Abstract
Glycoconjugates have great potential to improve human health in a multitude of different ways and fields. Prominent examples are human milk oligosaccharides and glycosaminoglycans. The typical choice for the production of homogeneous glycoconjugates is enzymatic synthesis. Through the availability of expression and purification protocols, recombinant Leloir glycosyltransferases are widely applied as catalysts for the synthesis of a wide range of glycoconjugates. Extensive utilization of these enzymes also depends on the availability of activated sugars as building blocks. Multi-enzyme cascades have proven a versatile technique to synthesize and in situ regenerate nucleotide sugar.
In this chapter, the functions and mechanisms of Leloir glycosyltransferases are revisited, and the advantage of prokaryotic sources and production systems is discussed. Moreover, in vivo and in vitro pathways for the synthesis of nucleotide sugar are reviewed. In the second part, recent and prominent examples of the application of Leloir glycosyltransferase are given, i.e., the synthesis of glycosaminoglycans, glycoconjugate vaccines, and human milk oligosaccharides as well as the re-glycosylation of biopharmaceuticals, and the status of automated glycan assembly is revisited.
Graphical Abstract

Keywords
- Biocatalysis
- Glycoconjugates
- Glycoengineering
- Glycoproteins
- Glycosaminoglycans
- Glycosyltransferases
- Microreactors
- Milk Oligosaccharides
- Nucleotide sugars
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsAbbreviations
- ADP:
-
Adenosine diphosphate
- Asp:
-
Asparagine
- CHO:
-
Chinese hamster ovary
- CMP:
-
Cytidine monophosphate
- CS:
-
Chondroitin sulfate
- CTP:
-
Cytidine triphosphate
- DS:
-
Dermatan sulfate
- DSP:
-
Downstream processing
- dTDP:
-
Deoxythymidine diphosphate
- FucT:
-
Fucosyltransferase
- GalT:
-
Galactosyltransferase
- GDP:
-
Guanosine diphosphate
- Glc:
-
Glucose
- GlcA:
-
Glucuronic acid
- GlcNAc:
-
N-acetylglucosamine
- GRAS:
-
Generally recognized as safe
- GT:
-
Glycosyltransferase
- HMO:
-
Human milk oligosaccharide
- HMW:
-
High-molecular-weight
- HNK:
-
Human natural killer cell
- Hp:
-
Heparin sulfate
- HS:
-
Heparan sulfate
- IdoA:
-
Iduronic acid
- IgG:
-
Immunoglobulin G
- LacNAc:
-
N-Acetyl-D-lactosamine
- LMW:
-
Low-molecular-weight
- LNT II:
-
Lacto-N-triose
- Man:
-
Mannose
- MBP:
-
Maltose-binding protein
- MP-CE:
-
Multiplexed capillary electrophoresis
- NDP:
-
Nucleoside diphosphate
- Neu5Ac:
-
N-Acetylneuraminic acid
- NMPK:
-
Nucleoside monophosphate kinase
- NMP:
-
Nucleoside monophosphate
- OPME:
-
One-pot multi-enzyme
- OST:
-
Oligosaccharyltransferase
- PEP:
-
Phosphoenolpyruvate
- PG:
-
Proteoglycans
- PGCS:
-
Proteoglycan carrying chondroitin sulfate
- PGDS:
-
Proteoglycan carrying dermatan sulfate
- PGHS:
-
Proteoglycan carrying heparan sulfate
- PK:
-
Pyruvate kinase
- PPK:
-
Polyphosphate kinase
- PolyP:
-
Polyphosphate
- Ser:
-
Serine
- SiaT:
-
Sialyltransferase
- STY:
-
Space-time yield
- SuSy:
-
Sucrose synthase
- TTN:
-
Total turnover numbers
- UDP:
-
Uridine diphosphate
- UTP:
-
Uridine triphosphate
- Xyl:
-
Xylose
References
André I, Potocki-Véronèse G, Barbe S, Moulis C, Remaud-Siméon M (2014) CAZyme discovery and design for sweet dreams. Curr Opin Chem Biol 19:17–24. https://doi.org/10.1016/j.cbpa.2013.11.014
Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77(1):521–555. https://doi.org/10.1146/annurev.biochem.76.061005.092322
Ardèvol A, Rovira C (2015) Reaction mechanisms in carbohydrate-active enzymes: glycoside hydrolases and glycosyltransferases. Insights from ab initio quantum mechanics/molecular mechanics dynamic simulations. J Am Chem Soc 137(24):7528–7547. https://doi.org/10.1021/jacs.5b01156
Tvaroška I (2015) Atomistic insight into the catalytic mechanism of glycosyltransferases by combined quantum mechanics/molecular mechanics (QM/MM) methods. Carbohydr Res 403:38–47. https://doi.org/10.1016/j.carres.2014.06.017
Breton C, Snajdrova L, Jeanneau C, Koca J, Imberty A (2006) Structures and mechanisms of glycosyltransferases. Glycobiology 16(2):29–37
Gloster TM (2014) Advances in understanding glycosyltransferases from a structural perspective. Curr Opin Struct Biol 28:131–141. https://doi.org/10.1016/j.sbi.2014.08.012
Teppa R, Petit D, Plechakova O, Cogez V, Harduin-Lepers A (2016) Phylogenetic-derived insights into the evolution of Sialylation in eukaryotes: comprehensive analysis of vertebrate β-galactoside α2,3/6-Sialyltransferases (ST3Gal and ST6Gal). Int J Mol Sci 17(8):1286
Chao L, Jongkees S (2019) High-throughput approaches in carbohydrate-active enzymology: glycosidase and glycosyl transferase inhibitors, evolution, and discovery. Angew Chem 131(37):12880–12890. https://doi.org/10.1002/ange.201900055
Benkoulouche M, Fauré R, Remaud-Siméon M, Moulis C, André I (2019) Harnessing glycoenzyme engineering for synthesis of bioactive oligosaccharides. Interface Focus 9(2):20180069. https://doi.org/10.1098/rsfs.2018.0069
McArthur John B, Chen X (2016) Glycosyltransferase engineering for carbohydrate synthesis. Biochem Soc Trans 44(1):129–142. https://doi.org/10.1042/bst20150200
Hancock SM, Vaughan MD, Withers SG (2006) Engineering of glycosidases and glycosyltransferases. Curr Opin Chem Biol 10(5):509–519
Daude D, Andre I, Monsan P, Remaud-Simeon M (2014) Chapter 28 successes in engineering glucansucrases to enhance glycodiversification. In: Carbohydrate chemistry, vol 40. The Royal Society of Chemistry, London, pp 624–645. https://doi.org/10.1039/9781849739986-00624
O’Neill EC, Field RA (2015) Enzymatic synthesis using glycoside phosphorylases. Carbohydr Res 403:23–37. https://doi.org/10.1016/j.carres.2014.06.010
Slámová K, Bojarová P (2017) Engineered N-acetylhexosamine-active enzymes in glycoscience. BBA 1861(8):2070–2087. https://doi.org/10.1016/j.bbagen.2017.03.019
Cobucci-Ponzano B, Moracci M (2012) Glycosynthases as tools for the production of glycan analogs of natural products. Nat Prod Rep 29(6):697–709
Sprenger GA, Baumgärtner F, Albermann C (2017) Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations. J Biotechnol 258(Suppl C):79–91. https://doi.org/10.1016/j.jbiotec.2017.07.030
Han NS, Kim T-J, Park Y-C, Kim J, Seo J-H (2012) Biotechnological production of human milk oligosaccharides. Biotechnol Adv 30(6):1268–1278. https://doi.org/10.1016/j.biotechadv.2011.11.003
Petschacher B, Nidetzky B (2016) Biotechnological production of fucosylated human milk oligosaccharides: prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems. J Biotechnol 235:61–83. https://doi.org/10.1016/j.jbiotec.2016.03.052
Seibel J, Buchholz K, Derek H (2010) Tools in oligosaccharide synthesis: current research and application. In: Advances in carbohydrate chemistry and biochemistry, vol 63. Academic Press, Cambridge, pp 101–138
Daude D, Remaud-Simeon M, Andre I (2012) Sucrose analogs: an attractive (bio)source for glycodiversification. Nat Prod Rep 29(9):945–960. https://doi.org/10.1039/C2NP20054F
Nidetzky B, Gutmann A, Zhong C (2018) Leloir glycosyltransferases as biocatalysts for chemical production. ACS Catal:6283–6300. https://doi.org/10.1021/acscatal.8b00710
DeAngelis PL, Liu J, Linhardt RJ (2013) Chemoenzymatic synthesis of glycosaminoglycans: re-creating, re-modeling and re-designing nature's longest or most complex carbohydrate chains. Glycobiology 23(7):764–777. https://doi.org/10.1093/glycob/cwt016
Suflita M, Fu L, He W, Koffas M, Linhardt RJ (2015) Heparin and related polysaccharides: synthesis using recombinant enzymes and metabolic engineering. Appl Microbiol Biotechnol 99(18):7465–7479. https://doi.org/10.1007/s00253-015-6821-9
Danby PM, Withers SG (2016) Advances in enzymatic glycoside synthesis. ACS Chem Biol 11(7):1784–1794. https://doi.org/10.1021/acschembio.6b00340
Rich JR, Withers SG (2009) Emerging methods for the production of homogeneous human glycoproteins. Nat Chem Biol 5(4):206–215
Pratta MR, Bertozzi CR (2005) Synthetic glycopeptides and glycoproteins as tools for biology. Chem Soc Rev 34:58–68
Krasnova L, Wong C-H (2019) Oligosaccharide synthesis and translational innovation. J Am Chem Soc. https://doi.org/10.1021/jacs.8b11005
Kittl R, Withers SG (2010) New approaches to enzymatic glycoside synthesis through directed evolution. Carbohydr Res 345(10):1272–1279. https://doi.org/10.1016/j.carres.2010.04.002
Armstrong Z, Withers SG (2013) Synthesis of glycans and glycopolymers through engineered enzymes. Biopolymers 99(10):666–674. https://doi.org/10.1002/bip.22335
Harding CM, Feldman MF (2019) Glycoengineering bioconjugate vaccines, therapeutics, and diagnostics in E. coli. Glycobiology 29(7):519–529. https://doi.org/10.1093/glycob/cwz031
Kim BG, Yang SM, Kim SY, Cha MN, Ahn JH (2015) Biosynthesis and production of glycosylated flavonoids in Escherichia coli: current state and perspectives. Appl Microbiol Biotechnol 99(7):2979–2988. https://doi.org/10.1007/s00253-015-6504-6
Marienhagen J, Bott M (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 163(2):166–178. https://doi.org/10.1016/j.jbiotec.2012.06.001
Zhou J, Du G, Chen J (2014) Novel fermentation processes for manufacturing plant natural products. Curr Opin Biotechnol 25(0):17–23. https://doi.org/10.1016/j.copbio.2013.08.009
Chang A, Singh S, Phillips Jr GN, Thorson JS (2011) Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation. Curr Opin Biotechnol 22(6):800–808. https://doi.org/10.1016/j.copbio.2011.04.013
Breton C, Fournel-Gigleux S, Palcic MM (2012) Recent structures, evolution and mechanisms of glycosyltransferases. Curr Opin Struct Biol 22(5):540–549. https://doi.org/10.1016/j.sbi.2012.06.007
Albesa-Jove D, Sainz-Polo MA, Marina A, Guerin ME (2017) Structural snapshots of alpha-1,3-Galactosyltransferase with native substrates: insight into the catalytic mechanism of retaining glycosyltransferases. Angew Chem Int Ed Engl 56(47):14853–14857. https://doi.org/10.1002/anie.201707922
Moremen KW, Ramiah A, Stuart M, Steel J, Meng L, Forouhar F, Moniz HA, Gahlay G, Gao Z, Chapla D, Wang S, Yang J-Y, Prabhakar PK, Johnson R, Rosa MD, Geisler C, Nairn AV, Seetharaman J, Wu S-C, Tong L, Gilbert HJ, LaBaer J, Jarvis DL (2017) Expression system for structural and functional studies of human glycosylation enzymes. Nat Chem Biol 14:156. https://doi.org/10.1038/nchembio.2539
Tiwari P, Sangwan RS, Sangwan NS (2016) Plant secondary metabolism linked glycosyltransferases: an update on expanding knowledge and scopes. Biotechnol Adv 34(5):714–739. https://doi.org/10.1016/j.biotechadv.2016.03.006
Liang D-M, Liu J-H, Wu H, Wang B-B, Zhu H-J, Qiao J-J (2015) Glycosyltransferases: mechanisms and applications in natural product development. Chem Soc Rev 44(22):8350–8374. https://doi.org/10.1039/C5CS00600G
Skretas G, Carroll S, DeFrees S, Schwartz MF, Johnson KF, Georgiou G (2009) Expression of active human sialyltransferase ST6GalNAcI in Escherichia coli. Microb Cell Factories 8(1):50. https://doi.org/10.1186/1475-2859-8-50
Bernatchez S, Gilbert M, Blanchard M-C, Karwaski M-F, Li J, DeFrees S, Wakarchuk WW (2007) Variants of the β1,3-Galactosyltransferase CgtB from the bacterium Campylobacter jejuni have distinct acceptor specificities. Glycobiology 17(12):1333–1343. https://doi.org/10.1093/glycob/cwm090
Li M, Shen J, Liu X, Shao J, Yi W, Chow CS, Wang PG (2008) Identification of a new a1,2-Fucosyltransferase involved in O-antigen biosynthesis of Escherichia coli O86:B7 and formation of H-type 3 blood group antigen. Biochemistry 47(44):11590–11597
Pasek M, Boeggeman E, Ramakrishnan B, Qasba PK (2010) Galectin-1 as a fusion partner for the production of soluble and folded human β-1,4-galactosyltransferase-T7 in E. coli. Biochem Biophys Res Commun 394(3):679–684
Sauerzapfe B, Namdjou DJ, Schumacher T, Linden N, Křenek K, Křen V, Elling L (2008) Characterization of recombinant fusion constructs of human β1,4-galactosyltransferase 1 and the lipase pre-propeptide from Staphylococcus hyicus. J Mol Catal B Enzym 50(2):128–140. https://doi.org/10.1016/j.molcatb.2007.09.009
Engels L, Elling L (2014) WbgL: a novel bacterial α1,2-fucosyltransferase for the synthesis of 2′-fucosyllactose. Glycobiology 24(2):170–178. https://doi.org/10.1093/glycob/cwt096
Lauber J, Handrick R, Leptihn S, Dürre P, Gaisser S (2015) Expression of the functional recombinant human glycosyltransferase GalNAcT2 in Escherichia coli. Microb Cell Factories 14:3. https://doi.org/10.1186/s12934-014-0186-0
Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M (2012) SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Factories 11(1):753. https://doi.org/10.1186/1475-2859-11-56
Luley-Goedl C, Czabany T, Longus K, Schmölzer K, Zitzenbacher S, Ribitsch D, Schwab H, Nidetzky B (2016) Combining expression and process engineering for high-quality production of human sialyltransferase in Pichia pastoris. J Biotechnol 235:54–60. https://doi.org/10.1016/j.jbiotec.2016.03.046
Bencúrová M, Rendić D, Fabini G, Kopecky E-M, Altmann F, Wilson IBH (2003) Expression of eukaryotic glycosyltransferases in the yeast Pichia pastoris. Biochimie 85(3):413–422. https://doi.org/10.1016/S0300-9084(03)00072-5
Malissard M, Zeng S, Berger EG (1999) The yeast expression system for recombinant glycosyltransferases. Glycoconj J 16(2):125–139
Kim HG, Yang SM, Lee YC, Do SI, Chung IS, Yang JM (2003) High-level expression of human glycosyltransferases in insect cells as biochemically active form. Biochem Biophys Res Commun 305(3):488–493. https://doi.org/10.1016/S0006-291X(03)00795-2
Umana P, Jean-Mairet J, Bailey JE (1999) Tetracycline-regulated overexpression of glycosyltransferases in Chinese hamster ovary cells. Biotechnol Bioeng 65(5):542–549
De Vries T, Knegtel RMA, Holmes EH, Macher BA (2001) Fucosyltransferases: structure/function studies. Glycobiology 11(10):119–128
Kightlinger W, Duncker KE, Ramesh A, Thames AH, Natarajan A, Stark JC, Yang A, Lin L, Mrksich M, DeLisa MP, Jewett MC (2019) A cell-free biosynthesis platform for modular construction of protein glycosylation pathways. Nat Commun 10(1):5404. https://doi.org/10.1038/s41467-019-12024-9
Dondapati SK, Stech M, Zemella A, Kubick S (2020) Cell-free protein synthesis: a promising option for future drug development. BioDrugs. https://doi.org/10.1007/s40259-020-00417-y
Blixt O, Vasiliu D, Allin K, Jacobsen N, Warnock D, Razi N, Paulson JC, Bernatchez S, Gilbert M, Wakarchuk W (2005) Chemoenzymatic synthesis of 2-azidoethyl-ganglio-oligosaccharides GD3, GT3, GM2, GD2, GT2, GM1, and GD1a. Carbohydr Res 340(12):1963–1972. https://doi.org/10.1016/j.carres.2005.06.008
Zhou D, Utkina N, Li D, Dong C, Druzhinina T, Veselovsky V, Liu B (2013) Biochemical characterization of a new β-1,3-galactosyltransferase WbuP from Escherichia coli O114 that catalyzes the second step in O-antigen repeating-unit. Carbohydr Res 381:43–50. https://doi.org/10.1016/j.carres.2013.08.021
X-w L, Xia C, Li L, Guan W-Y, Pettit N, Zhang H-C, Chen M, Wang PG (2009) Characterization and synthetic application of a novel β1,3-galactosyltransferase from Escherichia coli O55:H7. Bioorg Med Chem 17(14):4910–4915. https://doi.org/10.1016/j.bmc.2009.06.005
Fischöder T, Laaf D, Dey C, Elling L (2017) Enzymatic synthesis of N-Acetyllactosamine (LacNAc) type 1 oligomers and characterization as multivalent galectin ligands. Molecules 22(8):1320
Fischöder T, Cajic S, Reichl U, Rapp E, Elling L (2019) Enzymatic cascade synthesis provides novel linear human Milk oligosaccharides as reference standards for xCGE-LIF based high-throughput analysis. Biotechnol J 14(3):e1800305. https://doi.org/10.1002/biot.201800305
Fischöder T, Cajic S, Grote V, Heinzler R, Reichl U, Franzreb M, Rapp E, Elling L (2019) Enzymatic cascades for tailored 13C6 and 15N enriched human Milk oligosaccharides. Molecules 24(19):3482
McArthur JB, Yu H, Chen X (2019) A bacterial β1–3-galactosyltransferase enables multigram-scale synthesis of human milk lacto-N-tetraose (LNT) and its fucosides. ACS Catal 9(12):10721–10726. https://doi.org/10.1021/acscatal.9b03990
Li Y, Xue M, Sheng X, Yu H, Zeng J, Thon V, Chen Y, Muthana MM, Wang PG, Chen X (2016) Donor substrate promiscuity of bacterial β1–3-N-acetylglucosaminyltransferases and acceptor substrate flexibility of β1–4-galactosyltransferases. Bioorg Med Chem 24(8):1696–1705. https://doi.org/10.1016/j.bmc.2016.02.043
Namdjou D-J, Chen H-M, Vinogradov E, Brochu D, Withers SG, Wakarchuk WW (2008) A beta-1,4-Galactosyltransferase from Helicobacter pylori is an efficient and versatile biocatalyst displaying a novel activity for thioglycoside synthesis. Chembiochem 9(10):1632–1640
Yi W, Shao J, Zhu L, Li M, Singh M, Lu Y, Lin S, Li H, Ryu K, Shen J, Guo H, Yao Q, Bush CA, Wang PG (2005) Escherichia coli O86 O-antigen biosynthetic gene cluster and stepwise enzymatic synthesis of human blood group B antigen tetrasaccharide. J Am Chem Soc 127(7):2040–2041. https://doi.org/10.1021/ja045021y
Lairson LL, Watts AG, Wakarchuk WW, Withers SG (2006) Using substrate engineering to harness enzymatic promiscuity and expand biological catalysis. Nat Chem Biol 2(12):724–728. https://doi.org/10.1038/nchembio828
Rech C, Rosencrantz RR, Křenek K, Pelantová H, Bojarová P, Römer CE, Hanisch F-G, Křen V, Elling L (2011) Combinatorial one-pot synthesis of poly-N-acetyllactosamine oligosaccharides with Leloir-glycosyltransferases. Adv Synth Catal 353(13):2492–2500. https://doi.org/10.1002/adsc.201100375
Fang J-L, Tsai T-W, Liang C-Y, Li J-Y, Yu C-C (2018) Enzymatic synthesis of human Milk Fucosides α1,2-Fucosyl Para-lacto-N-Hexaose and its isomeric derivatives. Adv Synth Catal 360(17):3213–3219. https://doi.org/10.1002/adsc.201800518
Li Y, Yu H, Thon V, Chen Y, Muthana MM, Qu J, Hie L, Chen X (2014) Donor substrate promiscuity of the N-acetylglucosaminyltransferase activities of Pasteurella multocida heparosan synthase 2 (PmHS2) and Escherichia coli K5 KfiA. Appl Microbiol Biotechnol 98(3):1127–1134. https://doi.org/10.1007/s00253-013-4947-1
Chavaroche AAE, van den Broek LAM, Boeriu C, Eggink G (2012) Synthesis of heparosan oligosaccharides by Pasteurella multocida PmHS2 single-action transferases. Appl Microbiol Biotechnol 95(5):1199–1210. https://doi.org/10.1007/s00253-011-3813-2
Cai C, Edgar K, Liu J, Linhardt RJ (2013) Preparation and application of a ‘clickable’ acceptor for enzymatic synthesis of heparin oligosaccharides. Carbohydr Res 372(0):30–34. https://doi.org/10.1016/j.carres.2013.02.010
Yi W, Shen J, Zhou G, Li J, Wang PG (2008) Bacterial homologue of human blood group A transferase. J Am Chem Soc 130(44):14420–14421. https://doi.org/10.1021/ja805844y
Li J, Su G, Liu J (2017) Enzymatic synthesis of homogeneous chondroitin sulfate oligosaccharides. Angew Chem Int Ed 56(39):11784–11787. https://doi.org/10.1002/anie.201705638
Sugiura N, Shimokata S, Minamisawa T, Hirabayashi J, Kimata K, Watanabe H (2008) Sequential synthesis of chondroitin oligosaccharides by immobilized chondroitin polymerase mutants. Glycoconj J 25(6):521–530. https://doi.org/10.1007/s10719-008-9105-0
Green DE, DeAngelis PL (2017) Identification of a chondroitin synthase from an unexpected source, the green sulfur bacterium chlorobium phaeobacteroides. Glycobiology 27(5):469–476. https://doi.org/10.1093/glycob/cwx008
Chavaroche AAE, Springer J, Kooy F, Boeriu C, Eggink G (2010) In vitro synthesis of heparosan using recombinant Pasteurella multocida heparosan synthase PmHS2. Appl Microbiol Biotechnol 85(6):1881–1891. https://doi.org/10.1007/s00253-009-2214-2
Rexer TFT, Schildbach A, Klapproth J, Schierhorn A, Mahour R, Pietzsch M, Rapp E, Reichl U (2018) One pot synthesis of GDP-mannose by a multi-enzyme cascade for enzymatic assembly of lipid-linked oligosaccharides. Biotechnol Bioeng 115(1):192–205. https://doi.org/10.1002/bit.26454
Zhao C, Wu Y, Yu H, Shah IM, Li Y, Zeng J, Liu B, Mills DA, Chen X (2016) One-pot multienzyme (OPME) synthesis of human blood group H antigens and a human milk oligosaccharide (HMOS) with highly active Thermosynechococcus elongatus [small alpha]1-2-fucosyltransferase. Chem Commun. https://doi.org/10.1039/C5CC10646J
Li M, Liu X-W, Shao J, Shen J, Jia Q, Yi W, Song JK, Woodward R, Chow CS, Wang PG (2008) Characterization of a novel a1,2-Fucosyltransferase of Escherichia coli O128:B12 and functional investigation of its common motif. Biochemistry 47(1):378–387
Pettit N, Styslinger T, Mei Z, Han W, Zhao G, Wang PG (2010) Characterization of WbiQ: an [alpha]1,2-fucosyltransferase from Escherichia coli O127:K63(B8), and synthesis of H-type 3 blood group antigen. Biochem Biophys Res Commun 402(2):190–195
Li Q, Li Z, Duan X, Yi W (2014) A tandem enzymatic approach for detecting and imaging tumor-associated Thomsen–Friedenreich antigen disaccharide. J Am Chem Soc 136(36):12536–12539. https://doi.org/10.1021/ja5054225
Yi W, Liu X, Li Y, Li J, Xia C, Zhou G, Zhang W, Zhao W, Chen X, Wang PG (2009) Remodeling bacterial polysaccharides by metabolic pathway engineering. Proc Natl Acad Sci USA 106(11):4207–4212. https://doi.org/10.1073/pnas.0812432106
Tsai T-W, Fang J-L, Liang C-Y, Wang C-J, Huang Y-T, Wang Y-J, Li J-Y, Yu C-C (2019) Exploring the synthetic application of helicobacter pylori α1,3/4-fucosyltransferase FucTIII toward the syntheses of fucosylated human milk glycans and Lewis antigens. ACS Catal. https://doi.org/10.1021/acscatal.9b03752
Yu H, Yan X, Autran CA, Li Y, Etzold S, Latasiewicz J, Robertson BM, Li J, Bode L, Chen X (2017) Enzymatic and chemoenzymatic syntheses of disialyl glycans and their necrotizing enterocolitis preventing effects. J Org Chem 82(24):13152–13160. https://doi.org/10.1021/acs.joc.7b02167
Ye J, Xia H, Sun N, Liu C-C, Sheng A, Chi L, Liu X-W, Gu G, Wang S-Q, Zhao J, Wang P, Xiao M, Wang F, Cao H (2019) Reprogramming the enzymatic assembly line for site-specific fucosylation. Nat Catal. https://doi.org/10.1038/s41929-019-0281-z
Bai J, Wu Z, Sugiarto G, Gadi MR, Yu H, Li Y, Xiao C, Ngo A, Zhao B, Chen X, Guan W (2019) Biochemical characterization of helicobacter pylori α1–3-fucosyltransferase and its application in the synthesis of fucosylated human milk oligosaccharides. Carbohydr Res 480:1–6. https://doi.org/10.1016/j.carres.2019.05.007
Choi YH, Kim JH, Park BS, Kim B-G (2016) Solubilization and iterative saturation mutagenesis of α1,3-fucosyltransferase from helicobacter pylori to enhance its catalytic efficiency. Biotechnol Bioeng 113(8):1666–1675. https://doi.org/10.1002/bit.25944
Zhang L, Lau K, Cheng J, Yu H, Li Y, Sugiarto G, Huang S, Ding L, Thon V, Wang PG, Chen X (2010) Helicobacter hepaticus Hh0072 gene encodes a novel α1-3-fucosyltransferase belonging to CAZy GT11 family. Glycobiology 20(9):1077–1088. https://doi.org/10.1093/glycob/cwq068
Tasnima N, Yu H, Yan X, Li W, Xiao A, Chen X (2019) Facile chemoenzymatic synthesis of Lewis a (lea) antigen in gram-scale and sialyl Lewis a (sLea) antigens containing diverse sialic acid forms. Carbohydr Res 472:115–121. https://doi.org/10.1016/j.carres.2018.12.004
Gilbert M, Brisson J-R, Karwaski M-F, Michniewicz J, Cunningham A-M, Wu Y, Young NM, Wakarchuk WW (2000) Biosynthesis of ganglioside mimics in campylobacter jejuni OH4384: identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-MHz 1H and 13C NMR analysis. J Biol Chem 275(6):3896–3906. https://doi.org/10.1074/jbc.275.6.3896
Morley TJ, Withers SG (2010) Chemoenzymatic synthesis and enzymatic analysis of 8-modified Cytidine monophosphate-Sialic acid and Sialyl lactose derivatives. J Am Chem Soc 132(27):9430–9437. https://doi.org/10.1021/ja102644a
Guo Y, Jers C, Meyer AS, Li H, Kirpekar F, Mikkelsen JD (2015) Modulating the regioselectivity of a pasteurella multocida sialyltransferase for biocatalytic production of 3′- and 6′-sialyllactose. Enzym Microb Technol 78:54–62. https://doi.org/10.1016/j.enzmictec.2015.06.012
Malekan H, Fung G, Thon V, Khedri Z, Yu H, Qu J, Li Y, Ding L, Lam KS, Chen X (2013) One-pot multi-enzyme (OPME) chemoenzymatic synthesis of sialyl-Tn-MUC1 and sialyl-T-MUC1 glycopeptides containing natural or non-natural sialic acid. Bioorg Med Chem 21(16):4778–4785. https://doi.org/10.1016/j.bmc.2013.02.040
Tsukamoto H, Takakura Y, Yamamoto T (2007) Purification, cloning, and expression of an α/β-galactoside α-2,3-sialyltransferase from a luminous marine bacterium, photobacterium phosphoreum. J Biol Chem 282(41):29794–29802. https://doi.org/10.1074/jbc.M701907200
Schmölzer K, Eibinger M, Nidetzky B (2017) Active-site His85 of Pasteurella dagmatis sialyltransferase facilitates productive sialyl transfer and so prevents futile hydrolysis of CMP-Neu5Ac. ChemBioChem. https://doi.org/10.1002/cbic.201700113
Chokhawala HA, Huang S, Lau K, Yu H, Cheng J, Thon V, Hurtado-Ziola N, Guerrero JA, Varki A, Chen X (2008) Combinatorial chemoenzymatic synthesis and high-throughput screening of sialosides. ACS Chem Biol 3(9):567–576
Yamamoto T, Hamada Y, Ichikawa M, Kajiwara H, Mine T, Tsukamoto H, Takakura Y (2007) A {beta}-galactoside {alpha}2,6-sialyltransferase produced by a marine bacterium, photobacterium leiognathi JT-SHIZ-145, is active at pH 8. Glycobiology 17(11):1167–1174. https://doi.org/10.1093/glycob/cwm086
Ding L, Yu H, Lau K, Li Y, Muthana S, Wang J, Chen X (2011) Efficient chemoenzymatic synthesis of sialyl Tn-antigens and derivatives. Chem Commun 47(30):8691–8693. https://doi.org/10.1039/C1CC12732B
Willis LM, Gilbert M, Karwaski MF, Blanchard MC, Wakarchuk WW (2008) Characterization of the alpha-2,8-polysialyltransferase from Neisseria meningitidis with synthetic acceptors, and the development of a self-priming polysialyltransferase fusion enzyme. Glycobiology 18(2):177–186. https://doi.org/10.1093/glycob/cwm126
Lindhout T, Iqbal U, Willis LM, Reid AN, Li J, Liu X, Moreno M, Wakarchuk WW (2011) Site-specific enzymatic polysialylation of therapeutic proteins using bacterial enzymes. Proc Natl Acad Sci 108(18):7397–7402. https://doi.org/10.1073/pnas.1019266108
Ban L, Pettit N, Li L, Stuparu AD, Cai L, Chen W, Guan W, Han W, Wang PG, Mrksich M (2012) Discovery of glycosyltransferases using carbohydrate arrays and mass spectrometry. Nat Chem Biol 8(9):769–773. https://doi.org/10.1038/nchembio.1022
Kightlinger W, Lin L, Rosztoczy M, Li W, DeLisa MP, Mrksich M, Jewett MC (2018) Design of glycosylation sites by rapid synthesis and analysis of glycosyltransferases. Nat Chem Biol 14(6):627–635. https://doi.org/10.1038/s41589-018-0051-2
Serna S, Hokke CH, Weissenborn M, Flitsch S, Martin-Lomas M, Reichardt NC (2013) Profiling glycosyltransferase activities by tritium imaging of glycan microarrays. Chembiochem 14(7):862–869. https://doi.org/10.1002/cbic.201300051
Lundborg M, Modhukur V, Widmalm G (2010) Glycosyltransferase functions of E. coli O-antigens. Glycobiology 20(3):366–368. https://doi.org/10.1093/glycob/cwp185
Rojas-Macias MA, Ståhle J, Lütteke T, Widmalm G (2015) Development of the ECODAB into a relational database for Escherichia coli O-antigens and other bacterial polysaccharides. Glycobiology 25(3):341–347. https://doi.org/10.1093/glycob/cwu116
Elling L (1997) Glycobiotechnology: enzymes for the synthesis of nucleotide sugars. In: Scheper T (ed) Advances in biochemical engineering/biotechnology, vol 58. Springer, Berlin, pp 89–144
Bülter T, Elling L (1999) Enzymatic synthesis of nucleotide sugars. Glycoconj J 16(2):147–159
Engels L, Elling L (2016) Enzymatic and chemoenzymatic synthesis of nucleotide sugars: novel enzymes, novel substrates, novel products, and novel routes. In: Grunwald P (ed) Handbook of carbohydrate-modifying biocatalysts. Stanford Publishing, Stanford, pp 297–320. https://doi.org/10.4032/9789814303484
Freeze HH, Hart GW, Schnaar RL (2017) Chapter 5: Glycosylation precursors. Essentials of glycobiology.3rd edn. Cold Spring Harbor Laboratory Press, New York
Varki A (2017) New and updated glycoscience-related resources at NCBI. Glycobiology 27(11):993–993. https://doi.org/10.1093/glycob/cwx077
Rupprath C, Kopp M, Hirtz D, Müller R, Elling L (2007) An enzyme module system for in situ regeneration of dTDP-activated deoxysugars. Adv Synth Catal 349(8–9):1489–1496
Bar-Peled M, O'Neill MA (2011) Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling. Annu Rev Plant Biol 62:127–155. https://doi.org/10.1146/annurev-arplant-042110-103918
Cai L (2012) Recent Progress in enzymatic synthesis of sugar nucleotides. J Carbohydr Chem 31(7):535–552. https://doi.org/10.1080/07328303.2012.687059
Koizumi S, Endo T, Tabata K, Ozaki A (1998) Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria. Nat Biotechnol 16(9):847–850. https://doi.org/10.1038/nbt0998-847
Tabata K, Koizumi S, Endo T, Ozaki A (2000) Production of UDP-N-acetylglucosamine by coupling metabolically engineered bacteria. Biotechnol Lett 22(6):479–483
Koizumi S, Endo T, Tabata K, Nagano H, Ohnishi J, Ozaki A (2000) Large-scale production of GDP-fucose and Lewis X by bacterial coupling. J Ind Microbiol Biotech 25(4):213–217. https://doi.org/10.1038/sj.jim.7000055
Ishikawa M, Koizumi S (2010) Microbial production of N-acetylneuraminic acid by genetically engineered Escherichia coli. Carbohydr Res 345(18):2605–2609
Schmolzer K, Gutmann A, Diricks M, Desmet T, Nidetzky B (2016) Sucrose synthase: a unique glycosyltransferase for biocatalytic glycosylation process development. Biotechnol Adv 34(2):88–111. https://doi.org/10.1016/j.biotechadv.2015.11.003
Yu H, Chen X (2016) One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates. Org Biomol Chem 14(10):2809–2818. https://doi.org/10.1039/C6OB00058D
Eixelsberger T, Nidetzky B (2014) Enzymatic redox cascade for one-pot synthesis of uridine 5′-diphosphate xylose from uridine 5′-diphosphate glucose. Adv Synth Catal 356(17):3575–3584. https://doi.org/10.1002/adsc.201400766
Gilormini P-A, Lion C, Noel M, Krzewinski-Recchi M-A, Harduin-Lepers A, Guérardel Y, Biot C (2016) Improved workflow for the efficient preparation of ready to use CMP-activated sialic acids. Glycobiology 26(11):1151–1156. https://doi.org/10.1093/glycob/cww084
Ye J, X-w L, Peng P, Yi W, Chen X, Wang F, Cao H (2016) Diversity-oriented enzymatic modular assembly of ABO Histo-blood group antigens. ACS Catal 6(12):8140–8144. https://doi.org/10.1021/acscatal.6b02755
Yu H, Li Y, Zeng J, Thon V, Nguyen DM, Ly T, Kuang HY, Ngo A, Chen X (2016) Sequential one-pot multienzyme chemoenzymatic synthesis of glycosphingolipid glycans. J Org Chem. https://doi.org/10.1021/acs.joc.6b01905
Elling L, Grothus M, Kula M-R (1993) Investigation of sucrose synthase from rice for the synthesis of various nucleotide sugars and saccharides. Glycobiology 3:349–355
Elling L, Güldenberg B, Grothus M, Zervosen A, Peus M, Helfer A, Stein A, Adrian H, Kula M-R (1995) Isolation of sucrose synthase from rice (Oryza sativa) grains in pilot scale for application in carbohydrate synthesis. Biotechnol Appl Biochem 21(1):29–37
Sauerzapfe B, Engels L, Elling L (2008) Broadening the biocatalytic properties of recombinant sucrose synthase 1 from potato (Solanum tuberosum L.) by expression in Escherichia coli and Saccharomyces cerevisiae. Enzym Microb Technol 43(3):289–296. https://doi.org/10.1016/j.enzmictec.2008.04.001
Römer U, Schrader H, Gunther N, Nettelstroth N, Frommer WB, Elling L (2004) Expression, purification and characterization of recombinant sucrose synthase 1 from Solanum tuberosum L. for carbohydrate engineering. J Biotechnol 107(2):135–149. https://doi.org/10.1016/j.jbiotec.2003.10.017
Zervosen A, Elling L (1996) A novel three-enzyme reaction cycle for the synthesis of N- acetyllactosamine with in situ regeneration of uridine 5′- diphosphate glucose and uridine 5′-diphosphate galactose. J Am Chem Soc 118(8):1836–1840
Engels L, Henze M, Hummel W, Elling L (2015) Enzyme module systems for the synthesis of uridine 5′-diphospho-α-D-glucuronic acid and non-sulfated human natural killer cell-1 (HNK-1) epitope. Adv Synth Catal 357(8):1751–1762. https://doi.org/10.1002/adsc.201500180
Zervosen A, Stein A, Adrian H, Elling L (1996) Combined enzymatic synthesis of nucleotide (deoxy) sugars from sucrose and nucleoside monophosphates. Tetrahedron 52(7):2395–2404
Zervosen A, Römer U, Elling L (1998) Application of recombinant sucrose synthase large scale synthesis of ADP-glucose. J Mol Catal B Enzym 5(1–4):25–28. https://doi.org/10.1016/s1381-1177(98)00040-x
Zervosen A, Elling L, Kula MR (1994) Continuous enzymatic synthesis of 2′-deoxythymidine-5′(alpha-D-glucopyranosyl)diphosphate. Angew Chem Int Ed 33(5):571–572. https://doi.org/10.1002/anie.199405711
Elling L, Rupprath C, Günther N, Römer U, Verseck S, Weingarten P, Dräger G, Kirschning A, Piepersberg W (2005) An enzyme module system for the synthesis of dTDP-activated Deoxysugars from dTMP and sucrose. Chembiochem 6:1423–1430
Diricks M, De Bruyn F, Van Daele P, Walmagh M, Desmet T (2015) Identification of sucrose synthase in nonphotosynthetic bacteria and characterization of the recombinant enzymes. Appl Microbiol Biotechnol 99(20):8465–8474. https://doi.org/10.1007/s00253-015-6548-7
Lemmerer M, Schmolzer K, Gutmann A, Nidetzky B (2016) Downstream processing of nucleoside-Diphospho-sugars from sucrose synthase reaction mixtures at decreased solvent consumption. Adv Synth Catal 358(19):3113–3122. https://doi.org/10.1002/adsc.201600540
Kulmer ST, Gutmann A, Lemmerer M, Nidetzky B (2017) Biocatalytic cascade of polyphosphate kinase and sucrose synthase for synthesis of nucleotide-activated derivatives of glucose. Adv Synth Catal 359(2):292–301. https://doi.org/10.1002/adsc.201601078
Wahl C, Hirtz D, Elling L (2016) Multiplexed capillary electrophoresis as analytical tool for fast optimization of multi-enzyme Cascade reactions – synthesis of nucleotide sugars. Biotechnol J 11(10):1298–1308. https://doi.org/10.1002/biot.201600265
Eisele A, Zaun H, Kuballa J, Elling L (2018) In vitro one-pot enzymatic synthesis of hyaluronic acid from sucrose and N-acetylglucosamine: optimization of the enzyme module system and nucleotide sugar regeneration. ChemCatChem 10(14):2969–2981. https://doi.org/10.1002/cctc.201800370
Gottschalk J, Zaun H, Eisele A, Kuballa J, Elling L (2019) Key factors for a one-pot enzyme cascade synthesis of high molecular weight hyaluronic acid. Int J Mol Sci 20(22):5664
Wahl C, Spiertz M, Elling L (2017) Characterization of a new UDP-sugar pyrophosphorylase from Hordeum vulgare (barley). J Biotechnol 258(Supplement C):51–55. https://doi.org/10.1016/j.jbiotec.2017.03.025
Fischöder T, Wahl C, Zerhusen C, Elling L (2019) Repetitive batch mode facilitates enzymatic synthesis of the nucleotide sugars UDP-gal, UDP-GlcNAc, and UDP-GalNAc on a multi-gram scale. Biotechnol J 14(4). https://doi.org/10.1002/biot.201800386
Nahalka J, Liu Z, Chen X, Wang PG (2003) Superbeads: immobilization in sweet chemistry. Chem Eur J 9(2):372–377
Heinzler R, Fischöder T, Elling L, Franzreb M (2019) Toward automated enzymatic glycan synthesis in a compartmented flow microreactor system. Adv Synth Catal 361(19):4506–4516. https://doi.org/10.1002/adsc.201900709
Heinzler R, Hubner J, Fischöder T, Elling L, Franzreb M (2018) A compartmented flow microreactor system for automated optimization of bioprocesses applying immobilized enzymes. Front Bioeng Biotechnol 6(189):189. https://doi.org/10.3389/fbioe.2018.00189
Orrego AH, Trobo-Maseda L, Rocha-Martin J, Guisan JM (2017) Immobilization-stabilization of a complex multimeric sucrose synthase from Nitrosomonas europaea. Synthesis of UDP-glucose. Enzym Microb Technol 105(Supplement C):51–58. https://doi.org/10.1016/j.enzmictec.2017.06.008
Trobo-Maseda L, Orrego AH, Moreno-Pérez S, Fernández-Lorente G, Guisan JM, Rocha-Martin J (2017) Stabilization of multimeric sucrose synthase from Acidithiobacillus caldus via immobilization and post-immobilization techniques for synthesis of UDP-glucose. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-017-8649-y
Zhao G, Guan W, Cai L, Wang PG (2010) Enzymatic route to preparative-scale synthesis of UDP-GlcNAc/GalNAc, their analogues and GDP-fucose. Nat Protocols 5(4):636–646
Ohashi H, Wahl C, Ohashi T, Elling L, Fujiyama K (2017) Effective synthesis of guanosine 5 '-diphospho-beta-L-galactose using bacterial L-Fucokinase/Guanosine 5 '-Diphosphate-L-fucose pyrophosphorylase. Adv Synth Catal 359(23):4227–4234. https://doi.org/10.1002/adsc.201700901
Gutmann A, Nidetzky B (2016) Unlocking the potential of Leloir glycosyltransferases for applied biocatalysis: efficient synthesis of uridine 5 '-diphosphate-glucose by sucrose synthase. Adv Synth Catal 358(22):3600–3609. https://doi.org/10.1002/adsc.201600754
Kragl U, Klein T, Vasic-Racki D, Kittelmann M, Ghisalba O, Wandrey C (1996) Reaction engineering aspects of activated sugar production. CMP-Neu5Ac as an example. Ann N Y Acad Sci 799(1):577–583. https://doi.org/10.1111/j.1749-6632.1996.tb33260.x
Schmaltz RM, Hanson SR, Wong C-H (2011) Enzymes in the synthesis of Glycoconjugates. Chem Rev 111(7):4259–4307
Wong C-H, Halcomb RL, Ichikawa Y, Kajimoto T (1995) Enzymes in organic synthesis: application to the problems of carbohydrate recognition (part 1). Angew Chem Int Ed Engl 34(4):412–432
Chi-Huey Wong RLH, Ichikawa Y, Kajimoto T (1995) Enzymes in organic synthesis: application to the problems of carbohydrate recognition (part 2). Angew Chem Int Ed Engl 34(5):521–546
Tsai T-I, Lee H-Y, Chang S-H, Wang C-H, Tu Y-C, Lin Y-C, Hwang D-R, Wu C-Y, Wong C-H (2013) Effective sugar nucleotide regeneration for the large-scale enzymatic synthesis of Globo H and SSEA4. J Am Chem Soc 135(39):14831–14839. https://doi.org/10.1021/ja4075584
Andexer JN, Richter M (2015) Emerging enzymes for ATP regeneration in biocatalytic processes. Chembiochem 16(3):380–386. https://doi.org/10.1002/cbic.201402550
Mordhorst S, Singh J, Mohr MKF, Hinkelmann R, Keppler M, Jessen HJ, Andexer JN (2019) Several polyphosphate kinase 2 enzymes catalyse the production of adenosine 5′-polyphosphates. Chembiochem 20(8):1019–1022. https://doi.org/10.1002/cbic.201800704
Mordhorst S, Maurer A, Popadić D, Brech J, Andexer JN (2017) A flexible polyphosphate-driven regeneration system for coenzyme A dependent catalysis. ChemCatChem 9(22):4164–4168. https://doi.org/10.1002/cctc.201700848
Nocek B, Kochinyan S, Proudfoot M, Brown G, Evdokimova E, Osipiuk J, Edwards AM, Savchenko A, Joachimiak A, Yakunin AF (2008) Polyphosphate-dependent synthesis of ATP and ADP by the family-2 polyphosphate kinases in bacteria. Proc Natl Acad Sci 105(46):17730–17735. https://doi.org/10.1073/pnas.0807563105
Christ JJ, Blank LM (2018) Enzymatic quantification and length determination of polyphosphate down to a chain length of two. Anal Biochem 548:82–90. https://doi.org/10.1016/j.ab.2018.02.018
Gutmann A, Lepak A, Diricks M, Desmet T, Nidetzky B (2017) Glycosyltransferase cascades for natural product glycosylation: use of plant instead of bacterial sucrose synthases improves the UDP-glucose recycling from sucrose and UDP. Biotechnol J 12(7):1600557. https://doi.org/10.1002/biot.201600557
Hokke CH, Zervosen A, Elling L, Joziasse DH, van den Eijnden DH (1996) One-pot enzymatic synthesis of the gal(a1-3)gal(b1-4)GlcNAc sequence with in situ UDP-gal regeneration. Glycoconj J 13(4):687–692
Gutmann A, Bungaruang L, Weber H, Leypold M, Breinbauer R, Nidetzky B (2014) Towards the synthesis of glycosylated dihydrochalcone natural products using glycosyltransferase-catalysed cascade reactions. Green Chem 16(9):4417–4425. https://doi.org/10.1039/C4GC00960F
Schmölzer K, Lemmerer M, Nidetzky B (2018) Glycosyltransferase cascades made fit for chemical production: integrated biocatalytic process for the natural polyphenol C-glucoside nothofagin. Biotechnol Bioeng 115(3):545–556. https://doi.org/10.1002/bit.26491
Zhang L, Gao Y, Liu X, Guo F, Ma C, Liang J, Feng X, Li C (2019) Mining of sucrose synthases from Glycyrrhiza uralensis and their application in the construction of an efficient UDP-recycling system. J Agric Food Chem 67(42):11694–11702. https://doi.org/10.1021/acs.jafc.9b05178
Sun P, Cai R, Chen L, Li Y, Jia H, Yan M, Chen K (2020) Natural product glycosylation: biocatalytic synthesis of Quercetin-3,4′-O-diglucoside. Appl Biochem Biotechnol 190(2):464–474. https://doi.org/10.1007/s12010-019-03103-0
Pei J, Chen A, Zhao L, Cao F, Ding G, Xiao W (2017) One-pot synthesis of hyperoside by a three-enzyme cascade using a UDP-galactose regeneration system. J Agric Food Chem 65(29):6042–6048. https://doi.org/10.1021/acs.jafc.7b02320
Pei J, Chen A, Sun Q, Zhao L, Cao F, Tang F (2018) Construction of a novel UDP-rhamnose regeneration system by a two-enzyme reaction system and application in glycosylation of flavonoid. Biochem Eng J 139:33–42. https://doi.org/10.1016/j.bej.2018.08.007
Fallacara A, Baldini E, Manfredini S, Vertuani S (2018) Hyaluronic acid in the third millennium. Polymers 10(7):701–701. https://doi.org/10.3390/polym10070701
Bishnoi M, Jain A, Hurkat P, Jain SK (2016) Chondroitin sulphate: a focus on osteoarthritis. Glycoconj J 33(5):693–705. https://doi.org/10.1007/s10719-016-9665-3
Mikami T, Kitagawa H (2017) Sulfated glycosaminoglycans: their distinct roles in stem cell biology. Glycoconj J 34(6):725–735. https://doi.org/10.1007/s10719-016-9732-9
Pomin VH (2015) Sulfated glycans in inflammation. Eur J Med Chem 92:353–369. https://doi.org/10.1016/j.ejmech.2015.01.002
DeAngelis PL, White CL (2002) Identification and molecular cloning of a Heparosan synthase from pasteurella multocida type D. J Biol Chem 277(9):7209–7213. https://doi.org/10.1074/jbc.M112130200
Gandhi NS, Mancera RL (2008) The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 72(6):455–482. https://doi.org/10.1111/j.1747-0285.2008.00741.x
Akintayo A, Stanley P (2019) Roles for golgi glycans in oogenesis and spermatogenesis. Front Cell Dev Biol 7(JUN):1–9. https://doi.org/10.3389/fcell.2019.00098
Knopf-Marques H, Pravda M, Wolfova L, Velebny V, Schaaf P, Vrana NE, Lavalle P (2016) Hyaluronic acid and its derivatives in coating and delivery systems: applications in tissue engineering, regenerative medicine and immunomodulation. Adv Healthc Mater 5(22):2841–2855. https://doi.org/10.1002/adhm.201600316
DeAngelis PL, Padgett-McCue AJ (2000) Identification and molecular cloning of a chondroitin synthase from Pasteurella multocida type F. J Biol Chem 275(31):24124–24129. https://doi.org/10.1074/jbc.M003385200
Weigel PH, DeAngelis PL (2007) Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J Biol Chem 282(51):36777–36781
Zhang X, Lin L, Huang H, Linhardt RJ (2020) Chemoenzymatic synthesis of glycosaminoglycans. Acc Chem Res 53(2):335–346. https://doi.org/10.1021/acs.accounts.9b00420
Jing W, DeAngelis PL (2003) Analysis of the two active sites of the hyaluronan synthase and the chondroitin synthase of Pasteurella multocida. Glycobiology 13(10):661–671. https://doi.org/10.1093/glycob/cwg085
Lindahl U, Kusche-Gullberg M, Kjellén L (1998) Regulated diversity of Heparan sulfate. J Biol Chem 273(39):24979–24982. https://doi.org/10.1074/jbc.273.39.24979
Dhoot GK (2001) Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science 293(5535):1663–1666. https://doi.org/10.1126/science.293.5535.1663
Lamberg SI, Stoolmiller AC (1974) Glycosaminoglycans. A biochemical and clinical review. J Investig Dermatol 63(6):433–449. https://doi.org/10.1111/1523-1747.ep12680346
Silbert JE, Sugumaran G (2002) Biosynthesis of chondroitin/Dermatan sulfate. IUBMB Life (Int Union Biochem Mol Biol Life) 54(4):177–186. https://doi.org/10.1080/15216540214923
Sugahara K, Kitagawa H (2002) Heparin and Heparan sulfate biosynthesis. IUBMB Life (Int Union Biochem Mol Biol Life) 54(4):163–175. https://doi.org/10.1080/15216540214928
Victor XV, Nguyen TKN, Ethirajan M, Tran VM, Nguyen KV, Kuberan B (2009) Investigating the elusive mechanism of glycosaminoglycan biosynthesis. J Biol Chem 284(38):25842–25853. https://doi.org/10.1074/jbc.M109.043208
Bülow HE, Hobert O (2006) The molecular diversity of glycosaminoglycans shapes animal development. Annu Rev Cell Dev Biol 22(1):375–407. https://doi.org/10.1146/annurev.cellbio.22.010605.093433
Köwitsch A, Zhou G, Groth T (2018) Medical application of glycosaminoglycans: a review. J Tissue Eng Regen Med 12(1):e23–e41. https://doi.org/10.1002/term.2398
Morla S (2019) Glycosaminoglycans and glycosaminoglycan mimetics in cancer and inflammation. Int J Mol Sci 20(8):1963–1963. https://doi.org/10.3390/ijms20081963
Bedini E, Laezza A, Iadonisi A (2016) Chemical derivatization of sulfated glycosaminoglycans. Eur J Org Chem 2016(18):3018–3042. https://doi.org/10.1002/ejoc.201600108
Gatto F, Volpi N, Nilsson H, Nookaew I, Maruzzo M, Roma A, Johansson ME, Stierner U, Lundstam S, Basso U, Nielsen J (2016) Glycosaminoglycan profiling in patients’ plasma and urine predicts the occurrence of metastatic clear cell renal cell carcinoma. Cell Rep 15(8):1822–1836. https://doi.org/10.1016/j.celrep.2016.04.056
Graham GJ, Handel TM, Proudfoot AEI (2019) Leukocyte adhesion: reconceptualizing chemokine presentation by glycosaminoglycans. Trends Immunol 40(6):472–481. https://doi.org/10.1016/j.it.2019.03.009
Gschwandtner M, Strutzmann E, Teixeira MM, Anders HJ, Diedrichs-Möhring M, Gerlza T, Wildner G, Russo RC, Adage T, Kungl AJ (2017) Glycosaminoglycans are important mediators of neutrophilic inflammation in vivo. Cytokine 91:65–73. https://doi.org/10.1016/j.cyto.2016.12.008
Honarpardaz A, Irani S, Pezeshki-Modaress M, Zandi M, Sadeghi A (2019) Enhanced chondrogenic differentiation of bone marrow mesenchymal stem cells on gelatin/glycosaminoglycan electrospun nanofibers with different amount of glycosaminoglycan. J Biomed Mater Res A 107(1):38–48. https://doi.org/10.1002/jbm.a.36501
Mhanna R, Becher J, Schnabelrauch M, Reis RL, Pashkuleva I (2017) Sulfated alginate as a mimic of sulfated glycosaminoglycans: binding of growth factors and effect on stem cell behavior. Adv Biosyst 1(7):1700043–1700043. https://doi.org/10.1002/adbi.201700043
Park PW (2016) Glycosaminoglycans and infection. Front Biosci 21(6):4455–4455. https://doi.org/10.2741/4455
Sobczak AIS, Pitt SJ, Stewart AJ (2018) Glycosaminoglycan neutralization in coagulation control. Arterioscler Thromb Vasc Biol 38(6):1258–1270. https://doi.org/10.1161/ATVBAHA.118.311102
Cooper C, Rannou F, Richette P, Bruyère O, Al-Daghri N, Altman RD, Brandi ML, Collaud Basset S, Herrero-Beaumont G, Migliore A, Pavelka K, Uebelhart D, Reginster JY (2017) Use of intraarticular hyaluronic acid in the management of knee osteoarthritis in clinical practice. Arthritis Care Res 69(9):1287–1296. https://doi.org/10.1002/acr.23204
Fallacara A, Vertuani S, Panozzo G, Pecorelli A, Valacchi G, Manfredini S (2017) Novel artificial tears containing cross-linked hyaluronic acid: an in vitro re-epithelialization study. Molecules 22(12):1–13. https://doi.org/10.3390/molecules22122104
Kawada C, Yoshida T, Yoshida H, Sakamoto W, Odanaka W, Sato T, Yamasaki T, Kanemitsu T, Masuda Y, Urushibata O (2015) Ingestion of hyaluronans (molecular weights 800 k and 300 k) improves dry skin conditions: a randomized, double blind, controlled study. J Clin Biochem Nutr 56(1):66–73. https://doi.org/10.3164/jcbn.14-81
Kawada C, Yoshida T, Yoshida H, Matsuoka R, Sakamoto W, Odanaka W, Sato T, Yamasaki T, Kanemitsu T, Masuda Y, Urushibata O (2014) Ingested hyaluronan moisturizes dry skin. Nutr J 13(1):70–70. https://doi.org/10.1186/1475-2891-13-70
Cyphert JM, Trempus CS, Garantziotis S (2015) Size matters: molecular weight specificity of Hyaluronan effects in cell biology. Int J Cell Biol 2015:1–8. https://doi.org/10.1155/2015/563818
Simental-Mendía M, Sánchez-García A, Vilchez-Cavazos F, Acosta-Olivo CA, Peña-Martínez VM, Simental-Mendía LE (2018) Effect of glucosamine and chondroitin sulfate in symptomatic knee osteoarthritis: a systematic review and meta-analysis of randomized placebo-controlled trials. Rheumatol Int 38 (8):1413–1428. doi:https://doi.org/10.1007/s00296-018-4077-2
Jin J, Tilve S, Huang Z, Zhou L, Geller H, Yu P (2018) Effect of chondroitin sulfate proteoglycans on neuronal cell adhesion, spreading and neurite growth in culture. Neural Regen Res 13(2):289–297. https://doi.org/10.4103/1673-5374.226398
Shida M, Mikami T, Tamura J-I, Kitagawa H (2017) A characteristic chondroitin sulfate trisaccharide unit with a sulfated fucose branch exhibits neurite outgrowth-promoting activity: novel biological roles of fucosylated chondroitin sulfates isolated from the sea cucumber Apostichopus japonicus. Biochem Biophys Res Commun 487(3):678–683. https://doi.org/10.1016/j.bbrc.2017.04.114
Kamermans A, Planting KE, Jalink K, van Horssen J, de Vries HE (2019) Reactive astrocytes in multiple sclerosis impair neuronal outgrowth through TRPM7-mediated chondroitin sulfate proteoglycan production. Glia 67(1):68–77. https://doi.org/10.1002/glia.23526
Wisowski G, Koźma EM, Bielecki T, Pudełko A, Olczyk K (2017) Dermatan sulfate is a player in the transglutaminase 2 interaction network. PLoS One 12(2):e0172263. https://doi.org/10.1371/journal.pone.0172263
Mizumoto S, Kosho T, Yamada S, Sugahara K (2017) Pathophysiological significance of dermatan sulfate proteoglycans revealed by human genetic disorders. Pharmaceuticals 10(4):34–34. https://doi.org/10.3390/ph10020034
Biran R, Pond D (2017) Heparin coatings for improving blood compatibility of medical devices. Adv Drug Deliv Rev 112:12–23. https://doi.org/10.1016/j.addr.2016.12.002
Linhardt RJ (2016) Heparin and anticoagulation. Front Biosci 21(7):4462–4462. https://doi.org/10.2741/4462
Tykesson E, Maccarana M, Thorsson H, Liu J, Malmström A, Ellervik U, Westergren-Thorsson G (2019) Recombinant dermatan sulfate is a potent activator of heparin cofactor II-dependent inhibition of thrombin. Glycobiology 29(6):446–451. https://doi.org/10.1093/glycob/cwz019
Gao W, Xu Y, Liu J, Ho M (2016) Epitope mapping by a Wnt-blocking antibody: evidence of the Wnt binding domain in heparan sulfate. Sci Rep 6(1):26245–26245. https://doi.org/10.1038/srep26245
Yin Y, Wang A, Feng L, Wang Y, Zhang H, Zhang I, Bany BM, Ma L (2018) Heparan sulfate proteoglycan Sulfation regulates uterine differentiation and signaling during embryo implantation. Endocrinology 159(6):2459–2472. https://doi.org/10.1210/en.2018-00105
Pirard D, Vereecken P, Mélot C, Heenen M (2005) Three percent diclofenac in 2.5% hyaluronan gel in the treatment of actinic keratoses: a meta-analysis of the recent studies. Arch Dermatol Res 297(5):185–189. https://doi.org/10.1007/s00403-005-0601-9
Aya KL, Stern R (2014) Hyaluronan in wound healing: rediscovering a major player. Wound Repair Regen 22(5):579–593. https://doi.org/10.1111/wrr.12214
Tagliagambe M, Elstrom TA, Ward DB (2017) Hyaluronic acid sodium salt 0.2% gel in the treatment of a recalcitrant distal leg ulcer: a case report. J Clin Aesthetic Dermatol 10(11):49–51
Liesegang TJ (1990) Viscoelastic substances in ophthalmology. Surv Ophthalmol 34(4):268–293. https://doi.org/10.1016/0039-6257(90)90027-S
Bowman S, Awad ME, Hamrick MW, Hunter M, Fulzele S (2018) Recent advances in hyaluronic acid based therapy for osteoarthritis. Clin Transl Med 7(1). https://doi.org/10.1186/s40169-017-0180-3
Sun SF, Hsu CW, Lin HS, Liou IH, Chen YH, Hung CL (2017) Comparison of single intra-articular injection of novel Hyaluronan (HYA-JOINT plus) with synvisc-one for knee osteoarthritis: a randomized, controlled, double-blind trial of efficacy and safety. J Bone Joint Surg (Am Vol) 99(6):462–471. https://doi.org/10.2106/JBJS.16.00469
Singh JA, Noorbaloochi S, MacDonald R, Maxwell LJ (2015) Singh JA (ed) Chondroitin for osteoarthritis, vol 176. Wiley, Chichester, pp 139–148. https://doi.org/10.1002/14651858.CD005614.pub2
Volpi N (2002) Oral bioavailability of chondroitin sulfate (Condrosulf®) and its constituents in healthy male volunteers. Osteoarthr Cartil 10(10):768–777. https://doi.org/10.1053/joca.2002.0824
Saltissi D, Morgan C, Westhuyzen J, Healy H (1999) Comparison of low-molecular-weight heparin (enoxaparin sodium) and standard unfractionated heparin for haemodialysis anticoagulation. Nephrol Dial Transplant 14(11):2698–2703. https://doi.org/10.1093/ndt/14.11.2698
Vitale C, Berutti S, Bagnis C, Soragna G, Gabella P, Fruttero C, Marangella M (2013) Dermatan sulfate: an alternative to unfractionated heparin for anticoagulation in hemodialysis patients. J Nephrol 26(1):158–163. https://doi.org/10.5301/jn.5000105
Hayashi T, Takatori H, Horii R, Nio K, Terashima T, Iida N, Kitahara M, Shimakami T, Arai K, Kitamura K, Kawaguchi K, Yamashita T, Sakai Y, Yamashita T, Mizukoshi E, Honda M, Toyama T, Okumura K, Kozaka K, Kaneko S (2019) Danaparoid sodium-based anticoagulation therapy for portal vein thrombosis in cirrhosis patients. BMC Gastroenterol 19(1):217–217. https://doi.org/10.1186/s12876-019-1140-8
Rusnati M, Lembo D (2016) Heparan sulfate proteoglycans: a multifaceted target for novel approaches in antiviral drug discovery. J Bioeng Biomed Sci 6(2):6–8. https://doi.org/10.4172/2155-9538.1000177
Modhiran N, Gandhi NS, Wimmer N, Cheung S, Stacey K, Young PR, Ferro V, Watterson D (2019) Dual targeting of dengue virus virions and NS1 protein with the heparan sulfate mimic PG545. Antivir Res 168(April):121–127. https://doi.org/10.1016/j.antiviral.2019.05.004
Barritault D, Gilbert-Sirieix M, Rice KL, Siñeriz F, Papy-Garcia D, Baudouin C, Desgranges P, Zakine G, Saffar J-L, van Neck J (2017) RGTA® or ReGeneraTing agents mimic heparan sulfate in regenerative medicine: from concept to curing patients. Glycoconj J 34(3):325–338. https://doi.org/10.1007/s10719-016-9744-5
Ayerst BI, Merry CLR, Day AJ (2017) The good the bad and the ugly of Glycosaminoglycans in tissue engineering applications. Pharmaceuticals 10(4):54–54. https://doi.org/10.3390/ph10020054
Celikkin N, Rinoldi C, Costantini M, Trombetta M, Rainer A, Święszkowski W (2017) Naturally derived proteins and glycosaminoglycan scaffolds for tissue engineering applications. Mater Sci Eng C 78:1277–1299. https://doi.org/10.1016/j.msec.2017.04.016
Kim M, Erickson IE, Choudhury M, Pleshko N, Mauck RL (2012) Transient exposure to TGF-β3 improves the functional chondrogenesis of MSC-laden hyaluronic acid hydrogels. J Mech Behav Biomed Mater 11:92–101. https://doi.org/10.1016/j.jmbbm.2012.03.006
Bhakta G, Rai B, Lim ZXH, Hui JH, Stein GS, van Wijnen AJ, Nurcombe V, Prestwich GD, Cool SM (2012) Hyaluronic acid-based hydrogels functionalized with heparin that support controlled release of bioactive BMP-2. Biomaterials 33(26):6113–6122. https://doi.org/10.1016/j.biomaterials.2012.05.030
Cai Z, Gu Y, Cheng J, Li J, Xu Z, Xing Y, Wang C, Wang Z (2019) Decellularization, cross-linking and heparin immobilization of porcine carotid arteries for tissue engineering vascular grafts. Cell Tissue Bank 20(4):569–578. https://doi.org/10.1007/s10561-019-09792-5
Silva JM, Georgi N, Costa R, Sher P, Reis RL, van Blitterswijk CA, Karperien M, Mano JF (2013) Nanostructured 3D constructs based on chitosan and chondroitin Sulphate multilayers for cartilage tissue engineering. PLoS One 8(2). https://doi.org/10.1371/journal.pone.0055451
Grand View R (2020) Hyaluronic acid market size worth $16.6 billion by 2027. CAGR: 8.1%
iHealthcareAnaylyst (2020) Global heparin anticoagulant market $14.6 billion by 2027
Grand View R (2019) Chondroitin sulfate market size, share & trends analysis report by source (synthetic, bovine, swine, poultry, shark), by application (Nutraceuticals, pharmaceuticals, animal feed, personal care), and segment forecasts, 2019–2025
Badri A, Williams A, Linhardt RJ, Koffas MAG (2018) The road to animal-free glycosaminoglycan production: current efforts and bottlenecks. Curr Opin Biotechnol 53:85–92. https://doi.org/10.1016/j.copbio.2017.12.018
Sze JH, Brownlie JC, Love CA (2016) Biotechnological production of hyaluronic acid: a mini review. 3 Biotech 6(1):1–9. https://doi.org/10.1007/s13205-016-0379-9
Guerrini M, Beccati D, Shriver Z, Naggi A, Viswanathan K, Bisio A, Capila I, Lansing JC, Guglieri S, Fraser B, Al-Hakim A, Gunay NS, Zhang Z, Robinson L, Buhse L, Nasr M, Woodcock J, Langer R, Venkataraman G, Linhardt RJ, Casu B, Torri G, Sasisekharan R (2008) Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat Biotechnol 26(6):669–675. https://doi.org/10.1038/nbt1407
Szajek AY, Chess E, Johansen K, Gratzl G, Gray E, Keire D, Linhardt RJ, Liu J, Morris T, Mulloy B, Nasr M, Shriver Z, Torralba P, Viskov C, Williams R, Woodcock J, Workman W, Al-Hakim A (2016) The US regulatory and pharmacopeia response to the global heparin contamination crisis. Nat Biotechnol 34(6):625–630. https://doi.org/10.1038/nbt.3606
Datta P, Linhardt RJ, Sharfstein ST (2019) Industrial production of glycosaminoglycans. Encycl microbiol:681–690. https://doi.org/10.1016/B978-0-12-809633-8.12224-1
Zhang J, Ding X, Yang L, Kong Z (2006) A serum-free medium for colony growth and hyaluronic acid production by Streptococcus zooepidemicus NJUST01. Appl Microbiol Biotechnol 72(1):168–172. https://doi.org/10.1007/s00253-005-0253-x
Xiong J, Bhaskar U, Li G, Fu L, Li L, Zhang F, Dordick JS, Linhardt RJ (2013) Immobilized enzymes to convert N-sulfo, N-acetyl heparosan to a critical intermediate in the production of bioengineered heparin. J Biotechnol 167(3):241–247. https://doi.org/10.1016/j.jbiotec.2013.06.018
Chen X, Chen R, Yu X, Tang D, Yao W, Gao X (2017) Metabolic engineering of Bacillus subtilis for biosynthesis of heparosan using heparosan synthase from Pasteurella multocida, PmHS1. Bioprocess Biosyst Eng 40(5):675–681. https://doi.org/10.1007/s00449-016-1732-4
He W, Fu L, Li G, Andrew Jones J, Linhardt RJ, Koffas M (2015) Production of chondroitin in metabolically engineered E. coli. Metab Eng 27:92–100. https://doi.org/10.1016/j.ymben.2014.11.003
Jin P, Zhang L, Yuan P, Kang Z, Du G, Chen J (2016) Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis. Carbohydr Polym 140:424–432. https://doi.org/10.1016/j.carbpol.2015.12.065
Zhou Z, Li Q, Huang H, Wang H, Wang Y, Du G, Chen J, Kang Z (2018) A microbial-enzymatic strategy for producing chondroitin sulfate glycosaminoglycans. Biotechnol Bioeng 115(6):1561–1570. https://doi.org/10.1002/bit.26577
DeAngelis PL (2012) Glycosaminoglycan polysaccharide biosynthesis and production: today and tomorrow. Appl Microbiol Biotechnol 94(2):295–305. https://doi.org/10.1007/s00253-011-3801-6
DeAngelis PL, Jing W, Drake RR, Achyuthan AM (1998) Identification and molecular cloning of a unique hyaluronan synthase from Pasteurella multocida. J Biol Chem 273(14):8454–8458. https://doi.org/10.1074/jbc.273.14.8454
Kobayashi S, Fujikawa S-I, Ohmae M (2003) Enzymatic synthesis of chondroitin and its derivatives catalyzed by Hyaluronidase. J Am Chem Soc 125(47):14357–14369. https://doi.org/10.1021/ja036584x
Lane RS, Ange KS, Zolghadr B, Liu X, Schäffer C, Linhardt RJ, DeAngelis PL (2017) Expanding glycosaminoglycan chemical space: towards the creation of sulfated analogs, novel polymers and chimeric constructs. Glycobiology 27(7):646–656. https://doi.org/10.1093/glycob/cwx021
Wang Y, Li S, Xu X, Tan Y, Liu X-W, Fang J (2020) Chemoenzymatic synthesis of homogeneous chondroitin polymers and its derivatives. Carbohydr Polym 232(2019):115822–115822. https://doi.org/10.1016/j.carbpol.2019.115822
Zhang L, Huang H, Wang H, Chen J, Du G, Kang Z (2016) Rapid evolution of hyaluronan synthase to improve hyaluronan production and molecular mass in Bacillus subtilis. Biotechnol Lett 38(12):2103–2108. https://doi.org/10.1007/s10529-016-2193-1
Fu X, Shang W, Wang S, Liu Y, Qu J, Chen X, Wang PG, Fang J (2017) A general strategy for the synthesis of homogeneous hyaluronan conjugates and their biological applications. Chem Commun 53(25):3555–3558. https://doi.org/10.1039/C6CC09431G
Li S, Wang S, Fu X, Liu XW, Wang PG, Fang J (2017) Sequential one-pot multienzyme synthesis of hyaluronan and its derivative. Carbohydr Polym 178:221–227. https://doi.org/10.1016/j.carbpol.2017.09.041
Chavaroche AAE, van den Broek LAM, Springer J, Boeriu C, Eggink G (2011) Analysis of the polymerization initiation and activity of Pasteurella multocida Heparosan synthase PmHS2, an enzyme with Glycosyltransferase and UDP-sugar hydrolase activity. J Biol Chem 286(3):1777–1785. https://doi.org/10.1074/jbc.M110.136754
Ninomiya T, Sugiura N, Tawada A, Sugimoto K, Watanabe H, Kimata K (2002) Molecular cloning and characterization of chondroitin polymerase from Escherichia coli strain K4. J Biol Chem 277(24):21567–21575. https://doi.org/10.1074/jbc.M201719200
Osawa T, Sugiura N, Shimada H, Hirooka R, Tsuji A, Shirakawa T, Fukuyama K, Kimura M, Kimata K, Kakuta Y (2009) Crystal structure of chondroitin polymerase from Escherichia coli K4. Biochem Biophys Res Commun 378(1):10–14
Chen Y, Li Y, Yu H, Sugiarto G, Thon V, Hwang J, Ding L, Hie L, Chen X (2013) Tailored design and synthesis of Heparan sulfate oligosaccharide analogues using sequential one-pot multienzyme systems. Angew Chem Int Ed 52(45):11852–11856. https://doi.org/10.1002/anie.201305667
Bhaskar U, Li G, Fu L, Onishi A, Suflita M, Dordick JS, Linhardt RJ (2015) Combinatorial one-pot chemoenzymatic synthesis of heparin. Carbohydr Polym 122:399–407. https://doi.org/10.1016/j.carbpol.2014.10.054
Bode L (2012) Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22(9):1147–1162. https://doi.org/10.1093/glycob/cws074
Morrow AL, Yu Y (2017) Chapter 7 – potential public health impact of human Milk oligosaccharides. In: McGuire MK, McGuire MA, Bode L (eds) Prebiotics and probiotics in human Milk. Academic Press, San Diego, pp 207–222. https://doi.org/10.1016/B978-0-12-802725-7.00007-5
Bych K, Mikš MH, Johanson T, Hederos MJ, Vigsnæs LK, Becker P (2019) Production of HMOs using microbial hosts — from cell engineering to large scale production. Curr Opin Biotechnol 56:130–137. https://doi.org/10.1016/j.copbio.2018.11.003
Faijes M, Castejón-Vilatersana M, Val-Cid C, Planas A (2019) Enzymatic and cell factory approaches to the production of human milk oligosaccharides. Biotechnol Adv 37(5):667–697. https://doi.org/10.1016/j.biotechadv.2019.03.014
Bode L, Campbell S, Furneaux R, Beauprez J, Muscroft-Taylor A (2017) Chapter 9 – making human Milk oligosaccharides available for research and application – approaches, challenges, and future opportunities. In: McGuire MK, McGuire MA, Bode L (eds) Prebiotics and probiotics in human Milk. Academic Press, San Diego, pp 251–293. https://doi.org/10.1016/B978-0-12-802725-7.00009-9
Ruzic L, Bolivar JM, Nidetzky B (2020) Glycosynthase reaction meets the flow: continuous synthesis of lacto-N-triose II by engineered β-hexosaminidase immobilized on solid support. Biotechnol Bioeng 117(5):1597–1602. https://doi.org/10.1002/bit.27293
Schmölzer K, Weingarten M, Baldenius K, Nidetzky B (2019) Glycosynthase principle transformed into biocatalytic process technology: lacto- N-triose II production with engineered exo-Hexosaminidase. ACS Catal 9(6):5503–5514. https://doi.org/10.1021/acscatal.9b01288
Industrial Enzyme Applications (2019) Industrial enzyme applications. Wiley-V C H Verlag Gmbh, Weinheim. https://doi.org/10.1002/9783527813780
Seeberger PH (2015) The logic of automated glycan assembly. Acc Chem Res 48(5):1450–1463. https://doi.org/10.1021/ar5004362
Li T, Liu L, Wei N, Yang J-Y, Chapla DG, Moremen KW, Boons G-J (2019) An automated platform for the enzyme-mediated assembly of complex oligosaccharides. Nat Chem 11(3):229–236. https://doi.org/10.1038/s41557-019-0219-8
Council NR (2012) Transforming Glycoscience: a roadmap for the future. The National Academies Press, Washington. https://doi.org/10.17226/13446
Panza M, Pistorio SG, Stine KJ, Demchenko AV (2018) Automated chemical oligosaccharide synthesis: novel approach to traditional challenges. Chem Rev 118(17):8105–8150. https://doi.org/10.1021/acs.chemrev.8b00051
Wen L, Edmunds G, Gibbons C, Zhang J, Gadi MR, Zhu H, Fang J, Liu X, Kong Y, Wang PG (2018) Toward automated enzymatic synthesis of oligosaccharides. Chem Rev 118(17):8151–8187. https://doi.org/10.1021/acs.chemrev.8b00066
Fair RJ, Hahm HS, Seeberger PH (2015) Combination of automated solid-phase and enzymatic oligosaccharide synthesis provides access to α(2,3)-sialylated glycans. Chem Commun 51(28):6183–6185. https://doi.org/10.1039/C5CC01368B
Hahm HS, Schlegel MK, Hurevich M, Eller S, Schuhmacher F, Hofmann J, Pagel K, Seeberger PH (2017) Automated glycan assembly using the Glyconeer 2.1 synthesizer. Proc Natl Acad Sci 114(17):E3385–E3389. https://doi.org/10.1073/pnas.1700141114
Zhang J, Chen C, Gadi MR, Gibbons C, Guo Y, Cao X, Edmunds G, Wang S, Liu D, Yu J, Wen L, Wang PG (2018) Machine-driven enzymatic oligosaccharide synthesis by using a peptide synthesizer. Angew Chem Int Ed 57(51):16638–16642. https://doi.org/10.1002/anie.201810661
Guberman M, Seeberger PH (2019) Automated glycan assembly: a perspective. J Am Chem Soc 141(14):5581–5592. https://doi.org/10.1021/jacs.9b00638
Hahm HS, Broecker F, Kawasaki F, Mietzsch M, Heilbronn R, Fukuda M, Seeberger PH (2017) Automated glycan assembly of Oligo-N-acetyllactosamine and Keratan sulfate probes to study virus-glycan interactions. Chem 2(1):114–124. https://doi.org/10.1016/j.chempr.2016.12.004
Moremen KW, Ramiah A, Stuart M, Steel J, Meng L, Forouhar F, Moniz HA, Gahlay G, Gao Z, Chapla D, Wang S, Yang J-Y, Prabhakar PK, Johnson R, Rosa MD, Geisler C, Nairn AV, Seetharaman J, Wu S-C, Tong L, Gilbert HJ, LaBaer J, Jarvis DL (2018) Expression system for structural and functional studies of human glycosylation enzymes. Nat Chem Biol 14(2):156–162. https://doi.org/10.1038/nchembio.2539
Micoli F, Del Bino L, Alfini R, Carboni F, Romano MR, Adamo R (2019) Glycoconjugate vaccines: current approaches towards faster vaccine design. Expert Rev Vaccines 18(9):881–895. https://doi.org/10.1080/14760584.2019.1657012
Rappuoli R (2018) Glycoconjugate vaccines: principles and mechanisms. Sci Transl Med 10(456):eaat4615. https://doi.org/10.1126/scitranslmed.aat4615
Costantino P, Rappuoli R, Berti F (2011) The design of semi-synthetic and synthetic glycoconjugate vaccines. Expert Opin Drug Discovery 6(10):1045–1066. https://doi.org/10.1517/17460441.2011.609554
Kay E, Cuccui J, Wren BW (2019) Recent advances in the production of recombinant glycoconjugate vaccines. NPJ Vaccines 4(1):16. https://doi.org/10.1038/s41541-019-0110-z
MacCalman TE, Phillips-Jones MK, Harding SE (2019) Glycoconjugate vaccines: some observations on carrier and production methods. Biotechnol Genet Eng Rev 35(2):93–125. https://doi.org/10.1080/02648725.2019.1703614
Oldrini D, Fiebig T, Romano MR, Proietti D, Berger M, Tontini M, De Ricco R, Santini L, Morelli L, Lay L, Gerardy-Schahn R, Berti F, Adamo R (2018) Combined chemical synthesis and tailored enzymatic elongation provide fully synthetic and conjugation-ready Neisseria meningitidis Serogroup X vaccine antigens. ACS Chem Biol 13(4):984–994. https://doi.org/10.1021/acschembio.7b01057
Mahour R, Klapproth J, Rexer TFT, Schildbach A, Klamt S, Pietzsch M, Rapp E, Reichl U (2018) Establishment of a five-enzyme cell-free cascade for the synthesis of uridine diphosphate N-acetylglucosamine. J Biotechnol 283:120–129. https://doi.org/10.1016/j.jbiotec.2018.07.027
Cymer F, Beck H, Rohde A, Reusch D (2018) Therapeutic monoclonal antibody N-glycosylation – structure, function and therapeutic potential. Biologicals 52:1–11. https://doi.org/10.1016/j.biologicals.2017.11.001
Van Landuyt L, Lonigro C, Meuris L, Callewaert N (2019) Customized protein glycosylation to improve biopharmaceutical function and targeting. Curr Opin Biotechnol 60:17–28. https://doi.org/10.1016/j.copbio.2018.11.017
Wang Z, Zhu J, Lu H (2020) Antibody glycosylation: impact on antibody drug characteristics and quality control. Appl Microbiol Biotechnol 104(5):1905–1914. https://doi.org/10.1007/s00253-020-10368-7
Jefferis R (2016) Posttranslational modifications and the immunogenicity of biotherapeutics. J Immunol Res 2016. https://doi.org/10.1155/2016/5358272
Alter G, Ottenhoff THM, Joosten SA (2018) Antibody glycosylation in inflammation, disease and vaccination. Semin Immunol 39:102–110. https://doi.org/10.1016/j.smim.2018.05.003
Liu L (2015) Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and fc-fusion proteins. J Pharm Sci 104(6):1866–1884. https://doi.org/10.1002/jps.24444
Beck A, Reichert JM (2012) Marketing approval of mogamulizumab: a triumph for glyco-engineering. MAbs 4(4):419–425. https://doi.org/10.4161/mabs.20996
Wang Q, Chung C-Y, Chough S, Betenbaugh MJ (2018) Antibody glycoengineering strategies in mammalian cells. Biotechnol Bioeng 115(6):1378–1393. https://doi.org/10.1002/bit.26567
Mastrangeli R, Palinsky W, Bierau H (2018) Glycoengineered antibodies: towards the next-generation of immunotherapeutics. Glycobiology 29(3):199–210. https://doi.org/10.1093/glycob/cwy092
Malik S, Thomann M (2016) In vitro glycoengineering – suitability for BioPharmamanufacturing. Application Note p 8
Thomann M, Schlothauer T, Dashivets T, Malik S, Avenal C, Bulau P, Rüger P, Reusch D (2015) In vitro glycoengineering of IgG1 and its effect on fc receptor binding and ADCC activity. PLoS One 10(8). https://doi.org/10.1371/journal.pone.0134949
Li C, Wang L-X (2018) Chemoenzymatic methods for the synthesis of glycoproteins. Chem Rev 118(17):8359–8413. https://doi.org/10.1021/acs.chemrev.8b00238
Wang L-X, Tong X, Li C, Giddens JP, Li T (2019) Glycoengineering of antibodies for modulating functions. Annu Rev Biochem 88(1):433–459. https://doi.org/10.1146/annurev-biochem-062917-012911
Giddens JP, Lomino JV, DiLillo DJ, Ravetch JV, Wang LX (2018) Site-selective chemoenzymatic glycoengineering of fab and fc glycans of a therapeutic antibody. Proc Natl Acad Sci U S A 115(47):12023–12027. https://doi.org/10.1073/pnas.1812833115
Ramírez AS, Boilevin J, Biswas R, Gan BH, Janser D, Aebi M, Darbre T, Reymond J-L, Locher KP (2017) Characterization of the single-subunit oligosaccharyltransferase STT3A from Trypanosoma brucei using synthetic peptides and lipid-linked oligosaccharide analogs. Glycobiology 27(6):525–535. https://doi.org/10.1093/glycob/cwx017
Jaffee MB, Imperiali B (2013) Optimized protocol for expression and purification of membrane-bound PglB, a bacterial oligosaccharyl transferase. Protein Expr Purif 89(2):241–250. https://doi.org/10.1016/j.pep.2013.04.001
Boilevin JM, Reymond JL (2018) Synthesis of lipid-linked oligosaccharides (LLOs) and their Phosphonate analogues as probes to study protein glycosylation enzymes. Synthesis 50(14):2631–2654. https://doi.org/10.1055/s-0037-1609735
Tsai TI, Li ST, Liu CP, Chen KY, Shivatare SS, Lin CW, Liao SF, Lin CW, Hsu TL, Wu YT, Tsai MH, Lai MY, Lin NH, Wu CY, Wong CH (2017) An effective bacterial fucosidase for glycoprotein remodeling. ACS Chem Biol 12(1):63–72. https://doi.org/10.1021/acschembio.6b00821
Li C, Li T, Wang LX (2018) Chemoenzymatic defucosylation of therapeutic antibodies for enhanced effector functions using bacterial α-fucosidases. Methods Mol Biol 1827. https://doi.org/10.1007/978-1-4939-8648-4_19
Sun B, Bao W, Tian X, Li M, Liu H, Dong J, Huang W (2014) A simplified procedure for gram-scale production of sialylglycopeptide (SGP) from egg yolks and subsequent semi-synthesis of Man3GlcNAc oxazoline. Carbohydr Res 396:62–69. https://doi.org/10.1016/j.carres.2014.07.013
Liu L, Prudden AR, Bosman GP, Boons GJ (2017) Improved isolation and characterization procedure of sialylglycopeptide from egg yolk powder. Carbohydr Res 452:122–128. https://doi.org/10.1016/j.carres.2017.10.001
Tayi VS, Butler M (2018) Solid-phase enzymatic remodeling produces high yields of single Glycoform antibodies. Biotechnol J 13(4). https://doi.org/10.1002/biot.201700381
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Rexer, T., Laaf, D., Gottschalk, J., Frohnmeyer, H., Rapp, E., Elling, L. (2020). Enzymatic Synthesis of Glycans and Glycoconjugates. In: Rapp, E., Reichl, U. (eds) Advances in Glycobiotechnology. Advances in Biochemical Engineering/Biotechnology, vol 175. Springer, Cham. https://doi.org/10.1007/10_2020_148
Download citation
DOI: https://doi.org/10.1007/10_2020_148
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69589-7
Online ISBN: 978-3-030-69590-3
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)