Skip to main content

Digital Twins and Their Role in Model-Assisted Design of Experiments

  • Chapter
  • First Online:
Digital Twins

Abstract

Rising demands for biopharmaceuticals and the need to reduce manufacturing costs increase the pressure to develop productive and efficient bioprocesses. Among others, a major hurdle during process development and optimization studies is the huge experimental effort in conventional design of experiments (DoE) methods. As being an explorative approach, DoE requires extensive expert knowledge about the investigated factors and their boundary values and often leads to multiple rounds of time-consuming and costly experiments. The combination of DoE with a virtual representation of the bioprocess, called digital twin, in model-assisted DoE (mDoE) can be used as an alternative to decrease the number of experiments significantly. mDoE enables a knowledge-driven bioprocess development including the definition of a mathematical process model in the early development stages. In this chapter, digital twins and their role in mDoE are discussed. First, statistical DoE methods are introduced as the basis of mDoE. Second, the combination of a mathematical process model and DoE into mDoE is examined. This includes mathematical model structures and a selection scheme for the choice of DoE designs. Finally, the application of mDoE is discussed in a case study for the medium optimization in an antibody-producing Chinese hamster ovary cell culture process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Average

Amm:

Ammonium

ANOVA:

Analysis of variance

BBD:

Box-Behnken design

CCC:

Central composite circumscribed

CCD:

Central composite designs

CCF:

Central composite face centered

CCI:

Central composite inscribed

CHO:

Chinese hamster ovary

D :

Determinant

DoE:

Design of experiments

E:

Eigenvalue

G:

Global

Glc:

Glucose

Gln:

Glutamine

GMP:

Good Manufacturing Practice

I:

Variance

Lac:

Lactate

LHSD:

Latin hypercube sampling design

mAb:

Antibody

max:

Maximum

MBDoE:

Model-based design of experiments

mDoE:

Model-assisted design of experiments

min:

Minimum

PAT:

Process analytical technology

QbD:

Quality by design

VPA:

Valproic acid

α :

Distance to center point (-)

β i :

Unknown constants (-)

ε i :

Random error (-)

γ :

Constant antibody production rate (mg cell−1 h−1)

μ :

Cell-specific growth rate (h−1)

μ d,max :

Maximum death rate (h−1)

μ d,min :

Minimum death rate (h−1)

μ max :

Maximum growth rate (h−1)

c i :

Concentration of component i (mmol L−1)

d i :

Desirability function (−)

D :

Overall desirability function (−)

i:

Index (−)

k :

Factors (−)

k Lys :

Cell lysis constant (h−1)

K S,i :

Monod kinetic constant for component i (mmol L−1)

L i :

Lower acceptable response (−)

n :

Steps (−)

q Amm :

Ammonium formation rate (mmol cell−1 h−1)

q Glc :

Glucose formation rate (mmol cell−1 h−1)

q Gln :

Glutamine formation rate (mmol cell−1 h−1)

q i,max :

Maximum uptake rate of component i (mmol cell−1 h−1)

q Lac :

Lactate formation rate (mmol cell−1 h−1)

q Lac,uptake :

Uptake rate of lactate (mmol cell−1 h−1)

q Lac,uptake,max :

Maximum uptake rate of lactate (mmol cell−1 h−1)

q mAb :

Antibody formation rate (mmol cell−1 h−1)

R 2 :

Coefficient of determination (−)

U i :

Upper acceptable response (−)

x i :

Independent variables (−)

X t :

Total cell density (cells mL−1)

X v :

Viable cell density (cells mL−1)

V i :

Viability (−)

Y Amm/Gln :

Yield coefficient of ammonium formation to glutamine uptake (−)

y i :

Response (−)

Y Lac/Glc :

Yield coefficient of lactate formation to glucose uptake (−)

References

  1. Nelson AL, Dhimolea E, Reichert JM (2010) Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 9:767–774

    CAS  PubMed  Google Scholar 

  2. Walsh G (2014) Biopharmaceutical benchmarks 2014. Nat Biotechnol 32:992–1000

    CAS  PubMed  Google Scholar 

  3. Kretzmer G (2002) Industrial processes with animal cells. Appl Microbiol Biotechnol 59:135–142

    CAS  PubMed  Google Scholar 

  4. Walsh G (2018) Biopharmaceutical benchmarks 2018. Nat Biotechnol 36:1136–1145

    CAS  PubMed  Google Scholar 

  5. Chen C, Le H, Goudar CT (2016) Integration of systems biology in cell line and process development for biopharmaceutical manufacturing. Biochem Eng J 107:11–17

    CAS  Google Scholar 

  6. DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47:20–33

    PubMed  Google Scholar 

  7. Abt V, Barz T, Cruz-Bournazou MN, Herwig C, Kroll P, Möller J, Pörtner R, Schenkendorf R (2018) Model-based tools for optimal experiments in bioprocess engineering. Curr Opin Chem Eng 22:244–252

    Google Scholar 

  8. Möller J, Pörtner R (2017) Model-based design of process strategies for cell culture bioprocesses: state of the art and new perspectives. In: Gowder SJT (ed) New insights into cell culture technology. InTech

    Google Scholar 

  9. Puskeiler R, Kreuzmann J, Schuster C, Didzus K, Bartsch N, Hakemeyer C, Schmidt H, Jacobs M, Wolf S (2011) The way to a design space for an animal cell culture process according to Quality by Design (QbD). BMC Proc 5(Suppl 8):P12

    PubMed  PubMed Central  Google Scholar 

  10. Abu-Absi SF, Yang L, Thompson P, Jiang C, Kandula S, Schilling B, Shukla AA (2010) Defining process design space for monoclonal antibody cell culture. Biotechnol Bioeng 106:894–905

    CAS  PubMed  Google Scholar 

  11. Möller J, Kuchemüller KB, Steinmetz T, Koopmann KS, Pörtner R (2019) Model-assisted design of experiments as a concept for knowledge-based bioprocess development. Bioprocess Biosyst Eng 42:867–882

    PubMed  Google Scholar 

  12. Möller J, Hernández Rodríguez T, Müller J, Arndt L, Kuchemüller KB, Frahm B, Eibl R, Eibl D, Pörtner R (2020) Model uncertainty-based evaluation of process strategies during scale-up of biopharmaceutical processes. Comput Chem Eng 134:106693

    Google Scholar 

  13. Kuchemüller KB, Pörtner R, Möller J (2020) Efficient optimization of process strategies with model-assisted design of experiments. Methods Mol Biol 2095:235–249

    PubMed  Google Scholar 

  14. Wu P, Ray NG, Shuler ML (1992) A single-cell model for CHO cells. Ann N Y Acad Sci 665:152–187

    CAS  PubMed  Google Scholar 

  15. Möhler L, Flockerzi D, Sann H, Reichl U (2005) Mathematical model of influenza A virus production in large-scale microcarrier culture. Biotechnol Bioeng 90:46–58

    PubMed  Google Scholar 

  16. López-Meza J, Araíz-Hernández D, Carrillo-Cocom LM, López-Pacheco F, Rocha-Pizaña MDR, Alvarez MM (2016) Using simple models to describe the kinetics of growth, glucose consumption, and monoclonal antibody formation in naive and infliximab producer CHO cells. Cytotechnology 68:1287–1300

    PubMed  Google Scholar 

  17. Caramihai M, Severi I (2014) Bioprocess modeling and control. In: Matovic MD (ed) Biomass now – sustainable growth and use. InTech, Rijeka

    Google Scholar 

  18. Provost A, Bastin G (2004) Dynamic metabolic modelling under the balanced growth condition. J Process Control 14:717–728

    CAS  Google Scholar 

  19. Frahm B, Lane P, Atzert H, Munack A, Hoffmann M, Hass VC, Pörtner R (2002) Adaptive, model-based control by the open-loop-feedback-optimal (OLFO) controller for the effective fed-batch cultivation of hybridoma cells. Biotechnol Prog 18:1095–1103

    CAS  PubMed  Google Scholar 

  20. Kern S, Platas-Barradas O, Pörtner R, Frahm B (2016) Model-based strategy for cell culture seed train layout verified at lab scale. Cytotechnology 68:1019–1032

    PubMed  Google Scholar 

  21. Amribt Z, Niu H, Bogaerts P (2013) Macroscopic modelling of overflow metabolism and model based optimization of hybridoma cell fed-batch cultures. Biochem Eng J 70:196–209

    CAS  Google Scholar 

  22. Möller J, Korte K, Pörtner R, Zeng A-P, Jandt U (2018) Model-based identification of cell-cycle-dependent metabolism and putative autocrine effects in antibody producing CHO cell culture. Biotechnol Bioeng 115:2996–3008

    PubMed  Google Scholar 

  23. Kroll P, Hofer A, Stelzer IV, Herwig C (2017) Workflow to set up substantial target-oriented mechanistic process models in bioprocess engineering. Process Biochem 62:24–36

    CAS  Google Scholar 

  24. Möller J, Bhat K, Riecken K, Pörtner R, Zeng A-P, Jandt U (2019) Process-induced cell cycle oscillations in CHO cultures: Online monitoring and model-based investigation. Biotechnol Bioeng 116:2931–2943

    Google Scholar 

  25. Kalil SJ, Maugeri F, Rodrigues MI (2000) Response surface analysis and simulation as a tool for bioprocess design and optimization. Process Biochem 35:539–550

    CAS  Google Scholar 

  26. Costa AC, Atala DIP, Maugeri F, Maciel R (2001) Factorial design and simulation for the optimization and determination of control structures for an extractive alcoholic fermentation. Process Biochem 37:125–137

    CAS  Google Scholar 

  27. Parampalli A, Eskridge K, Smith L, Meagher MM, Mowry MC, Subramanian A (2007) Developement of serum-free media in CHO-DG44 cells using a central composite statistical design. Cytotechnology 54:57–68

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Montgomery DC (2013) Design and analysis of experiments.8th edn. Wiley, Hoboken

    Google Scholar 

  29. Nasri Nasrabadi MR, Razavi SH (2010) Use of response surface methodology in a fed-batch process for optimization of tricarboxylic acid cycle intermediates to achieve high levels of canthaxanthin from Dietzia natronolimnaea HS-1. J Biosci Bioeng 109:361–368

    PubMed  Google Scholar 

  30. Zhang H, Wang H, Liu M, Zhang T, Zhang J, Wang X, Xiang W (2013) Rational development of a serum-free medium and fed-batch process for a GS-CHO cell line expressing recombinant antibody. Cytotechnology 65:363–378

    PubMed  Google Scholar 

  31. Horvath B, Mun M, Laird MW (2010) Characterization of a monoclonal antibody cell culture production process using a quality by design approach. Mol Biotechnol 45:203–206

    CAS  PubMed  Google Scholar 

  32. Mandenius C-F, Graumann K, Schultz TW, Premstaller A, Olsson I-M, Petiot E, Clemens C, Welin M (2009) Quality-by-design for biotechnology-related pharmaceuticals. Biotechnol J 4:600–609

    CAS  PubMed  Google Scholar 

  33. Mandenius C-F, Brundin A (2008) Bioprocess optimization using design-of-experiments methodology. Biotechnol Prog 24:1191–1203

    CAS  PubMed  Google Scholar 

  34. Duvar S, Hecht V, Finger J, Gullans M, Ziehr H (2013) Developing an upstream process for a monoclonal antibody including medium optimization. BMC Proc 7

    Google Scholar 

  35. Legmann R, Schreyer HB, Combs RG, McCormick EL, Russo AP, Rodgers ST (2009) A predictive high-throughput scale-down model of monoclonal antibody production in CHO cells. Biotechnol Bioeng 104:1107–1120

    CAS  PubMed  Google Scholar 

  36. Moran EB, McGowan ST, McGuire JM, Frankland JE, Oyebade IA, Waller W, Archer LC, Morris LO, Pandya J, Nathan SR, Smith L, Cadette ML, Michalowski JT (2000) A systematic approach to the validation of process control parameters for monoclonal antibody production in fed-batch culture of a murine myeloma. Biotechnol Bioeng 69:242–255

    CAS  PubMed  Google Scholar 

  37. Dubey KK, Behera BK (2011) Statistical optimization of process variables for the production of an anticancer drug (colchicine derivatives) through fermentation: at scale-up level. New Biotechnol 28:79–85

    CAS  Google Scholar 

  38. Kleppmann W (2013) Versuchsplanung: Produkte und Prozesse optimieren.8th edn. Hanser, München

    Google Scholar 

  39. Myers RH, Anderson-Cook C, Montgomery DC (2016) Response surface methodology: process and product optimization using designed experiments. Wiley, Hoboken

    Google Scholar 

  40. Sandadi S, Ensari S, Kearns B (2006) Application of fractional factorial designs to screen active factors for antibody production by Chinese hamster ovary cells. Biotechnol Prog 22:595–600

    CAS  PubMed  Google Scholar 

  41. Siebertz K, van Bebber D, Hochkirchen T (2010) Statistische Versuchsplanung: design of experiments (DoE). Springer, Berlin

    Google Scholar 

  42. Asghar A, Abdul Raman AA, Daud WMAW (2014) A comparison of central composite design and Taguchi method for optimizing Fenton process. TheScientificWorldJOURNAL 2014:869120

    PubMed  PubMed Central  Google Scholar 

  43. Del Castillo E (2007) Process optimization: a statistical approach. Springer, New York

    Google Scholar 

  44. Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, da Silva EGP, Portugal LA, dos Reis PS, Souza AS, dos Santos WNL (2007) Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597:179–186

    CAS  PubMed  Google Scholar 

  45. Goel T, Haftka RT, Shyy W, Watson LT (2008) Pitfalls of using a single criterion for selecting experimental designs. Int J Numer Methods Eng 75:127–155

    Google Scholar 

  46. Santner TJ, Williams BJ, Notz WI (2003) The design and analysis of computer experiments. Springer, New York

    Google Scholar 

  47. Lee GM, Kim EJ, Kim NS, Yoon SK, Ahn YH, Song JY (1999) Development of a serum-free medium for the production of erythropoietin by suspension culture of recombinant Chinese hamster ovary cells using a statistical design. J Biotechnol 69:85–93

    CAS  PubMed  Google Scholar 

  48. Chun C, Heineken K, Szeto D, Ryll T, Chamow S, Chung JD (2003) Application of factorial design to accelerate identification of CHO growth factor requirements. Biotechnol Prog 19:52–57

    CAS  PubMed  Google Scholar 

  49. Rouiller Y, Périlleux A, Vesin M-N, Stettler M, Jordan M, Broly H (2014) Modulation of mAb quality attributes using microliter scale fed-batch cultures. Biotechnol Prog 30:571–583

    CAS  PubMed  Google Scholar 

  50. Yang WC, Lu J, Nguyen NB, Zhang A, Healy NV, Kshirsagar R, Ryll T, Huang Y-M (2014) Addition of valproic acid to CHO cell fed-batch cultures improves monoclonal antibody titers. Mol Biotechnol 56:421–428

    CAS  PubMed  Google Scholar 

  51. Torkashvand F, Vaziri B, Maleknia S, Heydari A, Vossoughi M, Davami F, Mahboudi F (2015) Designed amino acid feed in improvement of production and quality targets of a therapeutic monoclonal antibody. PLoS One 10:e0140597

    PubMed  PubMed Central  Google Scholar 

  52. Ganguly J, Vogel G (2006) Process analytical technology (PAT) and scalable automation for bioprocess control and monitoring-A case study. Pharm Eng 26

    Google Scholar 

  53. Kreutz C, Timmer J (2009) Systems biology: experimental design. FEBS J 276:923–942

    CAS  PubMed  Google Scholar 

  54. Smucker B, Krzywinski M, Altman N (2018) Optimal experimental design. Nat Methods 15:559–560

    CAS  PubMed  Google Scholar 

  55. Walter É, Pronzato L (1997) Identification of parametric models from experimental data. Springer, London

    Google Scholar 

  56. Anselment B, Schoemig V, Kesten C, Weuster-Botz D (2012) Statistical vs. stochastic experimental design: an experimental comparison on the example of protein refolding. Biotechnol Prog 28:1499–1506

    CAS  PubMed  Google Scholar 

  57. Banga JR, Balsa-Canto E (2008) Parameter estimation and optimal experimental design. Essays Biochem 45:195–209

    CAS  PubMed  Google Scholar 

  58. Chaudhuri P, Mykland PA (1993) Nonlinear experiments: optimal design and inference based on likelihood. J Am Stat Assoc 88:538

    Google Scholar 

  59. Ford I, Titterington DM, Kitsos CP (1989) Recent advances in nonlinear experimental design. Technometrics 31:49

    Google Scholar 

  60. Franceschini G, Macchietto S (2008) Model-based design of experiments for parameter precision: state of the art. Chem Eng Sci 63:4846–4872

    CAS  Google Scholar 

  61. Moser A; Kuchemüller KB, Deppe S, Hernández Rodríguez T, Frahm B, Pörtner R, Hass VC, Möller J. Model-assisted DoE software: optimization of growth and biocatalysis in Saccharomyces cerevisiae bioprocesses. under reveision

    Google Scholar 

  62. Nargund S, Guenther K, Mauch K (2019) The move toward Biopharma 4.0. Genet Eng Biotechnol News 39:53–55

    Google Scholar 

  63. Möhler L, Bock A, Reichl U (2008) Segregated mathematical model for growth of anchorage-dependent MDCK cells in microcarrier culture. Biotechnol Prog 24:110–119

    PubMed  Google Scholar 

  64. Shirsat NP, English NJ, Glennon B, Al-Rubeai M (2015) Modelling of mammalian cell cultures. In: Al-Rubeai M (ed) Animal cell culture, vol 9. Springer, Cham, pp 259–326

    Google Scholar 

  65. Pörtner R, Schäfer T (1996) Modelling hybridoma cell growth and metabolism — a comparison of selected models and data. J Biotechnol 49:119–135

    PubMed  Google Scholar 

  66. Djuris J, Djuric Z (2017) Modeling in the quality by design environment: regulatory requirements and recommendations for design space and control strategy appointment. Int J Pharm 533:346–356

    CAS  PubMed  Google Scholar 

  67. Berry B, Moretto J, Matthews T, Smelko J, Wiltberger K (2015) Cross-scale predictive modeling of CHO cell culture growth and metabolites using Raman spectroscopy and multivariate analysis. Biotechnol Prog 31:566–577

    CAS  PubMed  Google Scholar 

  68. Pörtner R, Platas Barradas O, Frahm B, Hass VC (2016) Advanced process and control strategies for bioreactors. In: Current developments in biotechnology and bioengineering: bioprocesses, bioreactors and controls. Larroche C, Pandey A, Du G, Sanroman MA (eds) Elsevier Science: Saint Louis, 463–493

    Google Scholar 

  69. Shirsat N, Mohd A, Whelan J, English NJ, Glennon B, Al-Rubeai M (2015) Revisiting Verhulst and Monod models: analysis of batch and fed-batch cultures. Cytotechnology 67:515–530

    CAS  PubMed  Google Scholar 

  70. Deppe S, Frahm B, Hass VC, Hernández Rodríguez T, Kuchemüller KB, Möller J, Pörtner R (2020) Estimation of process model parameters. Methods Mol Biol 2095:213–234

    CAS  PubMed  Google Scholar 

  71. Storhas W (2013) Bioverfahrensentwicklung. Wiley, Weinheim

    Google Scholar 

  72. Hass VC, Pörtner R (2009) Praxis der Bioprozesstechnik: Mit virtuellem Praktikum. Spektrum Akad. Verl, Heidelberg

    Google Scholar 

  73. von Stosch M, Hamelink J-M, Oliveira R (2016) Hybrid modeling as a QbD/PAT tool in process development: an industrial E. coli case study. Bioprocess Biosyst Eng 39:773–784

    Google Scholar 

  74. Lei F, Rotbøll M, Jørgensen SB (2001) A biochemically structured model for Saccharomyces cerevisiae. J Biotechnol 88:205–221

    CAS  PubMed  Google Scholar 

  75. Brüning S, Gerlach I, Pörtner R, Mandenius C-F, Hass VC (2017) Modeling suspension cultures of microbial and mammalian cells with an adaptable six-compartment model. Chem Eng Technol 40:956–966

    Google Scholar 

  76. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28:245–248

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lularevic M, Racher AJ, Jaques C, Kiparissides A (2019) Improving the accuracy of flux balance analysis through the implementation of carbon availability constraints for intracellular reactions. Biotechnol Bioeng 116:2339–2352

    CAS  PubMed  Google Scholar 

  78. Mantzaris NV, Daoutidis P, Srienc F (2001) Numerical solution of multi-variable cell population balance models. II. Spectral methods. Comput Chem Eng 25:1441–1462

    CAS  Google Scholar 

  79. Jandt U, Barradas OP, Pörtner R, Zeng A-P (2015) Synchronized mammalian cell culture: part II--population ensemble modeling and analysis for development of reproducible processes. Biotechnol Prog 31:175–185

    CAS  PubMed  Google Scholar 

  80. Sanderson CS, Barford JP, Barton GW (1999) A structured, dynamic model for animal cell culture systems. Biochem Eng J 3:203–211

    CAS  Google Scholar 

  81. Jang JD, Sanderson CS, Chan LC, Barford JP, Reid S (2000) Structured modeling of recombinant protein production in batch and fed-batch culture of baculovirus-infected insect cells. Cytotechnology 34:71–82

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kontoravdi C, Wong D, Lam C, Lee YY, Yap MGS, Pistikopoulos EN, Mantalaris A (2007) Modeling amino acid metabolism in mammalian cells-toward the development of a model library. Biotechnol Prog 23:1261–1269

    CAS  PubMed  Google Scholar 

  83. Jones B, Goos P (2012) I-optimal versus D-optimal split-plot response surface designs. J Qual Technol 44:85–101

    Google Scholar 

  84. Lawson J (2010) Design and analysis of experiments with SAS. CRC Press, Hoboken

    Google Scholar 

  85. Johnson RT, Montgomery DC, Jones BA (2011) An expository paper on optimal design. Qual Eng 23:287–301

    Google Scholar 

  86. Kenett R, Steinberg D (2007) New frontiers in the design of experiments. IEEE Eng Manag Rev 35:91

    Google Scholar 

  87. Steinberg DM, Lin DKJ (2006) Amendments and corrections. Biometrika 93:1025

    Google Scholar 

  88. Bursztyn D, Steinberg DM (2006) Comparison of designs for computer experiments. J Stat Plan Infer 136:1103–1119

    Google Scholar 

  89. Vining GG, Kowalski SM (2011) Statistical methods for engineers.3rd edn. Brooks/Cole Cengage Learning, Boston

    Google Scholar 

  90. Moser A. mDoE-toolbox

    Google Scholar 

  91. Beckmann TF, Krämer O, Klausing S, Heinrich C, Thüte T, Büntemeyer H, Hoffrogge R, Noll T (2012) Effects of high passage cultivation on CHO cells: a global analysis. Appl Microbiol Biotechnol 94:659–671

    CAS  PubMed  Google Scholar 

  92. Wippermann A, Rupp O, Brinkrolf K, Hoffrogge R, Noll T (2015) The DNA methylation landscape of Chinese hamster ovary (CHO) DP-12 cells. J Biotechnol 199:38–46

    CAS  PubMed  Google Scholar 

  93. Ulonska S, Kroll P, Fricke J, Clemens C, Voges R, Müller MM, Herwig C (2018) Workflow for target-oriented parametrization of an enhanced mechanistic cell culture model. Biotechnol J 13:e1700395

    PubMed  Google Scholar 

  94. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192

    Google Scholar 

  95. Gagnon M, Hiller G, Luan Y-T, Kittredge A, DeFelice J, Drapeau D (2011) High-end pH-controlled delivery of glucose effectively suppresses lactate accumulation in CHO fed-batch cultures. Biotechnol Bioeng 108:1328–1337

    CAS  PubMed  Google Scholar 

  96. Fu T, Zhang C, Jing Y, Jiang C, Li Z, Wang S, Ma K, Zhang D, Hou S, Dai J, Kou G, Wang H (2016) Regulation of cell growth and apoptosis through lactate dehydrogenase C over-expression in Chinese hamster ovary cells. Appl Microbiol Biotechnol 100:5007–5016

    CAS  PubMed  Google Scholar 

  97. Andersen DC, Goochee CF (1995) The effect of ammonia on the O-linked glycosylation of granulocyte colony-stimulating factor produced by chinese hamster ovary cells. Biotechnol Bioeng 47:96–105

    CAS  PubMed  Google Scholar 

  98. Ha TK, Kim Y-G, Lee GM (2015) Understanding of altered N-glycosylation-related gene expression in recombinant Chinese hamster ovary cells subjected to elevated ammonium concentration by digital mRNA counting. Biotechnol Bioeng 112:1583–1593

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Möller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuchemüller, K.B., Pörtner, R., Möller, J. (2020). Digital Twins and Their Role in Model-Assisted Design of Experiments. In: Herwig, C., Pörtner, R., Möller, J. (eds) Digital Twins. Advances in Biochemical Engineering/Biotechnology, vol 177. Springer, Cham. https://doi.org/10.1007/10_2020_136

Download citation

Publish with us

Policies and ethics