Skip to main content

Numerical Methods for the Design and Description of In Vitro Expansion Processes of Human Mesenchymal Stem Cells

  • Chapter
  • First Online:
Digital Twins

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 177))

Abstract

Human mesenchymal stem cells (hMSCs) are a valuable source of cells for clinical applications (e.g., treatment of acute myocardial infarction or inflammatory diseases), especially in the field of regenerative medicine. However, for autologous (patient-specific) and allogeneic (off-the-shelf) hMSC-based therapies, in vitro expansion is necessary prior to the clinical application in order to achieve the required cell numbers. Safe, reproducible, and economic in vitro expansion of hMSCs for autologous and allogeneic therapies can be problematic because the cell material is restricted and the cells are sensitive to environmental changes. It is beneficial to collect detailed information on the hydrodynamic conditions and cell growth behavior in a bioreactor system, in order to develop a so called “Digital Twin” of the cultivation system and expansion process. Numerical methods, such as Computational Fluid Dynamics (CFD) which has become widely used in the biotech industry for studying local characteristics within bioreactors or kinetic growth modelling, provide possible solutions for such tasks.

In this review, we will present the current state-of-the-art for the in vitro expansion of hMSCs. Different numerical tools, including numerical fluid flow simulations and cell growth modelling approaches for hMSCs, will be presented. In addition, a case study demonstrating the applicability of CFD and kinetic growth modelling for the development of an microcarrier-based hMSC process will be shown.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CC:

Collagen-coated

CFD:

Computational Fluid Dynamics

DMEM:

Dulbecco’s Modified Eagle Medium

DSP:

Downstream processing

ECM:

Extracellular matrix

bFGF:

Basic fibroblast growth factor

FBS:

Fetal bovine serum

GMP:

Good manufacturing practice

hASC:

Human adipose tissue-derived stromal/stem cells

hBM-MSC:

Human bone marrow-derived mesenchymal stem cells

hMSCs:

Human mesenchymal stem cells

hPL:

Human platelet lysate

HGF:

Hepatocyte growth factor

HSB:

Hemispherical-bottom bioreactor

LDA:

Laser Doppler Anemometry

LES:

Large Eddy Simulations

αMEM:

Modified Eagle Medium

MC:

Microcarrier

MCB:

Master Cell Bank

MRF:

Moving reference frame

OTR:

Oxygen transfer rate

PIV:

Particle Image Velocimetry

PS:

Polystyrene-based

RB:

Round-bottom bioreactor

RMSD:

Root mean square deviation

SIMPLE:

Semi-implicit method for pressure-linked equations

SM:

Sliding mesh

SU:

Single use

UCM:

Umbilical cord-derived mesenchymal stem cells

USP:

Upstream processing

VEGF:

Vascular endothelial growth factor

VOF:

Volume of fluid

WCB:

Working Cell Bank

Amn (mmol/L):

Ammonium concentration

DO2 (m2/s):

Oxygen diffusivity

DR (m):

Vessel diameter

EF :

Expansion factor

F (N):

Force

Glc (mmol/L):

Glucose concentration

h/H L :

Geometrical ratio between a certain height and the liquid height

h R /D R :

Geometrical ratio between impeller installation height and the vessel diameter (= off-bottom clearance)

HL (m):

Liquid height

H L /D :

Geometrical ratio between liquid height and vessel diameter

kat (d-1):

Cell attachment constant

kdet (d-1):

Cell detachment constant

KAmn (mmol/L):

Inhibition constant of ammonium

KGlc (mmol/L):

Monod constant of glucose

KLac (mmol/L):

Inhibition constant of lactate

Lac (mmol/L):

Lactate concentration

N (rpm):

Impeller speed

Ns1u (rpm):

Lower limit of Ns1 suspension criterion

Ns1 (rpm):

1s or just suspended criterion (=Njs)

PDL :

Population doubling level

P/V (W/m3):

Specific (volumetric) power input

pAmn (mmol/cell/d):

Specific ammonium production rate (growth-independent)

pLac (mmol/cell/d):

Specific lactate production rate (growth-independent)

qAmn (mmol/cell/d):

Specific ammonium production rate (growth-dependent)

qGlc (mmol/cell/d):

Specific glucose consumption rate

qLac (mmol/cell/d):

Specific lactate production rate (growth-dependent)

Re :

Reynolds number

r/R :

Dimensionless radial coordinates

tc (s):

Contact time

tcir (s):

Particle circulation times

td (d):

Doubling time of cell population

tl (d):

Lag or cell adaption time

tres (s):

Particle residence time

utip (m/s):

Impeller tip speed

\( \overrightarrow{u} \)(m/s):

Velocity vector in x-direction

Vmin (mL):

Minimal working volume

Vmax (mL):

Maximum working volume

\( \overrightarrow{v\ } \) (m/s):

Velocity vector in y-direction

\( \overrightarrow{w} \)(m/s):

Velocity vector in z-direction

XA (cells/cm2):

Cell concentration on surface

Xmax (cells/cm2):

Maximum cell concentration on surface

XSus (cells/mL):

Cell concentration in suspension

XV (cells/cm2):

Cell concentration of viable cells (XSus + XA)

YLac/Glc (mmol/mmol):

Lactate yield per glucose equivalent

YX/O2 (1/mmol):

Yield coefficient/cells per mmol oxygen

α :

Cell adaption phase coefficient

α MC :

MC volume fraction

δ Glc :

Step response in glucose balance to avoid negative glucose values (δGlc = 0 or 1)

ηL (Pa s):

Dynamic viscosity of the liquid

π :

Mathematical constant (≈ 3.1415)

ρL (kg/m3):

Density of the liquid

τnn (Pa):

Local normal stress

τnt (Pa):

Local shear stress

μ (1/d):

Specific growth rate

μmax (1/d):

Maximum specific growth rate

References

  1. Grand View Research (2020) Cell therapy market size, share and trends analysis report, 2020–2027

    Google Scholar 

  2. Malik NN, Durdy MB (2015) Cell therapy landscape. In: Translational regenerative medicine. Elsevier, pp 87–106

    Google Scholar 

  3. Simaria AS, Hassan S, Varadaraju H, Rowley J, Warren K, Vanek P, Farid SS (2014) Allogeneic cell therapy bioprocess economics and optimization: single-use cell expansion technologies. Biotechnol Bioeng 111:69–83. https://doi.org/10.1002/bit.25008

    Article  CAS  PubMed  Google Scholar 

  4. Sharma S, Raju R, Sui S, Hu W-S (2011) Stem cell culture engineering – process scale up and beyond. Biotechnol J 6:1317–1329. https://doi.org/10.1002/biot.201000435

    Article  CAS  PubMed  Google Scholar 

  5. Ren G, Chen X, Dong F, Li W (2012) Concise review: mesenchymal stem cells and translational medicine: emerging issues. Stem Cells Transl Med 1:51–58

    Article  CAS  Google Scholar 

  6. Capelli C, Pedrini O, Valgardsdottir R, Da Roit F, Golay J, Introna M (2015) Clinical grade expansion of MSCs. Immunol Lett 168:222–227. https://doi.org/10.1016/j.imlet.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  7. Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, Ho AD (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3:e2213. https://doi.org/10.1371/journal.pone.0002213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lo Surdo J, Bauer SR (2012) Quantitative approaches to detect donor and passage differences in adipogenic potential and clonogenicity in human bone marrow-derived mesenchymal stem cells. Tissue Eng Part C Methods 18:877–889. https://doi.org/10.1089/ten.tec.2011.0736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heathman TRJ, Rafiq QA, Chan AKC, Coopman K, Nienow AW, Kara B, Hewitt CJ (2016) Characterization of human mesenchymal stem cells from multiple donors and the implications for large scale bioprocess development. Biochem Eng J 108:14–23. https://doi.org/10.1016/j.bej.2015.06.018

    Article  CAS  Google Scholar 

  10. Das R, Roosloot R, van Pel M, Schepers K, Driessen M, Fibbe WE, de Bruijn JD, Roelofs H (2019) Preparing for cell culture scale-out: establishing parity of bioreactor- and flask-expanded mesenchymal stromal cell cultures. J Transl Med 17:241. https://doi.org/10.1186/s12967-019-1989-x

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jossen V, Schirmer C, Mostafa Sindi D, Eibl R, Kraume M, Pörtner R, Eibl D (2016) Theoretical and practical issues that are relevant when scaling up hMSC microcarrier production processes. Stem Cells Int 2016:1–15. https://doi.org/10.1155/2016/4760414

    Article  Google Scholar 

  12. Jossen V, Eibl R, Kraume M, Eibl D (2018) Growth behavior of human adipose tissue-derived stromal/stem cells at small scale: numerical and experimental investigations. Bioengineering 5:106. https://doi.org/10.3390/bioengineering5040106

    Article  CAS  PubMed Central  Google Scholar 

  13. Hassan S, Simaria AS, Varadaraju H, Gupta S, Warren K, Farid SS (2015) Allogeneic cell therapy bioprocess economics and optimization: downstream processing decisions. Regen Med 10:591–609

    Article  CAS  Google Scholar 

  14. Lipsitz YY, Milligan WD, Fitzpatrick I, Stalmeijer E, Farid SS, Tan KY, Smith D, Perry R, Carmen J, Chen A, Mooney C, Fink J (2017) A roadmap for cost-of-goods planning to guide economic production of cell therapy products. Cytotherapy 19:1383–1391. https://doi.org/10.1016/j.jcyt.2017.06.009

    Article  PubMed  Google Scholar 

  15. García-Fernández C, López-Fernández A, Borrós S, Lecina M, Vives J (2020) Strategies for large-scale expansion of clinical-grade human multipotent mesenchymal stromal cells. Biochem Eng J 159:107601. https://doi.org/10.1016/j.bej.2020.107601

    Article  CAS  Google Scholar 

  16. Dolley-Sonneville P, Melkoumian Z, Romeo L. Corning® Stemgro® hMSC Medium. Corning Appl Note 1–8

    Google Scholar 

  17. Gottipamula S, Muttigi MS, Chaansa S, Ashwin KM, Priya N, Kolkundkar U, Sundar Raj S, Sen MA, Seetharam RN (2016) Large-scale expansion of pre-isolated bone marrow mesenchymal stromal cells in serum-free conditions. J Tissue Eng Regen Med 10:108–119. https://doi.org/10.1002/term.1713

    Article  CAS  PubMed  Google Scholar 

  18. Carter SM, Granchelli J, Stelzer T (2014) Large scale expansion and differentiation of human mesenchymal stromal cells in the Thermo Scientific nunc cell factory system. Thermo Sci Appl Note 1:1–6

    Google Scholar 

  19. Jossen V, Muoio F, Panella S, Harder Y, Tallone T, Eibl R (2020) An approach towards a GMP compliant in-vitro expansion of human adipose stem cells for autologous therapies. Bioengineering 7(3):77–100

    Google Scholar 

  20. Reichardt A, Polchow B, Shakibaei M, Henrich W, Hetzer R, Lueders C (2013) Large scale expansion of human umbilical cord cells in a rotating bed system bioreactor for cardiovascular tissue engineering applications. Open Biomed Eng J 7:50–61. https://doi.org/10.2174/1874120701307010050

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ikebe C, Suzuki K (2014) Mesenchymal stem cells for regenerative therapy: optimization of cell preparation protocols. Biomed Res Int 2014:1–11. https://doi.org/10.1155/2014/951512

    Article  Google Scholar 

  22. Scibona E, Morbidelli M (2019) Expansion processes for cell-based therapies. Biotechnol Adv 37:107455. https://doi.org/10.1016/j.biotechadv.2019.107455

    Article  CAS  PubMed  Google Scholar 

  23. Discher DE, Mooney DJ, Zandstra PW (2010) Growth factors, matrices, and forces combine. Growth (Lakeland) 324:1673–1677. https://doi.org/10.1126/science.1171643.Growth

    Article  Google Scholar 

  24. Steward AJ, Kelly DJ (2015) Mechanical regulation of mesenchymal stem cell differentiation. J Anat 227:717–731. https://doi.org/10.1111/joa.12243

    Article  PubMed  Google Scholar 

  25. Kaiser SC, Eibl D, Eibl R (2015) Single-use bioreactors for animal and human cells. In: Animal cell culture: cell engineering. Springer, Cham, pp 445–499

    Chapter  Google Scholar 

  26. Baraniak PR, McDevitt TC (2012) Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential. Cell Tissue Res 347:701–711. https://doi.org/10.1007/s00441-011-1215-5

    Article  CAS  PubMed  Google Scholar 

  27. Frith JE, Thomson B, Genever PG (2010) Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng Part C Methods 16:735–749. https://doi.org/10.1089/ten.tec.2009.0432

    Article  CAS  PubMed  Google Scholar 

  28. Alimperti S, Lei P, Wen Y, Tian J, Campbell AM, Andreadis ST (2014) Serum-free spheroid suspension culture maintains mesenchymal stem cell proliferation and differentiation potential. Biotechnol Prog 30:974–983. https://doi.org/10.1002/btpr.1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Allen LM, Matyas J, Ungrin M, Hart DA, Sen A (2019) Serum-free culture of human mesenchymal stem cell aggregates in suspension bioreactors for tissue engineering applications. Stem Cells Int 2019:1–18. https://doi.org/10.1155/2019/4607461

    Article  CAS  Google Scholar 

  30. Bhang SH, Cho S-W, La W-G, Lee T-J, Yang HS, Sun A-Y, Baek S-H, Rhie J-W, Kim B-S (2011) Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials 32:2734–2747. https://doi.org/10.1016/j.biomaterials.2010.12.035

    Article  CAS  PubMed  Google Scholar 

  31. Layer PG, Robitzki A, Rothermel A, Willbold E (2002) Of layers and spheres: the reaggregate approach in tissue engineering. Trends Neurosci 25:131–134. https://doi.org/10.1016/S0166-2236(00)02036-1

    Article  CAS  PubMed  Google Scholar 

  32. Achilli T-M, Meyer J, Morgan JR (2012) Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther 12:1347–1360. https://doi.org/10.1517/14712598.2012.707181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Page H, Flood P, Reynaud EG (2013) Three-dimensional tissue cultures: current trends and beyond. Cell Tissue Res 352:123–131. https://doi.org/10.1007/s00441-012-1441-5

    Article  PubMed  Google Scholar 

  34. Edmondson R, Broglie JJ, Adcock AF, Yang L (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12:207–218. https://doi.org/10.1089/adt.2014.573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Caron MMJ, Emans PJ, Coolsen MME, Voss L, Surtel DAM, Cremers A, van Rhijn LW, Welting TJM (2012) Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthr Cartil 20:1170–1178. https://doi.org/10.1016/j.joca.2012.06.016

    Article  CAS  Google Scholar 

  36. Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, Redl H, Rubin JP, Yoshimura K, Gimble JM (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International So. Cytotherapy 15:641–648. https://doi.org/10.1016/j.jcyt.2013.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317. https://doi.org/10.1080/14653240600855905

    Article  CAS  PubMed  Google Scholar 

  38. Cheng N-C, Chen S-Y, Li J-R, Young T-H (2013) Short-term spheroid formation enhances the regenerative capacity of adipose-derived stem cells by promoting stemness, angiogenesis, and chemotaxis. Stem Cells Transl Med 2:584–594. https://doi.org/10.5966/sctm.2013-0007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bartosh TJ, Ylostalo JH, Mohammadipoor A, Bazhanov N, Coble K, Claypool K, Lee RH, Choi H, Prockop DJ (2010) Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci 107:13724–13729. https://doi.org/10.1073/pnas.1008117107

    Article  PubMed  PubMed Central  Google Scholar 

  40. YlÖstalo JH, Bartosh TJ, Coble K, Prockop DJ (2012) Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype. Stem Cells 30:2283–2296. https://doi.org/10.1002/stem.1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zimmermann JA, Mcdevitt TC (2014) Pre-conditioning mesenchymal stromal cell spheroids for immunomodulatory paracrine factor secretion. Cytotherapy 16:331–345. https://doi.org/10.1016/j.jcyt.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  42. Horn P, Bokermann G, Cholewa D, Bork S, Walenda T, Koch C, Drescher W, Hutschenreuther G, Zenke M, Ho AD, Wagner W (2010) Impact of individual platelet lysates on isolation and growth of human mesenchymal stromal cells. Cytotherapy 12:888–898. https://doi.org/10.3109/14653249.2010.501788

    Article  CAS  PubMed  Google Scholar 

  43. Badenes SM, Fernandes TG, Rodrigues CAV, Diogo MM, Cabral JMS (2016) Microcarrier-based platforms for in vitro expansion and differentiation of human pluripotent stem cells in bioreactor culture systems. J Biotechnol 234:71–82. https://doi.org/10.1016/j.jbiotec.2016.07.023

    Article  CAS  PubMed  Google Scholar 

  44. Villa-Diaz LG, Ross AM, Lahann J, Krebsbach PH (2013) Concise review: the evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells 31:1–7. https://doi.org/10.1002/stem.1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shearier E, Xing Q, Qian Z, Zhao F (2016) Physiologically low oxygen enhances biomolecule production and stemness of mesenchymal stem cell spheroids. Tissue Eng Part C Methods 22:360–369. https://doi.org/10.1089/ten.tec.2015.0465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu J, Rostami MR, Cadavid Olaya DP, Tzanakakis ES (2014) Oxygen transport and stem cell aggregation in stirred-suspension bioreactor cultures. PLoS One 9:e102486. https://doi.org/10.1371/journal.pone.0102486

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lei Y, Schaffer DV (2013) A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc Natl Acad Sci 110:E5039–E5048. https://doi.org/10.1073/pnas.1309408110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sart S, Tsai A-C, Li Y, Ma T (2014) Three-dimensional aggregates of mesenchymal stem cells: cellular mechanisms, biological properties, and applications. Tissue Eng Part B Rev 20:365–380. https://doi.org/10.1089/ten.teb.2013.0537

    Article  PubMed  Google Scholar 

  49. Sucosky P, Osorio DF, Brown JB, Neitzel GP (2004) Fluid mechanics of a spinner-flask bioreactor. Biotechnol Bioeng 85:34–46. https://doi.org/10.1002/bit.10788

    Article  CAS  PubMed  Google Scholar 

  50. Kaiser S, Jossen V, Schirmaier C, Eibl D, Brill S, van den Bos C, Eibl R (2013) Fluid flow and cell proliferation of mesenchymal adipose-derived stem cells in small-scale, stirred, single-use bioreactors. Chem Ing Tech 85:95–102. https://doi.org/10.1002/cite.201200180

    Article  CAS  Google Scholar 

  51. vn Wezel AL (1967) Growth of cell-strains and primary cells on microcarriers in homogeneous culture. Nature 216:64–65

    Article  Google Scholar 

  52. Chen AK-L, Reuveny S, Oh SKW (2013) Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction. Biotechnol Adv 31:1032–1046. https://doi.org/10.1016/j.biotechadv.2013.03.006

    Article  CAS  PubMed  Google Scholar 

  53. Jossen V, van den Bos C, Eibl R, Eibl D (2018) Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Appl Microbiol Biotechnol 102:3981–3994. https://doi.org/10.1007/s00253-018-8912-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rafiq QA, Ruck S, Hanga MP, Heathman TRJ, Coopman K, Nienow AW, Williams DJ, Hewitt CJ (2018) Qualitative and quantitative demonstration of bead-to-bead transfer with bone marrow-derived human mesenchymal stem cells on microcarriers: utilising the phenomenon to improve culture performance. Biochem Eng J 135:11–21. https://doi.org/10.1016/j.bej.2017.11.005

    Article  CAS  Google Scholar 

  55. Leber J, Barekzai J, Blumenstock M, Pospisil B, Salzig D, Czermak P (2017) Microcarrier choice and bead-to-bead transfer for human mesenchymal stem cells in serum-containing and chemically defined media. Process Biochem 59:255–265. https://doi.org/10.1016/j.procbio.2017.03.017

    Article  CAS  Google Scholar 

  56. Szczypka M, Splan D, Woolls H, Brandwein H (2014) Single-use bioreactors and microcarriers. Bioprocess Int 12:54–64

    CAS  Google Scholar 

  57. Zhao L-G, Chen S-L, Teng Y-J, An L-P, Wang J, Ma J-L, Xia Y-Y (2014) The MEK5/ERK5 pathway mediates fluid shear stress promoted osteoblast differentiation. Connect Tissue Res 55:96–102. https://doi.org/10.3109/03008207.2013.853755

    Article  CAS  PubMed  Google Scholar 

  58. Yim EK, Sheetz MP (2012) Force-dependent cell signaling in stem cell differentiation. Stem Cell Res Ther 3:41. https://doi.org/10.1186/scrt132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Frauenschuh S, Reichmann E, Ibold Y, Goetz PM, Sittinger M, Ringe J (2007) A microcarrier-based cultivation system for expansion of primary mesenchymal stem cells. Biotechnol Prog 23:187–193. https://doi.org/10.1021/bp060155w

    Article  CAS  PubMed  Google Scholar 

  60. Panchalingam KM, Jung S, Rosenberg L, Behie LA (2015) Bioprocessing strategies for the large-scale production of human mesenchymal stem cells: a review. Stem Cell Res Ther 6:225. https://doi.org/10.1186/s13287-015-0228-5

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ferrari C, Balandras F, Guedon E, Olmos E, Chevalot I, Marc A (2012) Limiting cell aggregation during mesenchymal stem cell expansion on microcarriers. Biotechnol Prog 28:780–787. https://doi.org/10.1002/btpr.1527

    Article  CAS  PubMed  Google Scholar 

  62. Schirmaier C, Jossen V, Kaiser SC, Jüngerkes F, Brill S, Safavi-Nab A, Siehoff A, van den Bos C, Eibl D, Eibl R (2014) Scale-up of adipose tissue-derived mesenchymal stem cell production in stirred single-use bioreactors under low-serum conditions. Eng Life Sci 14:292–303. https://doi.org/10.1002/elsc.201300134

    Article  CAS  Google Scholar 

  63. Lawson T, Kehoe DE, Schnitzler AC, Rapiejko PJ, Der KA, Philbrick K, Punreddy S, Rigby S, Smith R, Feng Q, Murrell JR, Rook MS (2017) Process development for expansion of human mesenchymal stromal cells in a 50L single-use stirred tank bioreactor. Biochem Eng J 120:49–62. https://doi.org/10.1016/j.bej.2016.11.020

    Article  CAS  Google Scholar 

  64. Gruber R, Karreth F, Kandler B, Fuerst G, Rot A, Fischer AB (2004) Platelet-released supernatants increase migration and proliferation, and decrease osteogenic differentiation of bone marrow-derived mesenchymal progenitor cell under in vitro conditions. Platelets 15:29–35

    Article  CAS  Google Scholar 

  65. Lange C, Cakiroglu F, Spiess AN, Cappallo-Obermann H, Dierlamm J, Zander AR (2007) Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J Cell Physiol 213:18–26

    Article  CAS  Google Scholar 

  66. Abdelrazik H, Spaggiari GM, Chiossone L, Mretta L (2011) Mesenchymal stem cells expanded in human platelet lysate display a decreased inhibitory capacity on T- and NK-cell proliferation and function. Eur J Immunol 41:3281–3290

    Article  CAS  Google Scholar 

  67. Heathman TRJJ, Glyn VAM, Picken A, Rafiq QA, Coopman K, Nienow AW, Kara B, Hewitt CJ (2015) Expansion, harvest and cryopreservation of human mesenchymal stem cells in a serum-free microcarrier process. Biotechnol Bioeng 112:1696–1707. https://doi.org/10.1002/bit.25582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Carmelo JG, Fernandes-Platzgummer A, Diogo MM, da Silva CL, Cabral JMS (2015) A xeno-free microcarrier-based stirred culture system for the scalable expansion of human mesenchymal stem/stromal cells isolated from bone marrow and adipose tissue. Biotechnol J 10:1235–1247. https://doi.org/10.1002/biot.201400586

    Article  CAS  PubMed  Google Scholar 

  69. Rafiq QA, Coopman K, Nienow AW, Hewitt CJ (2016) Systematic microcarrier screening and agitated culture conditions improves human mesenchymal stem cell yield in bioreactors. Biotechnol J 11:473–486. https://doi.org/10.1002/biot.201400862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Heathman TRJ, Stolzing A, Fabian C, Rafiq QA, Coopman K, Nienow AW, Kara B, Hewitt CJ (2016) Scalability and process transfer of mesenchymal stromal cell production from monolayer to microcarrier culture using human platelet lysate. Cytotherapy 18:523–535. https://doi.org/10.1016/j.jcyt.2016.01.007

    Article  CAS  PubMed  Google Scholar 

  71. Nienow AW, Hewitt CJ, Heathman TRJ, Glyn VAM, Fonte GN, Hanga MP, Coopman K, Rafiq QA (2016) Agitation conditions for the culture and detachment of hMSCs from microcarriers in multiple bioreactor platforms. Biochem Eng J 108:24–29. https://doi.org/10.1016/j.bej.2015.08.003

    Article  CAS  Google Scholar 

  72. Dufey V, Tacheny A, Art M, Becken U, De Longueville F (2016) Expansion of human bone marrow-derived mesenchymal stem cells in BioBLU 0.3c single-use bioreactors. Appl Note 305:1–8

    Google Scholar 

  73. Heathman TRJ, Nienow AW, Rafiq QA, Coopman K, Bo K, Hewitt CJ (2019) Development of a process control strategy for the serum-free microcarrier expansion of human mesenchymal stem cells towards cost-effective and commercially viable manufacturing. Biochem Eng J 141:200–209. https://doi.org/10.1016/j.bej.2018.10.018

    Article  CAS  Google Scholar 

  74. Jossen V, Kaiser SC, Schirmaier C, Herrmann J, Tappe A, Eibl D, Siehoff A, van d BC, Eibl R (2014) Modification and qualification of a stirred single-use bioreactor for the improved expansion of human mesenchymal stem cells at benchtop scale. Pharm Bioprocess 2:311–322. https://doi.org/10.4155/pbp.14.29

    Article  Google Scholar 

  75. Jossen V, Pörtner R, Kaiser SC, Kraume M, Eibl D, Eibl R (2014) Mass production of mesenchymal stem cells – impact of bioreactor design and flow conditions on proliferation and differentiation. In: Eberli D (ed) Cells and biomaterials in regenerative medicine. InTech, Rijeka, pp 119–174

    Google Scholar 

  76. Siddiquee K, Sha M (2014) Large-scale production of human mesenchymal stem cells in BioBLU 5c single-use vessels

    Google Scholar 

  77. Berry JD, Liovic P, Šutalo ID, Stewart RL, Glattauer V, Meagher L (2016) Characterisation of stresses on microcarriers in a stirred bioreactor. App Math Model 40:6787–6804. https://doi.org/10.1016/j.apm.2016.02.025

    Article  Google Scholar 

  78. Paschedag AR (2004) CFD in der Vevfahrenstechnik. Wiley-VCH Verlag GmbH & Co.

    Google Scholar 

  79. Ferziger JH, Peric M, Leonard A (1997) Computational methods for fluid dynamics. Phys Today 50:80–84. https://doi.org/10.1063/1.881751

    Article  Google Scholar 

  80. Rodriguez S (2019) Applied computational fluid dynamics and turbulence modeling. Springer International Publishing, Cham

    Book  Google Scholar 

  81. Delafosse A, Collignon M-L, Marc A, Toye D, Olmos E (2015) Revisiting the determination of hydromechanical stresses encountered by microcarriers in stem cell culture bioreactors. BMC Proc 9:P41. https://doi.org/10.1186/1753-6561-9-S9-P41

    Article  PubMed Central  Google Scholar 

  82. Liovic P, Šutalo ID, Stewart R, Glattauer V, Meagher L (2012) Fluid flow and stresses on microcarriers in spinner flask bioreactors. Ninth Int Conf CFD Miner Process Ind:1–6

    Google Scholar 

  83. Delafosse A, Calvo S, Collignon M-L, Delvigne F, Crine M, Toye D (2015) Euler–Lagrange approach to model heterogeneities in stirred tank bioreactors – comparison to experimental flow characterization and particle tracking. Chem Eng Sci 134:457–466. https://doi.org/10.1016/j.ces.2015.05.045

    Article  CAS  Google Scholar 

  84. Nienow AW, Rielly CD, Brosnan K, Bargh N, Lee K, Coopman K, Hewitt CJ (2013) The physical characterisation of a microscale parallel bioreactor platform with an industrial CHO cell line expressing an IgG4. Biochem Eng J 76:25–36. https://doi.org/10.1016/j.bej.2013.04.011

    Article  CAS  Google Scholar 

  85. Collignon M-L, Delafosse A, Calvo S, Martin C, Marc A, Toye D, Olmos E (2016) Large-Eddy simulations of microcarrier exposure to potentially damaging eddies inside mini-bioreactors. Biochem Eng J 108:30–43. https://doi.org/10.1016/j.bej.2015.10.020

    Article  CAS  Google Scholar 

  86. Kunas KT, Papoutsakis ET (1990) The protective effect of serum against hydrodynamic damage of hybridoma cells in agitated and surface-aerated bioreactors. J Biotechnol 15:57–69. https://doi.org/10.1016/0168-1656(90)90051-C

    Article  CAS  PubMed  Google Scholar 

  87. Michaels JD, Petersen JF, Mclntire LV, Papoutsakis ET (1991) Protection mechanisms of freely suspended animal cells (CRL 8018) from fluid-mechanical injury. Viscometric and bioreactor studies using serum, pluronic F68 and polyethylene glycol. Biotechnol Bioeng 38:169–180. https://doi.org/10.1002/bit.260380209

    Article  CAS  PubMed  Google Scholar 

  88. Chisti Y (2000) Animal-cell damage in sparged bioreactors. Trends Biotechnol 18:420–432. https://doi.org/10.1016/S0167-7799(00)01474-8

    Article  CAS  PubMed  Google Scholar 

  89. Jossen V (2020) Bioengineering aspects of microcarrier-based hMSC expansions in different single-use bioreactors. Technical University of Berlin, Berlin

    Google Scholar 

  90. Stoots CM, Calabrese RV (1995) Mean velocity field to a rushton turbine blade. Am Inst Chem Eng J 41:1–11

    Article  CAS  Google Scholar 

  91. Wollny S (2010) Experimentelle und numerische Untersuchungen zur Partikelbeanspruchung in gerührten (Bio-)Reaktoren. Technical University of Berlin

    Google Scholar 

  92. Venkat RV, Stock LR, Chalmers JJ (2000) Study of hydrodynamics in microcarrier culture spinner vessels: a particle tracking velocimetry approach. Biotechnol Bioeng 49:456–466. https://doi.org/10.1002/(SICI)1097-0290(19960220)49:4<456::AID-BIT13>3.0.CO;2-8

    Article  Google Scholar 

  93. Ismadi M-Z, Hourigan K, Fouras A (2014) Experimental characterisation of fluid mechanics in a spinner flask bioreactor. Processes 2:753–772. https://doi.org/10.3390/pr2040753

    Article  Google Scholar 

  94. Zhang H, Lamping SR, Pickering SCR, Lye GJ, Shamlou PA (2008) Engineering characteristics of a single well from 24-well and 96-well microtire plates. Biochem Eng J 40:138–149

    Article  CAS  Google Scholar 

  95. Godara P, McFarland CD, Nordon RE (2008) Design of bioreactors for mesenchymal stem cell tissue engineering. J Chem Technol Biotechnol 83:408–420. https://doi.org/10.1002/jctb.1918

    Article  CAS  Google Scholar 

  96. Rafiq QA, Brosnan KM, Coopman K, Nienow AW, Hewitt CJ (2013) Culture of human mesenchymal stem cells on microcarriers in a 5 l stirred-tank bioreactor. Biotechnol Lett 35:1233–1245. https://doi.org/10.1007/s10529-013-1211-9

    Article  CAS  PubMed  Google Scholar 

  97. Ibrahim S, Nienow AW (2004) Suspension of microcarriers for cell culture with axial flow impellers. Chem Eng Res Des 82:1082–1088. https://doi.org/10.1205/cerd.82.9.1082.44161

    Article  CAS  Google Scholar 

  98. Hewitt CJ, Lee K, Nienow AW, Thomas RJ, Smith M, Thomas CR (2011) Expansion of human mesenchymal stem cells on microcarriers. Biotechnol Lett 33:2325–2335. https://doi.org/10.1007/s10529-011-0695-4

    Article  CAS  PubMed  Google Scholar 

  99. Yourek G, McCormick SM, Mao JJ, Reilly GC (2010) Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regen Med 5:713–724. https://doi.org/10.2217/rme.10.60

    Article  CAS  PubMed  Google Scholar 

  100. Yourek G, Hussain MA, Mao JJ (2007) Cytoskeletal changes of mesenchymal stem cells during differentiation. ASAIO J 53:219–228. https://doi.org/10.1097/MAT.0b013e31802deb2d

    Article  PubMed  PubMed Central  Google Scholar 

  101. Yeatts AB, Choquette DT, Fisher JP (2013) Bioreactors to influence stem cell fate: augmentation of mesenchymal stem cell signaling pathways via dynamic culture systems. Biochim Biophys Acta Gen Subj 1830:2470–2480. https://doi.org/10.1016/j.bbagen.2012.06.007

    Article  CAS  Google Scholar 

  102. Yeatts AB, Fisher JP (2011) Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress. Bone 48:171–181. https://doi.org/10.1016/j.bone.2010.09.138

    Article  CAS  PubMed  Google Scholar 

  103. Weyand B, Reimers K, Vogt PM (2011) Influences of extracellular matrix properties and flow shear stresses on stem cell shape in a three-dimensional dynamic environment. IFMBE Proc 30:47–50

    Article  Google Scholar 

  104. Weyand B, Kasper C, Israelowitz M, Gille C, von Schroeder HP, Reimers K, Vogt PM (2012) A differential pressure laminar flow reactor supports osteogenic differentiation and extracellular matrix formation from adipose mesenchymal stem cells in a macroporous ceramic scaffold. Biores Open Access 1:145–157

    Article  CAS  Google Scholar 

  105. Weyand B, Israelowitz M, von Schroeder HP, Vogt PM (2009) Fluid dynamics in bioreactor design: considerations for the theoretical and practical approach. Adv Biochem Eng Biotechnol 112:251–268

    CAS  PubMed  Google Scholar 

  106. Croughan MS, Hamel J-F, Wang DIC (2006) Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnol Bioeng 95:295–305. https://doi.org/10.1002/bit.21158

    Article  CAS  PubMed  Google Scholar 

  107. Heathman TRJ, Stolzing A, Fabian C, Rafiq QA, Coopman K, Nienow AW, Kara B, Hewitt CJ (2015) Serum-free process development: improving the yield and consistency of human mesenchymal stromal cell production. Cytotherapy 17:1524–1535. https://doi.org/10.1016/j.jcyt.2015.08.002

    Article  CAS  PubMed  Google Scholar 

  108. Cierpka K, Elseberg CL, Niss K, Kassem M, Salzig D, Czermak P (2013) hMSC production in disposable bioreactors with regards to GMP and PAT. Chem Ing Tech 85:67–75. https://doi.org/10.1002/cite.201200151

    Article  CAS  Google Scholar 

  109. Rafiq QA, Hanga MP, Heathman TRJ, Coopman K, Nienow AW, Williams DJ, Hewitt CJ (2017) Process development of human multipotent stromal cell microcarrier culture using an automated high-throughput microbioreactor. Biotechnol Bioeng 114:2253–2266. https://doi.org/10.1002/bit.26359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Higuera G, Schop D, Janssen F, van Dijkhuizen-Radersma R, van Boxtel T, van Blitterswijk CA (2009) Quantifying in vitro growth and metabolism kinetics of human mesenchymal stem cells using a mathematical model. Tissue Eng Part A 15:2653–2663. https://doi.org/10.1089/ten.tea.2008.0328

    Article  CAS  PubMed  Google Scholar 

  111. dos Santos F, Andrade PZ, Boura JS, Abecasis MM, da Silva CL, Cabral JMS (2009) Ex vivo expansion of human mesenchymal stem cells: a more effective cell proliferation kinetics and metabolism under hypoxia. J Cell Physiol 223:n/a–n/a. https://doi.org/10.1002/jcp.21987

    Article  CAS  Google Scholar 

  112. Bartolini E, Manoli H, Costamagna E, Jeyaseelan HA, Hamad M, Irhimeh MR, Khademhosseini A, Abbas A (2015) Population balance modelling of stem cell culture in 3D suspension bioreactors. Chem Eng Res Des 101:125–134. https://doi.org/10.1016/j.cherd.2015.07.014

    Article  CAS  Google Scholar 

  113. Mancuso L, Ilaria Liuzzo M, Fadda S, Cincotti A, Pisu M, Concas A, Cao G (2010) Experimental analysis and modeling of bone marrow mesenchymal stem cells proliferation. Chem Eng Sci 65:562–568. https://doi.org/10.1016/j.ces.2009.06.034

    Article  CAS  Google Scholar 

  114. Bailón-Plaza A, van der Meulen MCH (2001) A mathematical framework to study the effects of growth factor influences on fracture healing. J Theor Biol 212:191–209. https://doi.org/10.1006/jtbi.2001.2372

    Article  PubMed  Google Scholar 

  115. Geris L, Peiffer V, Demol J, Oosterwyck H Van (2006) Modelling of in vitro mesenchymal stem cell cultivation, chondrogenesis and osteogenesis. J Biomech 41:466–466

    Google Scholar 

  116. Schellenberg A, Stiehl T, Horn P, Joussen S, Pallua N, Ho AD, Wagner W (2012) Population dynamics of mesenchymal stromal cells during culture expansion. Cytotherapy 14:401–411. https://doi.org/10.3109/14653249.2011.640669

    Article  CAS  PubMed  Google Scholar 

  117. Cholewa D, Stiehl T, Schellenberg A, Bokermann G, Joussen S, Koch C, Walenda T, Pallua N, Marciniak-Czochra A, Suschek CV, Wagner W (2011) Expansion of adipose mesenchymal stromal cells is affected by human platelet lysate and plating density. Cell Transplant 20:1409–1422. https://doi.org/10.3727/096368910X557218

    Article  PubMed  Google Scholar 

  118. Hoffmann M, Kuska J-P, Zscharnack M, Loeffler M, Galle J (2011) Spatial organization of mesenchymal stem cells in vitro – results from a new individual cell-based model with podia. PLoS One 6:e21960. https://doi.org/10.1371/journal.pone.0021960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Jossen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jossen, V., Eibl, D., Eibl, R. (2020). Numerical Methods for the Design and Description of In Vitro Expansion Processes of Human Mesenchymal Stem Cells. In: Herwig, C., Pörtner, R., Möller, J. (eds) Digital Twins. Advances in Biochemical Engineering/Biotechnology, vol 177. Springer, Cham. https://doi.org/10.1007/10_2020_147

Download citation

Publish with us

Policies and ethics