fermentation processes using dynamic neural networks and genetic algorithms. Biochem Eng J 22(1):51–61. https://doi.org/10.1016/j.bej.2004.07.012

    Article  CAS  Google Scholar 

  113. Karim MN, Yoshida T, Rivera SL, Saucedo VM, Eikens B, Oh G-S (1997) Global and local neural network models in biotechnology: application to different cultivation processes. J Ferment Bioeng 83(1):1–11. https://doi.org/10.1016/S0922-338X(97)87318-7

    Article  CAS  Google Scholar 

  114. Doherty SK, Gomm JB, Williams D (1997) Experiment design considerations for non-linear system identification using neural networks. Comput Chem Eng 21(3):327–346. https://doi.org/10.1016/S0098-1354(96)00003-8

    Article  CAS  Google Scholar 

  115. Kosko B (1992) Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  116. Galvanauskas V, Simutis R, Lübbert A (2004) Hybrid process models for process optimisation, monitoring and control. Bioprocess Biosyst Eng 26(6):393–400. https://doi.org/10.1007/s00449-004-0385-x

    Article  CAS  PubMed  Google Scholar 

  117. Villadsen J, Nielsen J, Lidén G (2011) Bioreaction engineering principles. Springer, Boston

    Book  Google Scholar 

  118. Craven S, Whelan J, Glennon B (2014) Glucose concentration control of a fed-batch mammalian cell bioprocess using a nonlinear model predictive controller. J Process Control 24(4):344–357. https://doi.org/10.1016/j.jprocont.2014.02.007

    Article  CAS  Google Scholar 

  119. Dewasme L, Amribt Z, Santos LO, Hantson A-L, Bogaerts P, Wouwer AV (2013) Hybridoma cell culture optimization using nonlinear model predictive control. IFAC Proc 46(31):60–65. https://doi.org/10.3182/20131216-3-IN-2044.00045

    Article  Google Scholar 

  120. Wechselberger P, Sagmeister P, Engelking H, Schmidt T, Wenger J, Herwig C (2012) Efficient feeding profile optimization for recombinant protein production using physiological information. Bioprocess Biosyst Eng 35(9):1637–1649. https://doi.org/10.1007/s00449-012-0754-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jenzsch M, Gnoth S, Beck M, Kleinschmidt M, Simutis R, Lübbert A (2006) Open-loop control of the biomass concentration within the growth phase of recombinant protein production processes. J Biotechnol 127(1):84–94. https://doi.org/10.1016/j.jbiotec.2006.06.004

    Article  CAS  PubMed  Google Scholar 

  122. Forbes MG, Patwardhan RS, Hamadah H, Gopaluni RB (2015) Model predictive control in industry: challenges and opportunities. IFAC-PapersOnLine 48(8):531–538. https://doi.org/10.1016/j.ifacol.2015.09.022

    Article  Google Scholar 

  123. Hodge DB, Karim MN (2002) Modeling and advanced control of recombinant Zymomonas mobilis fed-batch fermentation. Biotechnol Progress 18(3):572–579. https://doi.org/10.1021/bp0155181

    Article  CAS  Google Scholar 

  124. Kovárová-Kovar K, Gehlen S, Kunze A, Keller T, von Däniken R, Kolb M, van Loon APGM (2000) Application of model-predictive control based on artificial neural networks to optimize the fed-batch process for riboflavin production. J Biotechnol 79(1):39–52. https://doi.org/10.1016/S0168-1656(00)00211-X

    Article  PubMed  Google Scholar 

  125. Chang L, Liu X, Henson MA (2016) Nonlinear model predictive control of fed-batch fermentations using dynamic flux balance models. J Process Control 42:137–149. https://doi.org/10.1016/j.jprocont.2016.04.012

    Article  CAS  Google Scholar 

  126. Zhang H, Lennox B (2004) Integrated condition monitoring and control of fed-batch fermentation processes. J Process Control 14(1):41–50. https://doi.org/10.1016/S0959-1524(03)00044-1

    Article  CAS  Google Scholar 

  127. Laurí D, Lennox B, Camacho J (2014) Model predictive control for batch processes: ensuring validity of predictions. J Process Control 24(1):239–249. https://doi.org/10.1016/j.jprocont.2013.11.005

    Article  CAS  Google Scholar 

  128. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313. https://doi.org/10.1093/comjnl/7.4.308

    Article  Google Scholar 

  129. Hirschmann R (2019) Evaluating the potential of anaerobic production of ethyl(3)hydroxybutyrate for integration in biorefineries. PhD thesis (submitted 2019). UCL, London

    Google Scholar 

  130. Schwedt G (2008) Analytische chemie: grundlagen, methoden und praxis, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  131. Moser A, Kuchemüller KB, Deppe S, Hernández Rodríguez T, Frahm B, Pörtner R, Hass VC, Möller J. Model-assisted DoE software: optimization of growth and biocatalysis in Saccharomyces cerevisiae bioprocesses. Under revision

    Google Scholar 

  132. Li M (2015) Adaptive predictive control by open-loop- feedback-optimal controller for cultivation processes

    Google Scholar 

  133. Schneider R, Hass VC, Munack A (1993) OLFO controller performance study using mathematical fermentation models of different complexity. IFAC Proc 26(2):229–232. https://doi.org/10.1016/S1474-6670(17)48720-9

    Article  Google Scholar 

  134. Frahm B, Hass VC, Lane P, Munack A, Märkl H, Pörtner R (2003) Fed-Batch-Kultivierung tierischer Zellen – Eine Herausforderung zur adaptiven, modellbasierten Steuerung. Chem Ingen Tech 75(4):457–460. https://doi.org/10.1002/cite.200390093

    Article  CAS  Google Scholar 

  135. Appl C, Moser A, Fittkau C, Hass VC (2019) Adaptive, model-based control of Saccharomyces cerevisiae fed-batch cultivations. In: AIDIC SERVIZI SRL (ed) Book of abstracts: bridging science with technology. pp 1504–1505

    Google Scholar 

  136. Kuhnen F, Hass VC, Schoop M (2005) Ein Entwicklungswerkzeug für den effizienten Entwurf von Operator-Training-Systemen (OTS). Chem Ingen Tech 77(8):1106–1107. https://doi.org/10.1002/cite.200590329

    Article  Google Scholar 

  137. Hass VC, Pörtner R (2011) Praxis der Bioprozesstechnik: Mit virtuellem Praktikum, 2nd edn. Spektrum Akad. Verl, Heidelberg

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank C. Fittkau and M. Meissner for their laboratory work at Furtwangen University. We gratefully acknowledge the funding by the German Federal Ministry of Education and Research (BMBF) (mDoE-Toolbox-2; Grant No. 031B0577C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker C. Hass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moser, A., Appl, C., Brüning, S., Hass, V.C. (2020). Mechanistic Mathematical Models as a Basis for Digital Twins. In: Herwig, C., Pörtner, R., Möller, J. (eds) Digital Twins. Advances in Biochemical Engineering/Biotechnology, vol 176. Springer, Cham. https://doi.org/10.1007/10_2020_152

Download citation

Publish with us

Policies and ethics