Skip to main content

Glycoproteomics Technologies in Glycobiotechnology

Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE,volume 175)

Abstract

Glycosylation is a key factor determining the pharmacological properties of biotherapeutics, including their stability, solubility, bioavailability, pharmacokinetics, and immunogenicity. As such, comprehensive information about glycosylation of biotherapeutics is critical to demonstrate similarity. Regulatory agencies also require extensive documentation of the comprehensive analyses of glycosylation-related critical quality attributes (CQAs) during the development, manufacturing, and release of biosimilars. Mass spectrometry has catalysed tremendous advancements in the characterisation of glycosylation CQAs of biotherapeutics. Here we provide a perspective overview on the MS-based technologies relevant for biotherapeutic product characterisation with an emphasis on the recent developments that allow determination of glycosylation features such as site of glycosylation, sialic acid linkage, glycan structure, and content.

Graphical Abstract

Keywords

  • Analytics
  • Biopharmaceuticals
  • Glycoproteomics
  • Mass spectrometry

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/10_2020_144
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-69590-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

ADCC:

Antibody-dependent cell-mediated cytotoxicity

AI-ETD:

Activated ion electron transfer dissociation

CE-MS:

Capillary electrophoresis–mass spectrometry

CID:

Collision-induced dissociation

CQA:

Critical quality attribute

ECD:

Electron-capture dissociation

EIC:

Extracted-ion chromatogram

EIE:

Extracted ion electropherogram

EMA:

European Medicines Agency

EPO:

Erythropoietin

ESI:

Electrospray ionisation

ETD:

Electron-transfer dissociation

FcγR:

Fc-γ receptor

FDA:

Food and Drug Administration

FSH:

Follicle-stimulating hormone

FSHR:

Follicle-stimulating hormone receptor

FT-ICR MS:

Fourier transform–ion cyclotron resonance mass spectrometry

HCD:

Higher-energy collision-induced dissociation

IgGs:

Immunoglobulin G

IM-MS:

Ion-mobility mass spectrometry

LC:

Liquid chromatography

m/z :

Mass-to-charge ratio

MALDI:

Matrix-assisted laser desorption/ionisation

MAM:

Multi-attribute monitoring

MS:

Mass spectrometry

PNGase F:

Peptide:N-glycosidase F

PSA:

Prostate-specific antigen

PTM:

Post-translational modification

QbD:

Quality by design

RP:

Reversed phase

TOF:

Time of flight

References

  1. Grassi L, Cabrele C (2019) Susceptibility of protein therapeutics to spontaneous chemical modifications by oxidation, cyclization, and elimination reactions. Amino Acids 51:1409–1431. https://doi.org/10.1007/s00726-019-02787-2

    CAS  CrossRef  PubMed  Google Scholar 

  2. Zhong X, Wright JF (2013) Biological insights into therapeutic protein modifications throughout trafficking and their biopharmaceutical applications. Int J Cell Biol 2013:273086. https://doi.org/10.1155/2013/273086

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  3. Srebalus Barnes CA, Lim A (2007) Applications of mass spectrometry for the structural characterization of recombinant protein pharmaceuticals. Mass Spectrom Rev 26:370–388. https://doi.org/10.1002/mas.20129

    CAS  CrossRef  PubMed  Google Scholar 

  4. Rogers RS et al (2017) A view on the importance of “multi-attribute method” for measuring purity of biopharmaceuticals and improving overall control strategy. AAPS J 20:7. https://doi.org/10.1208/s12248-017-0168-3

    CAS  CrossRef  PubMed  Google Scholar 

  5. Bui LA et al (2015) Key considerations in the preclinical development of biosimilars. Drug Discov Today 20(Suppl 1):3–15. https://doi.org/10.1016/j.drudis.2015.03.011

    CAS  CrossRef  PubMed  Google Scholar 

  6. Mishra V, Thakur S, Patil A, Shukla A (2018) Quality by design (QbD) approaches in current pharmaceutical set-up. Expert Opin Drug Deliv 15:737–758. https://doi.org/10.1080/17425247.2018.1504768

    CAS  CrossRef  Google Scholar 

  7. Radaev S, Sun P (2002) Recognition of immunoglobulins by Fcgamma receptors. Mol Immunol 38:1073–1083

    CAS  CrossRef  Google Scholar 

  8. Houde D, Peng Y, Berkowitz SA, Engen JR (2010) Post-translational modifications differentially affect IgG1 conformation and receptor binding. Mol Cell Proteomics 9:1716–1728. https://doi.org/10.1074/mcp.M900540-MCP200

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Zou G et al (2011) Chemoenzymatic synthesis and Fcgamma receptor binding of homogeneous glycoforms of antibody Fc domain. Presence of a bisecting sugar moiety enhances the affinity of Fc to FcgammaIIIa receptor. J Am Chem Soc 133:18975–18991. https://doi.org/10.1021/ja208390n

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Mimura Y et al (2001) Role of oligosaccharide residues of IgG1-Fc in Fc gamma RIIb binding. J Biol Chem 276:45539–45547. https://doi.org/10.1074/jbc.M107478200

    CAS  CrossRef  PubMed  Google Scholar 

  11. Satoh M, Iida S, Shitara K (2006) Non-fucosylated therapeutic antibodies as next-generation therapeutic antibodies. Expert Opin Biol Ther 6:1161–1173. https://doi.org/10.1517/14712598.6.11.1161

    CAS  CrossRef  PubMed  Google Scholar 

  12. Nechansky A, Koller I, Kircheis R (2010) Response to: ‘impact of glycosylation on effector functions of therapeutic IgG’ (Pharmaceuticals 2010, 3, 146-157). Pharmaceuticals 3:1887–1891. https://doi.org/10.3390/ph3061887

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Wright A, Morrison SL (1997) Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotechnol 15:26–32. https://doi.org/10.1016/S0167-7799(96)10062-7

    CAS  CrossRef  PubMed  Google Scholar 

  14. Misaizu T et al (1995) Role of antennary structure of N-linked sugar chains in renal handling of recombinant human erythropoietin. Blood 86:4097–4104

    CAS  CrossRef  Google Scholar 

  15. Mastrangeli R et al (2017) In-vivo biological activity and glycosylation analysis of a biosimilar recombinant human follicle-stimulating hormone product (Bemfola) compared with its reference medicinal product (GONAL-f). PLoS One 12:e0184139. https://doi.org/10.1371/journal.pone.0184139

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Beck A (2011) Biosimilar, biobetter and next generation therapeutic antibodies. MAbs 3:107–110. https://doi.org/10.4161/mabs.3.2.14785

    CrossRef  PubMed  Google Scholar 

  17. Zhang P et al (2016) Challenges of glycosylation analysis and control: an integrated approach to producing optimal and consistent therapeutic drugs. Drug Discov Today 21:740–765. https://doi.org/10.1016/j.drudis.2016.01.006

    CAS  CrossRef  PubMed  Google Scholar 

  18. Kolarich D, Weber A, Turecek PL, Schwarz HP, Altmann F (2006) Comprehensive glyco-proteomic analysis of human alpha1-antitrypsin and its charge isoforms. Proteomics 6:3369–3380. https://doi.org/10.1002/pmic.200500751

    CAS  CrossRef  PubMed  Google Scholar 

  19. Herndl A et al (2007) Mapping of Malus domestica allergens by 2-D electrophoresis and IgE-reactivity. Electrophoresis 28:437–448. https://doi.org/10.1002/elps.200600342

    CAS  CrossRef  PubMed  Google Scholar 

  20. Stadlmann J, Pabst M, Kolarich D, Kunert R, Altmann F (2008) Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics 8:2858–2871. https://doi.org/10.1002/pmic.200700968

    CAS  CrossRef  PubMed  Google Scholar 

  21. Reiding KR, Bondt A, Franc V, Heck AJR (2018) The benefits of hybrid fragmentation methods for glycoproteomics. TrAC Trends Anal Chem 108:260–268. https://doi.org/10.1016/j.trac.2018.09.007

    CAS  CrossRef  Google Scholar 

  22. Tian Y, Ruotolo BT (2018) The growing role of structural mass spectrometry in the discovery and development of therapeutic antibodies. Analyst 143:2459–2468. https://doi.org/10.1039/c8an00295a

    CAS  CrossRef  PubMed  Google Scholar 

  23. Alagesan K, Khilji SK, Kolarich D (2017) It is all about the solvent: on the importance of the mobile phase for ZIC-HILIC glycopeptide enrichment. Anal Bioanal Chem 409:529–538. https://doi.org/10.1007/s00216-016-0051-6

    CAS  CrossRef  PubMed  Google Scholar 

  24. Stavenhagen K et al (2013) Quantitative mapping of glycoprotein micro-heterogeneity and macro-heterogeneity: an evaluation of mass spectrometry signal strengths using synthetic peptides and glycopeptides. J Mass Spectrom 48:627–639. https://doi.org/10.1002/jms.3210

    CAS  CrossRef  PubMed  Google Scholar 

  25. Montacir O et al (2018) Physicochemical characterization, glycosylation pattern and biosimilarity assessment of the fusion protein etanercept. Protein J 37:164–179. https://doi.org/10.1007/s10930-018-9757-y

    CAS  CrossRef  PubMed  Google Scholar 

  26. Pralow A, Hoffmann M, Nguyen-Khuong T, Rapp E, Reichl U (2017) Improvement of the glycoproteomic toolbox with the discovery of a unique C-terminal cleavage specificity of flavastacin for N-glycosylated asparagine. Sci Rep 7:11419. https://doi.org/10.1038/s41598-017-11668-1

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  27. Zhang H, Ge Y (2011) Comprehensive analysis of protein modifications by top-down mass spectrometry. Circ Cardiovasc Genet 4:711. https://doi.org/10.1161/CIRCGENETICS.110.957829

    CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Timp W, Timp G (2020) Beyond mass spectrometry, the next step in proteomics. Sci Adv 6:eaax8978. https://doi.org/10.1126/sciadv.aax8978

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  29. Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68:1–8. https://doi.org/10.1021/ac9509519

    CAS  CrossRef  PubMed  Google Scholar 

  30. Karas M, Bahr U, Dulcks T (2000) Nano-electrospray ionization mass spectrometry: addressing analytical problems beyond routine. Fresenius J Anal Chem 366:669–676

    CAS  CrossRef  Google Scholar 

  31. Hui JP, White TC, Thibault P (2002) Identification of glycan structure and glycosylation sites in cellobiohydrolase II and endoglucanases I and II from Trichoderma reesei. Glycobiology 12:837–849

    CAS  CrossRef  Google Scholar 

  32. Nagy K et al (2004) Electrospray ionization fourier transform ion cyclotron resonance mass spectrometry of human alpha-1-acid glycoprotein. Anal Chem 76:4998–5005. https://doi.org/10.1021/ac040019a

    CAS  CrossRef  PubMed  Google Scholar 

  33. Yang Y et al (2016) Hybrid mass spectrometry approaches in glycoprotein analysis and their usage in scoring biosimilarity. Nat Commun 7:13397. https://doi.org/10.1038/ncomms13397

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Duivelshof BL et al (2019) Glycosylation of biosimilars: recent advances in analytical characterization and clinical implications. Anal Chim Acta 1089:1–18. https://doi.org/10.1016/j.aca.2019.08.044

    CAS  CrossRef  PubMed  Google Scholar 

  35. Fornelli L, Ayoub D, Aizikov K, Beck A, Tsybin YO (2014) Middle-down analysis of monoclonal antibodies with electron transfer dissociation orbitrap fourier transform mass spectrometry. Anal Chem 86:3005–3012. https://doi.org/10.1021/ac4036857

    CAS  CrossRef  PubMed  Google Scholar 

  36. Tran BQ et al (2016) Comprehensive glycosylation profiling of IgG and IgG-fusion proteins by top-down MS with multiple fragmentation techniques. J Proteome 134:93–101. https://doi.org/10.1016/j.jprot.2015.10.021

    CAS  CrossRef  Google Scholar 

  37. He L et al (2017) Analysis of monoclonal antibodies in human serum as a model for clinical monoclonal gammopathy by use of 21 tesla FT-ICR top-down and middle-down MS/MS. J Am Soc Mass Spectrom 28:827–838. https://doi.org/10.1007/s13361-017-1602-6

    CAS  CrossRef  PubMed  Google Scholar 

  38. Moginger U et al (2016) Cross reactive material 197 glycoconjugate vaccines contain privileged conjugation sites. Sci Rep 6:20488. https://doi.org/10.1038/srep20488

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  39. Demelbauer UM et al (2004) Characterization of glyco isoforms in plasma-derived human antithrombin by on-line capillary zone electrophoresis-electrospray ionization-quadrupole ion trap-mass spectrometry of the intact glycoproteins. Electrophoresis 25:2026–2032. https://doi.org/10.1002/elps.200305936

    CAS  CrossRef  PubMed  Google Scholar 

  40. Balaguer E et al (2006) Glycoform characterization of erythropoietin combining glycan and intact protein analysis by capillary electrophoresis – electrospray – time-of-flight mass spectrometry. Electrophoresis 27:2638–2650. https://doi.org/10.1002/elps.200600075

    CAS  CrossRef  PubMed  Google Scholar 

  41. Neususs C, Demelbauer U, Pelzing M (2005) Glycoform characterization of intact erythropoietin by capillary electrophoresis-electrospray-time of flight-mass spectrometry. Electrophoresis 26:1442–1450. https://doi.org/10.1002/elps.200410269

    CAS  CrossRef  PubMed  Google Scholar 

  42. Thakur D et al (2009) Profiling the glycoforms of the intact alpha subunit of recombinant human chorionic gonadotropin by high-resolution capillary electrophoresis-mass spectrometry. Anal Chem 81:8900–8907. https://doi.org/10.1021/ac901506p

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  43. Bagal D, Valliere-Douglass JF, Balland A, Schnier PD (2010) Resolving disulfide structural isoforms of IgG2 monoclonal antibodies by ion mobility mass spectrometry. Anal Chem 82:6751–6755. https://doi.org/10.1021/ac1013139

    CAS  CrossRef  PubMed  Google Scholar 

  44. Olivova P, Chen W, Chakraborty AB, Gebler JC (2008) Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 22:29–40. https://doi.org/10.1002/rcm.3330

    CAS  CrossRef  PubMed  Google Scholar 

  45. Upton R et al (2019) Hybrid mass spectrometry methods reveal lot-to-lot differences and delineate the effects of glycosylation on the tertiary structure of Herceptin (R). Chem Sci 10:2811–2820. https://doi.org/10.1039/c8sc05029e

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  46. Beck A et al (2013) Analytical characterization of biosimilar antibodies and fc-fusion proteins. TrAC Trend Anal Chem 48:81–95. https://doi.org/10.1016/j.trac.2013.02.014

    CAS  CrossRef  Google Scholar 

  47. Zhang H, Cui WD, Gross ML (2014) Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies. FEBS Lett 588:308–317. https://doi.org/10.1016/j.febslet.2013.11.027

    CAS  CrossRef  PubMed  Google Scholar 

  48. Huang YN, Salinas ND, Chen E, Tolia NH, Gross ML (2017) Native mass spectrometry, ion mobility, and collision-induced unfolding categorize malaria antigen/antibody binding. J Am Soc Mass Spectrom 28:2515–2518. https://doi.org/10.1007/s13361-017-1782-0

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  49. Huddleston MJ, Bean MF, Carr SA (1993) Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. Anal Chem 65:877–884

    CAS  CrossRef  Google Scholar 

  50. Domon B, Costello CE (1988) A systematic nomenclature for carbohydrate fragmentations in Fab-Ms Ms spectra of glycoconjugates. Glycoconj J 5:397–409. https://doi.org/10.1007/Bf01049915

    CAS  CrossRef  Google Scholar 

  51. Parker BL et al (2011) Quantitative N-linked glycoproteomics of myocardial ischemia and reperfusion injury reveals early remodeling in the extracellular environment. Mol Cell Proteomics 10:M110 006833. https://doi.org/10.1074/mcp.M110.006833

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  52. Hinneburg H et al (2016) The art of destruction: optimizing collision energies in quadrupole-time of flight (Q-TOF) instruments for glycopeptide-based glycoproteomics. J Am Soc Mass Spectrom 27:507–519. https://doi.org/10.1007/s13361-015-1308-6

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  53. Dodds ED (2012) Gas-phase dissociation of glycosylated peptide ions. Mass Spectrom Rev 31:666–682. https://doi.org/10.1002/mas.21344

    CAS  CrossRef  PubMed  Google Scholar 

  54. Kolli V, Dodds ED (2014) Energy-resolved collision-induced dissociation pathways of model N-linked glycopeptides: implications for capturing glycan connectivity and peptide sequence in a single experiment. Analyst 139:2144–2153. https://doi.org/10.1039/c3an02342g

    CAS  CrossRef  PubMed  Google Scholar 

  55. Jebanathirajah J, Steen H, Roepstorff P (2003) Using optimized collision energies and high resolution, high accuracy fragment ion selection to improve glycopeptide detection by precursor ion scanning. J Am Soc Mass Spectrom 14:777–784. https://doi.org/10.1016/S1044-0305(03)00263-0

    CAS  CrossRef  PubMed  Google Scholar 

  56. Vékey K et al (2013) Fragmentation characteristics of glycopeptides. Int J Mass Spectrom 345-347:71–79. https://doi.org/10.1016/j.ijms.2012.08.031

    CAS  CrossRef  Google Scholar 

  57. Yang H, Yang C, Sun T (2018) Characterization of glycopeptides using a stepped higher-energy C-trap dissociation approach on a hybrid quadrupole orbitrap. Rapid Commun Mass Spectrom 32:1353–1362. https://doi.org/10.1002/rcm.8191

    CAS  CrossRef  PubMed  Google Scholar 

  58. Hoffmann M et al (2018) The fine art of destruction: a guide to in-depth glycoproteomic analyses-exploiting the diagnostic potential of fragment ions. Proteomics 18:e1800282. https://doi.org/10.1002/pmic.201800282

    CAS  CrossRef  PubMed  Google Scholar 

  59. Rath CB et al (2018) Flagellin glycoproteomics of the periodontitis associated pathogen selenomonas sputigena reveals previously not described O-glycans and rhamnose fragment rearrangement occurring on the glycopeptides. Mol Cell Proteomics 17:721–736. https://doi.org/10.1074/mcp.RA117.000394

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  60. Wuhrer M, Deelder AM, van der Burgt YE (2011) Mass spectrometric glycan rearrangements. Mass Spectrom Rev 30:664–680. https://doi.org/10.1002/mas.20337

    CAS  CrossRef  PubMed  Google Scholar 

  61. Sanda M, Benicky J, Goldman R (2020) Low collision energy fragmentation in structure-specific glycoproteomics analysis. Anal Chem 92:8262–8267. https://doi.org/10.1021/acs.analchem.0c00519

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  62. Wuhrer M, Catalina MI, Deelder AM, Hokke CH (2007) Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 849:115–128. https://doi.org/10.1016/j.jchromb.2006.09.041

    CAS  CrossRef  PubMed  Google Scholar 

  63. Alley Jr WR, Mann BF, Novotny MV (2013) High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem Rev 113:2668–2732. https://doi.org/10.1021/cr3003714

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  64. Alagesan K, Hinneburg H, Seeberger PH, Silva DV, Kolarich D (2019) Glycan size and attachment site location affect electron transfer dissociation (ETD) fragmentation and automated glycopeptide identification. Glycoconj J 36:487–493. https://doi.org/10.1007/s10719-019-09888-w

    CAS  CrossRef  PubMed  Google Scholar 

  65. Frese CK et al (2012) Toward full peptide sequence coverage by dual fragmentation combining electron-transfer and higher-energy collision dissociation tandem mass spectrometry. Anal Chem 84:9668–9673. https://doi.org/10.1021/ac3025366

    CAS  CrossRef  PubMed  Google Scholar 

  66. Caval T, Zhu J, Heck AJR (2019) Simply extending the mass range in electron transfer higher energy collisional dissociation increases confidence in N-glycopeptide identification. Anal Chem 91:10401–10406. https://doi.org/10.1021/acs.analchem.9b02125

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  67. Riley NM, Coon JJ (2018) The role of electron transfer dissociation in modern proteomics. Anal Chem 90:40–64. https://doi.org/10.1021/acs.analchem.7b04810

    CAS  CrossRef  PubMed  Google Scholar 

  68. Riley NM, Westphall MS, Coon JJ (2015) Activated ion electron transfer dissociation for improved fragmentation of intact proteins. Anal Chem 87:7109–7116. https://doi.org/10.1021/acs.analchem.5b00881

    CAS  CrossRef  PubMed  Google Scholar 

  69. Riley NM, Hebert AS, Westphall MS, Coon JJ (2019) Capturing site-specific heterogeneity with large-scale N-glycoproteome analysis. Nat Commun 10:1311. https://doi.org/10.1038/s41467-019-09222-w

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  70. Riley NM, Malaker SA, Driessen MD, Bertozzi CR (2020) Optimal dissociation methods differ for N- and O-glycopeptides. J Proteome Res 19:3286–3301. https://doi.org/10.1021/acs.jproteome.0c00218

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  71. Reiding KR, Bondt A, Franc V, Heck AJR (2018) The benefits of hybrid fragmentation methods for glycoproteomics. TrAC Trend Anal Chem 108:260–268. https://doi.org/10.1016/j.trac.2018.09.007

    CAS  CrossRef  Google Scholar 

  72. Mucha E et al (2019) In-depth structural analysis of glycans in the gas phase. Chem Sci 10:1272–1284. https://doi.org/10.1039/c8sc05426f

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  73. Nilsson J (2016) Liquid chromatography-tandem mass spectrometry-based fragmentation analysis of glycopeptides. Glycoconj J 33:261–272. https://doi.org/10.1007/s10719-016-9649-3

    CAS  CrossRef  PubMed  Google Scholar 

  74. Hofmann J et al (2014) Estimating collision cross sections of negatively charged N-glycans using traveling wave ion mobility-mass spectrometry. Anal Chem 86:10789–10795. https://doi.org/10.1021/ac5028353

    CAS  CrossRef  PubMed  Google Scholar 

  75. Hinneburg H et al (2016) Distinguishing N-acetylneuraminic acid linkage isomers on glycopeptides by ion mobility-mass spectrometry. Chem Commun 52:4381–4384. https://doi.org/10.1039/c6cc01114d

    CAS  CrossRef  Google Scholar 

  76. Guttman M, Lee KK (2016) Site-specific mapping of sialic acid linkage isomers by ion mobility spectrometry. Anal Chem 88:5212–5217. https://doi.org/10.1021/acs.analchem.6b00265

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  77. Barroso A et al (2018) Evaluation of ion mobility for the separation of glycoconjugate isomers due to different types of sialic acid linkage, at the intact glycoprotein, glycopeptide and glycan level. J Proteome 173:22–31. https://doi.org/10.1016/j.jprot.2017.11.020

    CAS  CrossRef  Google Scholar 

  78. Lee EU, Roth J, Paulson JC (1989) Alteration of terminal glycosylation sequences on N-linked oligosaccharides of Chinese hamster ovary cells by expression of beta-galactoside alpha 2,6-sialyltransferase. J Biol Chem 264:13848–13855

    CAS  CrossRef  Google Scholar 

  79. Jeong YT et al (2008) Enhanced sialylation of recombinant erythropoietin in CHO cells by human glycosyltransferase expression. J Microbiol Biotechnol 18:1945–1952

    CAS  PubMed  Google Scholar 

  80. Raymond C et al (2015) Production of alpha2,6-sialylated IgG1 in CHO cells. MAbs 7:571–583. https://doi.org/10.1080/19420862.2015.1029215

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  81. Pett C et al (2018) Effective assignment of alpha2,3/alpha2,6-sialic acid isomers by LC-MS/MS-based glycoproteomics. Angew Chem 57:9320–9324. https://doi.org/10.1002/anie.201803540

    CAS  CrossRef  Google Scholar 

  82. Zhu H et al (2020) Identifying sialylation linkages at the glycopeptide level by glycosyltransferase labeling assisted mass spectrometry (GLAMS). Anal Chem 92:6297–6303. https://doi.org/10.1021/acs.analchem.9b05068

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  83. Harvey DJ (1999) Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev 18:349–450. https://doi.org/10.1002/(SICI)1098-2787(1999)18:6<349::AID-MAS1>3.0.CO;2-H

    CAS  CrossRef  PubMed  Google Scholar 

  84. Ciucanu I, Kerek F (1984) A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res 131:209–217. https://doi.org/10.1016/0008-6215(84)85242-8

    CAS  CrossRef  Google Scholar 

  85. Selman MH et al (2012) MALDI-TOF-MS analysis of sialylated glycans and glycopeptides using 4-chloro-alpha-cyanocinnamic acid matrix. Proteomics 12:1337–1348. https://doi.org/10.1002/pmic.201100498

    CAS  CrossRef  PubMed  Google Scholar 

  86. Toyoda M, Ito H, Matsuno YK, Narimatsu H, Kameyama A (2008) Quantitative derivatization of sialic acids for the detection of sialoglycans by MALDI MS. Anal Chem 80:5211–5218. https://doi.org/10.1021/ac800457a

    CAS  CrossRef  PubMed  Google Scholar 

  87. Wheeler SF, Domann P, Harvey DJ (2009) Derivatization of sialic acids for stabilization in matrix-assisted laser desorption/ionization mass spectrometry and concomitant differentiation of alpha(2-->3)- and alpha(2-->6)-isomers. Rapid Commun Mass Spectrom 23:303–312. https://doi.org/10.1002/rcm.3867

    CAS  CrossRef  PubMed  Google Scholar 

  88. Reiding KR, Blank D, Kuijper DM, Deelder AM, Wuhrer M (2014) High-throughput profiling of protein N-glycosylation by MALDI-TOF-MS employing linkage-specific sialic acid esterification. Anal Chem 86:5784–5793. https://doi.org/10.1021/ac500335t

    CAS  CrossRef  PubMed  Google Scholar 

  89. de Haan N et al (2015) Linkage-specific sialic acid derivatization for MALDI-TOF-MS profiling of IgG glycopeptides. Anal Chem 87:8284–8291. https://doi.org/10.1021/acs.analchem.5b02426

    CAS  CrossRef  PubMed  Google Scholar 

  90. Gahoual R et al (2013) Rapid and multi-level characterization of trastuzumab using sheathless capillary electrophoresis-tandem mass spectrometry. MAbs 5:479–490. https://doi.org/10.4161/mabs.23995

    CrossRef  PubMed  PubMed Central  Google Scholar 

  91. Moini M (2007) Simplifying CE-MS operation. 2. Interfacing low-flow separation techniques to mass spectrometry using a porous tip. Anal Chem 79:4241–4246. https://doi.org/10.1021/ac0704560

    CAS  CrossRef  PubMed  Google Scholar 

  92. Kammeijer GSM et al (2017) Sialic acid linkage differentiation of glycopeptides using capillary electrophoresis – electrospray ionization – mass spectrometry. Sci Rep 7:3733. https://doi.org/10.1038/s41598-017-03838-y

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Kolarich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Alagesan, K., Hoffmann, M., Rapp, E., Kolarich, D. (2020). Glycoproteomics Technologies in Glycobiotechnology. In: Rapp, E., Reichl, U. (eds) Advances in Glycobiotechnology. Advances in Biochemical Engineering/Biotechnology, vol 175. Springer, Cham. https://doi.org/10.1007/10_2020_144

Download citation