Skip to main content

Emerging Technologies and Materials for High-Resolution 3D Printing of Microfluidic Chips

Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE,volume 179)

Abstract

In recent years, 3D printing has had a huge impact on the field of biotechnology: from 3D-printed pharmaceuticals to tissue engineering and microfluidic chips. Microfluidic chips are of particular interest and importance for the field of biotechnology, since they allow for the analysis and screening of a wide range of biomolecules – including single cells, proteins, and DNA. The fabrication of microfluidic chips has historically been time-consuming, however, and is typically limited to 2.5 dimensional structures and a restricted palette of well-known materials. Due to the high surface-to-volume ratios in microfluidic chips, the nature of the chip material is of paramount importance to the final system behavior. With the emergence of 3D printing, however, a wide range of microfluidic systems are now being printed for the first time in a manner that facilitates flexibility while minimizing time and cost. Nevertheless, resolution and material choices still remain challenges and in the focus of current research, aiming for (1) 3D printing with high resolutions in the range of tens of micrometers and (2) a wider range of available materials for these high-resolution prints. The first part of this chapter highlights recent emerging technologies in the field of high-resolution printing via stereolithography (SL) and 2-photon polymerization (2PP) and seeks to identify particularly interesting emerging technologies which could have a major impact on the field in the near future. The second part of this chapter highlights current developments in the field of materials that are used for these high-resolution 3D printing technologies.

Graphical Abstract

Keywords

  • 2-photonpolymerization
  • 3D printed microfluidics
  • Materials
  • Stereolithography

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/10_2020_141
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-04188-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Whitesides GM (2006) Nature 442:368

    CAS  PubMed  CrossRef  Google Scholar 

  2. Berthier J, Silberzan P (2010) Microfluidics for biotechnology. Artech House

    Google Scholar 

  3. Gervais L, de Rooij N, Delamarche E (2011) Adv Mater 23:H151

    CAS  PubMed  CrossRef  Google Scholar 

  4. Holmes D, Gawad S (2010) Hughes MP, Hoettges KF (eds) Microengineering in biotechnology. Humana Press, Totowa, pp 55–80

    CrossRef  Google Scholar 

  5. Manz A, Fettinger JC, Verpoorte E, Lüdi H, Widmer HM, Harrison DJ (1991) TrAC Trends Anal Chem 10:144

    CAS  CrossRef  Google Scholar 

  6. Harrison DJ, Manz A, Fan Z, Luedi H, Widmer HM (1992) Anal Chem 64:1926

    CAS  CrossRef  Google Scholar 

  7. De Mello A (2002) Lab Chip 2:31N

    PubMed  CrossRef  CAS  Google Scholar 

  8. Duffy DC, McDonald JC, Schueller OJ, Whitesides GM (1998) Anal Chem 70:4974

    CAS  PubMed  CrossRef  Google Scholar 

  9. Zhao S, Cong H, Pan T (2009) Lab Chip 9:1128

    CAS  PubMed  CrossRef  Google Scholar 

  10. Hong T-F, Ju W-J, Wu M-C, Tai C-H, Tsai C-H, Fu L-M (2010) Microfluid Nanofluid 9:1125

    CAS  CrossRef  Google Scholar 

  11. Chen Y, Zhang L, Chen G (2008) Electrophoresis 29:1801

    CAS  PubMed  CrossRef  Google Scholar 

  12. Waldbaur A, Rapp H, Lange K, Rapp BE (2011) Anal Methods 3:2681

    CAS  CrossRef  Google Scholar 

  13. Kotz F, Risch P, Helmer D, Rapp BE (2018) Micromachines 9:115

    PubMed Central  CrossRef  Google Scholar 

  14. Li F, Macdonald NP, Guijt RM, Breadmore MC (2017) Anal Chem 89:12805

    CAS  PubMed  CrossRef  Google Scholar 

  15. Su W, Cook BS, Fang Y, Tentzeris MM (2016) Sci Rep 6:35111

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  16. Waheed S, Cabot JM, Macdonald NP, Lewis T, Guijt RM, Paull B, Breadmore MC (2016) Lab Chip 16:1993

    CAS  PubMed  CrossRef  Google Scholar 

  17. Sochol RD, Sweet E, Glick CC, Venkatesh S, Avetisyan A, Ekman KF, Raulinaitis A, Tsai A, Wienkers A, Korner K, Hanson K, Long A, Hightower BJ, Slatton G, Burnett DC, Massey TL, Iwai K, Lee LP, Pister KSJ, Lin L (2016) Lab Chip 16:668

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  18. Nielsen AV, Beauchamp MJ, Nordin GP, Woolley AT (2020) Ann Rev Anal Chem 13

    Google Scholar 

  19. Shallan AI, Smejkal P, Corban M, Guijt RM, Breadmore MC (2014) Anal Chem 86:3124

    CAS  PubMed  CrossRef  Google Scholar 

  20. Rogers CI, Qaderi K, Woolley AT, Nordin GP (2015) Biomicrofluidics 9:016501

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  21. Lee Y-S, Bhattacharjee N, Folch A (2018) Lab Chip 18:1207

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  22. Enders A, Siller IG, Urmann K, Hoffmann MR, Bahnemann J (2019) Small 15:1804326

    Google Scholar 

  23. Grigoryan B, Paulsen SJ, Corbett DC, Sazer DW, Fortin CL, Zaita AJ, Greenfield PT, Calafat NJ, Gounley JP, Ta AH, Johansson F, Randles A, Rosenkrantz JE, Louis-Rosenberg JD, Galie PA, Stevens KR, Miller JS (2019) Science 364:458

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  24. Lee W, Kwon D, Choi W, Jung GY, Jeon S (2015) Sci Rep 5:7717

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  25. Shemesh J, Jalilian I, Shi A, Yeoh GH, Tate MLK, Warkiani ME (2015) Lab Chip 15:4114

    CAS  PubMed  CrossRef  Google Scholar 

  26. Hull CW (1986) Patent US4575330

    Google Scholar 

  27. Kotz F, Arnold K, Bauer W, Schild D, Keller N, Sachsenheimer K, Nargang TM, Richter C, Helmer D, Rapp BE (2017) Nature 544:337

    CAS  PubMed  CrossRef  Google Scholar 

  28. Gong H, Bickham BP, Woolley AT, Nordin GP (2017) Lab Chip 17:2899

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  29. Lee MP, Cooper GJT, Hinkley T, Gibson GM, Padgett MJ, Cronin L (2015) Sci Rep 5:1

    Google Scholar 

  30. Xu G, Zhao W, Tang Y, Lu B (2006) Rapid Prototyp J 12:12

    CrossRef  Google Scholar 

  31. Behroodi E, Latifi H, Najafi F (2019) Sci Rep 9:1

    CrossRef  CAS  Google Scholar 

  32. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Chem Rev 117:10212

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  33. Au AK, Huynh W, Horowitz LF, Folch A (2016) Angew Chem Int Ed 55:3862

    CAS  CrossRef  Google Scholar 

  34. Bertsch A, Jiguet S, Bernhard P, Renaud P (2002) MRS Online Proceedings Library, p 759

    Google Scholar 

  35. Gong H, Beauchamp M, Perry S, Woolley AT, Nordin GP (2015) RSC Adv 5:106621

    CAS  PubMed  CrossRef  Google Scholar 

  36. Jacobs PF (1992) Rapid prototyping and manufacturing: fundamentals of stereolithography. Society of Manufacturing Engineers

    Google Scholar 

  37. Beauchamp MJ, Gong H, Woolley AT, Nordin GP (2018) Micromachines (Basel) 9:9

    Google Scholar 

  38. Beauchamp MJ, Nielsen AV, Gong H, Nordin GP, Woolley AT (2019) Anal Chem 91:7418

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  39. Gong H, Woolley AT, Nordin GP (2019) Biomicrofluidics 13:014106

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  40. Männel MJ, Selzer L, Bernhardt R, Thiele J (2019) Adv Mater Technol 4:1800408

    CrossRef  CAS  Google Scholar 

  41. Waldbaur A, Carneiro B, Hettich P, Wilhelm E, Rapp BE (2013) Microfluid Nanofluid 15:625

    CrossRef  Google Scholar 

  42. Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, Chen K, Pinschmidt R, Rolland JP, Ermoshkin A (2015) Science 347:1349

    CAS  PubMed  CrossRef  Google Scholar 

  43. de Beer MP, van der Laan HL, Cole MA, Whelan RJ, Burns MA, Scott TF (2019) Sci Adv 5:eaau8723

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  44. Walker DA, Hedrick JL, Mirkin CA (2019) Science 366:360

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  45. Johnson AR, Caudill CL, Tumbleston JR, Bloomquist CJ, Moga KA, Ermoshkin A, Shirvanyants D, Mecham SJ, Luft JC, DeSimone JM (2016) PLoS One 11:e0162518

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  46. Kelly BE, Bhattacharya I, Heidari H, Shusteff M, Spadaccini CM, Taylor HK (2019) Science 363:1075

    CAS  PubMed  CrossRef  Google Scholar 

  47. Bernal PN, Delrot P, Loterie D, Li Y, Malda J, Moser C, Levato R (2019) Adv Mater 31:1904209

    CAS  CrossRef  Google Scholar 

  48. Maruo S, Nakamura O, Kawata S (1997) vol 22. OSA Publishing, p 132

    Google Scholar 

  49. Perrucci F, Bertana V, Marasso SL, Scordo G, Ferrero S, Pirri CF, Cocuzza M, El-Tamer A, Hinze U, Chichkov BN, Canavese G, Scaltrito L (2018) Microelectron Eng 195:95

    CAS  CrossRef  Google Scholar 

  50. Alsharhan AT, Acevedo R, Warren R, Sochol RD (2019) Lab Chip 19:2799

    CAS  PubMed  CrossRef  Google Scholar 

  51. Lamont AC, Alsharhan AT, Sochol RD (2019) Sci Rep 9:1

    CAS  CrossRef  Google Scholar 

  52. Schoch RB, Han J, Renaud P (2008) Rev Mod Phys 80:839

    CAS  CrossRef  Google Scholar 

  53. Vanderpoorten O, Peter Q, Challa PK, Keyser UF, Baumberg J, Kaminski CF, Knowles TPJ (2019) Microsyst Nanoeng 5:1

    CrossRef  Google Scholar 

  54. Hengsbach S, Lantada AD (2014) Biomed Microdevices 16:617

    CAS  PubMed  CrossRef  Google Scholar 

  55. Amato L, Gu Y, Bellini N, Eaton SM, Cerullo G, Osellame R (2012) Lab Chip 12:1135

    CAS  PubMed  CrossRef  Google Scholar 

  56. Pearre BW, Michas C, Tsang J-M, Gardner TJ, Otchy TM (2019) Addit Manuf 30:100887

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Straub M, Gu M (2002) Opt Lett 27:1824

    CAS  PubMed  CrossRef  Google Scholar 

  58. Ovsianikov A, Deiwick A, van Vlierberghe S, Dubruel P, Möller L, Dräger G, Chichkov B (2011) Biomacromolecules 12:851

    CAS  PubMed  CrossRef  Google Scholar 

  59. Skylar-Scott MA, Liu M-C, Wu Y, Dixit A, Yanik MF (2016) Adv Healthc Mater 5:1233

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  60. Thiel M, Reiner RR, Niesler F, Tanguy Y (2016) Method for producing a three-dimensional structure, US20160114530A1

    Google Scholar 

  61. Kato J, Takeyasu N, Adachi Y, Sun H-B, Kawata S (2005) Appl Phys Lett 86:044102

    CrossRef  CAS  Google Scholar 

  62. Dong X-Z, Zhao Z-S, Duan X-M (2007) Appl Phys Lett 91:124103

    CrossRef  CAS  Google Scholar 

  63. Takahashi H, Hasegawa S, Takita A, Hayasaki Y (2008) Opt Express 16:16592

    CAS  PubMed  CrossRef  Google Scholar 

  64. Jenness NJ, Wulff KD, Johannes MS, Padgett MJ, Cole DG, Clark RL (2008) Opt Express 16:15942

    CAS  PubMed  CrossRef  Google Scholar 

  65. Geng Q, Wang D, Chen P, Chen S-C (2019) Nat Commun 10:1

    CrossRef  CAS  Google Scholar 

  66. Vizsnyiczai G, Kelemen L, Ormos P (2014) Opt Express 22:24217

    CAS  PubMed  CrossRef  Google Scholar 

  67. Hahn V, Kiefer P, Frenzel T, Qu J, Blasco E, Barner-Kowollik C, Wegener M (2020) Adv Funct Mater:1907795

    Google Scholar 

  68. Stichel T, Hecht B, Houbertz R, Sextl G (2015) Appl Phys A Mater Sci Process 121:187

    CAS  CrossRef  Google Scholar 

  69. Stichel T, Hecht B, Steenhusen S, Houbertz R, Sextl G (2016) Opt Lett 41:4269

    CAS  PubMed  CrossRef  Google Scholar 

  70. Jonušauskas L, Rekštytė S, Malinauskas M (2014) OE 53:125102

    CrossRef  Google Scholar 

  71. Tan Y, Chu W, Wang P, Li W, Qi J, Xu J, Wang Z, Cheng Y (2018) Phys Scr 94:015501

    CrossRef  CAS  Google Scholar 

  72. Carve M, Wlodkowic D (2018) Micromachines 9:91

    PubMed Central  CrossRef  Google Scholar 

  73. Fouassier JP, Lalevée J (2014) Polymers 6:2588

    CrossRef  CAS  Google Scholar 

  74. Van den Driesche S, Lucklum F, Bunge F, Vellekoop MJ (2018) Micromachines 9:71

    PubMed Central  CrossRef  Google Scholar 

  75. Macdonald NP, Zhu F, Hall CJ, Reboud J, Crosier PS, Patton EE, Wlodkowic D, Cooper JM (2016) Lab Chip 16:291

    CAS  PubMed  CrossRef  Google Scholar 

  76. Leigh SJ, Gilbert HTJ, Barker IA, Becker JM, Richardson SM, Hoyland JA, Covington JA, Dove AP (2013) Biomacromolecules 14:186

    CAS  PubMed  CrossRef  Google Scholar 

  77. Männel MJ, Fischer C, Thiele J (2020) Micromachines 11:246

    PubMed Central  CrossRef  Google Scholar 

  78. Warr C, Valdoz JC, Bickham BP, Knight CJ, Franks NA, Chartrand N, Van Ry PM, Christensen KA, Nordin GP, Cook AD (2020) ACS Appl Bio Mater 3:2239

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  79. Kitson PJ, Marie G, Francoia J-P, Zalesskiy SS, Sigerson RC, Mathieson JS, Cronin L (2018) Science 359:314

    CAS  PubMed  CrossRef  Google Scholar 

  80. Hülsenberg D, Harnisch A, Bismarck A (2005) Microstructuring of glasses. Springer, Berlin

    Google Scholar 

  81. Klein J, Stern M, Franchin G, Kayser M, Inamura C, Dave S, Weaver JC, Houk P, Colombo P, Yang M, Oxman N (2015) 3D printing and additive manufacturing. 2:92

    Google Scholar 

  82. Kotz F, Risch P, Helmer D, Rapp BE (2019) Adv Mater 31:1805982

    CrossRef  CAS  Google Scholar 

  83. Kotz F, Plewa K, Bauer W, Schneider N, Keller N, Nargang T, Helmer D, Sachsenheimer K, Schäfer M, Worgull M, Greiner C, Richter C, Rapp BE (2016) Adv Mater 28:4646

    CAS  PubMed  CrossRef  Google Scholar 

  84. Kotz F, Helmer D, Rapp BE (2018) Int Soc Opt Photo:104910A

    Google Scholar 

  85. Kotz F, Plewa K, Bauer W, Hanemann T, Waldbaur A, Wilhelm E, Neumann C, Rapp BE (2015) Int Soc Opt Photo:932003–932006

    Google Scholar 

  86. Kotz F, Schneider N, Striegel A, Wolfschläger A, Keller N, Worgull M, Bauer W, Schild D, Milich M, Greiner C, Helmer D, Rapp BE (2018) Adv Mater 30:1707100

    CrossRef  CAS  Google Scholar 

  87. Kotz F, Risch P, Arnold K, Sevim S, Puigmartí-Luis J, Quick A, Thiel M, Hrynevich A, Dalton PD, Helmer D, Rapp BE (2019) Nat Commun 10:1439

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  88. Toepke MW, Beebe DJ (2006) Lab Chip 6:1484

    CAS  PubMed  CrossRef  Google Scholar 

  89. Bhagat AAS, Jothimuthu P, Papautsky I (2007) Lab Chip 7:1192

    CAS  PubMed  CrossRef  Google Scholar 

  90. Choi KM, Rogers JA (2003) J Am Chem Soc 125:4060

    CAS  PubMed  CrossRef  Google Scholar 

  91. Desai SP, Taff BM, Voldman J (2008) Langmuir 24:575

    CAS  PubMed  CrossRef  Google Scholar 

  92. Bhattacharjee N, Parra-Cabrera C, Kim YT, Kuo AP, Folch A (2018) Adv Mater 30:1800001

    CrossRef  CAS  Google Scholar 

  93. Helmer D, Voigt A, Wagner S, Keller N, Sachsenheimer K, Kotz F, Nargang TM, Rapp BE (2017) Sci Rep 7:7387

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  94. Perry H, Greiner C, Georgakoudi I, Cronin-Golomb M, Omenetto FG (2007) Rev Sci Instrum 78:044302

    PubMed  CrossRef  CAS  Google Scholar 

  95. Coenjarts CA, Ober CK (2004) Chem Mater 16:5556

    CAS  CrossRef  Google Scholar 

  96. Rekštytė S, Malinauskas M, Juodkazis S (2013) Opt Exp 21:17028

    CrossRef  CAS  Google Scholar 

  97. Becker H (2010) Lab Chip 10:271

    CAS  PubMed  CrossRef  Google Scholar 

  98. Kotz F, Arnold K, Wagner S, Bauer W, Keller N, Nargang TM, Helmer D, Rapp BE (2018) Adv Eng Mater 20:1700699

    CrossRef  CAS  Google Scholar 

Download references

Acknowledgments

BER thanks the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) for funding through the Center for Excellence livMatS Exec 2193/1 – 390951807.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik Kotz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kotz, F., Helmer, D., Rapp, B.E. (2020). Emerging Technologies and Materials for High-Resolution 3D Printing of Microfluidic Chips. In: Bahnemann, J., Grünberger, A. (eds) Microfluidics in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 179. Springer, Cham. https://doi.org/10.1007/10_2020_141

Download citation