Skip to main content

Microbioreactors for Process Development and Cell-Based Screening Studies

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 179))

Abstract

Microbioreactors (MBRs) have emerged as potent cultivation devices enabling automated small-scale experiments in parallel while enhancing their cost efficiency. The widespread use of MBRs has contributed to recent advances in industrial and pharmaceutical biotechnology, and they have proved to be indispensable tools in the development of many modern bioprocesses. Being predominantly applied in early stage process development, they open up new fields of research and enhance the efficacy of biotechnological product development. Their reduced reaction volume is associated with numerous inherent advantages – particularly the possibility for enabling parallel screening operations that facilitate high-throughput cultivations with reduced sample consumption (or the use of rare and expensive educts). As a result, multiple variables can be examined in a shorter time and with a lower expense. This leads to a simultaneous acceleration of research and process development along with decreased costs.

MBRs range from simple miniaturized cultivations vessels (i.e., in the milliliter scale with limited possibilities for process control) to highly complex and automated small-scale microreactors with integrated sensors that allow for comprehensive screenings in very short time or a precise reflection of large-scale cultivation conditions. Progressive developments and improvements in manufacturing and automation techniques are already helping researchers to make use of the advantages that MBRs offer. This overview of current MBR systems surveys the diverse application for microbial and mammalian cell cultivations that have been developed in recent years.

Graphical Abstract

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

μBC:

Microbubble column-bioreactor

μ max :

Specific growth rate

CHO:

Chinese hamster ovary

cwMBR:

Capillary wave MBR

D:

Dilution rate

DMF:

Digital microfluidics

DO:

Dissolved oxygen

EWOD:

Electrowetting on dielectric

hMBR:

Horizontally arranged plug flow-based microbioreactor

k L a :

Volumetric liquid phase oxygen transfer coefficient

K S :

Monod constant

LHS:

Liquid handling system

MBR:

Microbioreactor

MTP:

Microtiter plate

n crit :

Critical shaking frequency

OD:

Optical density

OTR :

Oxygen transfer rate

OUR :

Oxygen uptake rate

P/V:

Mean volumetric power input

PCR:

Polymerase chain reaction

PDMS:

Poly(dimethylsiloxane)

PMMA:

Polymethylmethacrylate

q P :

Specific product formation rate

q S :

Specific substrate consumption rate

Re :

Reynolds number

SAW:

Surface acoustic waves

t M :

Mixing time

u G :

Superficial gas velocity

Y X/S , Y P/S, Y P/X :

Biomass- and product-related yield coefficients from substrate/biomass, respectively

References

  1. McNaught AD, Wilkinson A, Scientific B (2014) IUPAC. Compendium of chemical terminology, 2nd edn. (the “Gold Book”). https://doi.org/10.1351/goldbook.I03352

  2. Gernaey KV, Baganz F, Franco-Lara E et al (2012) Monitoring and control of microbioreactors: an expert opinion on development needs. Biotechnol J 7:1308–1314. https://doi.org/10.1002/biot.201200157

    Article  CAS  PubMed  Google Scholar 

  3. Hemmerich J, Noack S, Wiechert W, Oldiges M (2018) Microbioreactor systems for accelerated bioprocess development. Biotechnol J 13:1700141. https://doi.org/10.1002/biot.201700141

    Article  CAS  Google Scholar 

  4. Krull R, Lladó-Maldonado S, Lorenz T et al (2016) Microbioreactors. In: Dietzel A (ed) Microsystems for pharmatechnology. Springer, Cham, pp 99–152

    Chapter  Google Scholar 

  5. Comley J (2003) Assay interference – a limiting factor in HTS? Drug Discov World 4:91–98

    Google Scholar 

  6. Rosseburg A, Fitschen J, Wutz J et al (2018) Hydrodynamic inhomogeneities in large scale stirred tanks – influence on mixing time. Chem Eng Sci 188:208–220. https://doi.org/10.1016/j.ces.2018.05.008

    Article  CAS  Google Scholar 

  7. Lara AR, Galindo E, Ramírez OT, Palomares LA (2006) Living with heterogeneities in bioreactors: understanding the effects of environmental gradients on cells. Mol Biotechnol 34:355–382. https://doi.org/10.1385/MB:34:3:355

    Article  CAS  PubMed  Google Scholar 

  8. Grünberger A, Wiechert W, Kohlheyer D (2014) Single-cell microfluidics: opportunity for bioprocess development. Curr Opin Biotechnol 29:15–23. https://doi.org/10.1016/j.copbio.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  9. Kirk TV, Szita N (2013) Oxygen transfer characteristics of miniaturized bioreactor systems. Biotechnol Bioeng 110:1005–1019. https://doi.org/10.1002/bit.24824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lübbert A, Bay Jørgensen S (2001) Bioreactor performance: a more scientific approach for practice. J Biotechnol 85:187–212. https://doi.org/10.1016/S0168-1656(00)00366-7

    Article  PubMed  Google Scholar 

  11. Garcia-Ochoa F, Gomez E, Santos VE, Merchuk JC (2010) Oxygen uptake rate in microbial processes: an overview. Biochem Eng J 49:289–307. https://doi.org/10.1016/j.bej.2010.01.011

    Article  CAS  Google Scholar 

  12. Hessel V, Löwe H, Schönfeld F (2005) Micromixers – a review on passive and active mixing principles. In: Chemical engineering science. Pergamon, Oxford, pp 2479–2501

    Google Scholar 

  13. Marques MPC, Cabral JMS, Fernandes P (2010) Bioprocess scale-up: quest for the parameters to be used as criterion to move from microreactors to lab-scale. J Chem Technol Biotechnol 85:1184–1198. https://doi.org/10.1002/jctb.2387

    Article  CAS  Google Scholar 

  14. Shilton RJ, Yeo LY, Friend JR (2011) Quantification of surface acoustic wave induced chaotic mixing-flows in microfluidic wells. Sensors Actuators B Chem 160:1565–1572. https://doi.org/10.1016/j.snb.2011.09.007

    Article  CAS  Google Scholar 

  15. Yeo LY, Chang H-C, Chan PP, Friend JR (2011) Microfluidic devices for bioapplications. Small 7:12–48. https://doi.org/10.1002/smll.201000946

    Article  CAS  PubMed  Google Scholar 

  16. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026. https://doi.org/10.1103/RevModPhys.77.977

    Article  CAS  Google Scholar 

  17. Nguyen N-T, Wu Z (2005) Micromixers – a review. J Micromech Microeng 15:R1–R16. https://doi.org/10.1088/0960-1317/15/2/R01

    Article  Google Scholar 

  18. Werner S, Eibl R, Lettenbauer C et al (2010) Innovative, non-stirred bioreactors in scales from milliliters up to 1000 liters for suspension cultures of cells using disposable bags and containers – a Swiss contribution. Chim Int J Chem 64:819–823. https://doi.org/10.2533/chimia.2010.819

    Article  CAS  Google Scholar 

  19. Kraume M (2012) Mischen und Rühren. In: Transportvorgänge in der Verfahrenstechnik. Springer, Berlin, pp 555–601

    Chapter  Google Scholar 

  20. Merchuk JC, Contreras A, García F, Molina E (1998) Studies of mixing in a concentric tube airlift bioreactor with different spargers. Chem Eng Sci 53:709–719. https://doi.org/10.1016/S0009-2509(97)00340-0

    Article  CAS  Google Scholar 

  21. Bai G, Armenante PM, Plank RV (2007) Experimental and computational determination of blend time in USP dissolution testing apparatus II. J Pharm Sci 96:3072–3086. https://doi.org/10.1002/jps.20994

    Article  CAS  PubMed  Google Scholar 

  22. Bareither R, Bargh N, Oakeshott R et al (2013) Automated disposable small scale reactor for high throughput bioprocess development: a proof of concept study. Biotechnol Bioeng 110:3126–3138. https://doi.org/10.1002/bit.24978

    Article  CAS  PubMed  Google Scholar 

  23. Hsu W-T, Aulakh RPS, Traul DL, Yuk IH (2012) Advanced microscale bioreactor system: a representative scale-down model for bench-top bioreactors. Cytotechnology 64:667–678. https://doi.org/10.1007/s10616-012-9446-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moses S, Manahan M, Ambrogelly A, Ling WLW (2012) Assessment of AMBR as a model for high-throughput cell culture process development strategy. Adv Biosci Biotechnol 03:918–927. https://doi.org/10.4236/abb.2012.37113

    Article  CAS  Google Scholar 

  25. Hortsch R, Weuster-Botz D (2010) Power consumption and maximum energy dissipation in a milliliter-scale bioreactor. Biotechnol Prog 26:595–599. https://doi.org/10.1002/btpr.338

    Article  CAS  PubMed  Google Scholar 

  26. Puskeiler R, Kaufmann K, Weuster-Botz D (2005) Development, parallelization, and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD). Biotechnol Bioeng 89:512–523. https://doi.org/10.1002/bit.20352

    Article  CAS  PubMed  Google Scholar 

  27. Nienow AW, Rielly CD, Brosnan K et al (2013) The physical characterisation of a microscale parallel bioreactor platform with an industrial CHO cell line expressing an IgG4. Biochem Eng J 76:25–36. https://doi.org/10.1016/j.bej.2013.04.011

    Article  CAS  Google Scholar 

  28. Szita N, Boccazzi P, Zhang Z et al (2005) Development of a multiplexed microbioreactor system for high-throughput bioprocessing. Lab Chip 5:819. https://doi.org/10.1039/b504243g

    Article  CAS  PubMed  Google Scholar 

  29. Boccazzi P, Zanzotto A, Szita N et al (2005) Gene expression analysis of Escherichia coli grown in miniaturized bioreactor platforms for high-throughput analysis of growth and genomic data. Appl Microbiol Biotechnol 68:518–532. https://doi.org/10.1007/s00253-005-1966-6

    Article  CAS  PubMed  Google Scholar 

  30. Boccazzi P, Zhang Z, Kurosawa K et al (2006) Differential gene expression profiles and real-time measurements of growth parameters in Saccharomyces cerevisiae grown in microliter-scale bioreactors equipped with internal stirring. Biotechnol Prog 22:710–717. https://doi.org/10.1021/bp0504288

    Article  CAS  PubMed  Google Scholar 

  31. Schäpper D, Stocks SM, Szita N et al (2010) Development of a single-use microbioreactor for cultivation of microorganisms. Chem Eng J 160:891–898. https://doi.org/10.1016/j.cej.2010.02.038

    Article  CAS  Google Scholar 

  32. Zhang Z, Szita N, Boccazzi P et al (2006) A well-mixed, polymer-based microbioreactor with integrated optical measurements. Biotechnol Bioeng 93:286–296. https://doi.org/10.1002/bit.20678

    Article  CAS  PubMed  Google Scholar 

  33. Li X, van der Steen G, van Dedem GWK et al (2008) Improving mixing in microbioreactors. Chem Eng Sci 63:3036–3046. https://doi.org/10.1016/j.ces.2008.02.036

    Article  CAS  Google Scholar 

  34. Tsai C-H, Wu X, Kuan D-H et al (2018) Digital hydraulic drive for microfluidics and miniaturized cell culture devices based on shape memory alloy actuators. J Micromech Microeng 28:084001. https://doi.org/10.1088/1361-6439/aabd1e

    Article  CAS  Google Scholar 

  35. Peterat G, Schmolke H, Lorenz T et al (2014) Characterization of oxygen transfer in vertical microbubble columns for aerobic biotechnological processes. Biotechnol Bioeng 111:1809–1819. https://doi.org/10.1002/bit.25243

    Article  CAS  PubMed  Google Scholar 

  36. Lladó Maldonado S, Rasch D, Kasjanow A et al (2018) Multiphase microreactors with intensification of oxygen mass transfer rate and mixing performance for bioprocess development. Biochem Eng J 139:57–67. https://doi.org/10.1016/j.bej.2018.07.023

    Article  CAS  Google Scholar 

  37. Lladó Maldonado S, Panjan P, Sun S et al (2019) A fully online sensor-equipped, disposable multiphase microbioreactor as a screening platform for biotechnological applications. Biotechnol Bioeng 116:65–75. https://doi.org/10.1002/bit.26831

    Article  CAS  PubMed  Google Scholar 

  38. Krull R, Peterat G (2016) Analysis of reaction kinetics during chemostat cultivation of Saccharomyces cerevisiae using a multiphase microreactor. Biochem Eng J 105:220–229. https://doi.org/10.1016/j.bej.2015.08.013

    Article  CAS  Google Scholar 

  39. Demming S, Peterat G, Llobera A et al (2012) Vertical microbubble column–A photonic lab-on-chip for cultivation and online analysis of yeast cell cultures. Biomicrofluidics 6:034106. https://doi.org/10.1063/1.4738587

    Article  CAS  PubMed Central  Google Scholar 

  40. Büchs J (2001) Introduction to advantages and problems of shaken cultures. Biochem Eng J 7:91–98. https://doi.org/10.1016/S1369-703X(00)00106-6

    Article  PubMed  Google Scholar 

  41. Klöckner W, Büchs J (2012) Advances in shaking technologies. Trends Biotechnol 30:307–314. https://doi.org/10.1016/j.tibtech.2012.03.001

    Article  CAS  PubMed  Google Scholar 

  42. Funke M, Diederichs S, Kensy F et al (2009) The baffled microtiter plate: increased oxygen transfer and improved online monitoring in small scale fermentations. Biotechnol Bioeng 103:1118–1128. https://doi.org/10.1002/bit.22341

    Article  CAS  PubMed  Google Scholar 

  43. Buchenauer A, Funke M, Büchs J et al (2009) Microbioreactors with microfluidic control and a user-friendly connection to the actuator hardware. J Micromech Microeng 19:074012. https://doi.org/10.1088/0960-1317/19/7/074012

    Article  CAS  Google Scholar 

  44. Hermann R, Lehmann M, Büchs J (2003) Characterization of gas-liquid mass transfer phenomena in microtiter plates. Biotechnol Bioeng 81:178–186. https://doi.org/10.1002/bit.10456

    Article  CAS  PubMed  Google Scholar 

  45. Ng AHC, Li BB, Chamberlain MD, Wheeler AR (2015) Digital microfluidic cell culture. Annu Rev Biomed Eng 17:91–112. https://doi.org/10.1146/annurev-bioeng-071114-040808

    Article  CAS  PubMed  Google Scholar 

  46. Choi K, Ng AHC, Fobel R, Wheeler AR (2012) Digital microfluidics. Annu Rev Anal Chem 5:413–440. https://doi.org/10.1146/annurev-anchem-062011-143028

    Article  CAS  Google Scholar 

  47. Quilliet C, Berge B (2001) Electrowetting: a recent outbreak. Curr Opin Colloid Interface Sci 6:34–39. https://doi.org/10.1016/S1359-0294(00)00085-6

    Article  CAS  Google Scholar 

  48. Bansal S, Sen P (2016) Mixing enhancement by degenerate modes in electrically actuated sessile droplets. Sensors Actuators B Chem 232:318–326. https://doi.org/10.1016/j.snb.2016.03.109

    Article  CAS  Google Scholar 

  49. Fair RB, Khlystov A, Tailor TD et al (2007) Chemical and biological applications of digital-microfluidic devices. IEEE Des Test Comput 24:10–24. https://doi.org/10.1109/MDT.2007.8

    Article  Google Scholar 

  50. Kardous F, Yahiaoui R, Aoubiza B, Manceau J-F (2014) Acoustic mixer using low frequency vibration for biological and chemical applications. Sensors Actuators A Phys 211:19–26. https://doi.org/10.1016/j.sna.2014.03.003

    Article  CAS  Google Scholar 

  51. Yeo LY, Friend JR (2009) Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics 3:012002. https://doi.org/10.1063/1.3056040

    Article  CAS  PubMed Central  Google Scholar 

  52. Landau LD, Lifshitz EM (1987) Fluid mechanics. In: Course of theoretical physics, vol 6. 2nd edn

    Google Scholar 

  53. Chang C-T, Bostwick JB, Daniel S, Steen PH (2015) Dynamics of sessile drops. Part 2. Experiment. J Fluid Mech 768:442–467. https://doi.org/10.1017/jfm.2015.99

    Article  Google Scholar 

  54. Milne AJB, Defez B, Cabrerizo-Vílchez M, Amirfazli A (2014) Understanding (sessile/constrained) bubble and drop oscillations. Adv Colloid Interf Sci 203:22–36. https://doi.org/10.1016/j.cis.2013.11.006

    Article  CAS  Google Scholar 

  55. Noblin X, Buguin A, Brochard-Wyart F (2004) Vibrated sessile drops: transition between pinned and mobile contact line oscillations. Eur Phys J E 14:395–404. https://doi.org/10.1140/epje/i2004-10021-5

    Article  CAS  PubMed  Google Scholar 

  56. Frey LJ, Vorländer D, Rasch D et al (2019) Novel electrodynamic oscillation technique enables enhanced mass transfer and mixing for cultivation in micro-bioreactor. Biotechnol Prog 35:e2827. https://doi.org/10.1002/btpr.2827

    Article  CAS  PubMed  Google Scholar 

  57. Meinen S, Frey LJ, Krull R, Dietzel A (2019) Resonant mixing in glass bowl microbioreactor investigated by microparticle image velocimetry. Micromachines 10:284. https://doi.org/10.3390/mi10050284

  58. Frey LJ, Vorländer D, Rasch D et al (2020) Defining mass transfer in a capillary wave micro-bioreactor for dose-response and other cell-based assays. Biochem Eng J:107667. https://doi.org/10.1016/j.bej.2020.107667

  59. Enders A, Siller IG, Urmann K et al (2018) 3D printed microfluidic mixers – a comparative study on mixing unit performances. Small 15:1804326. https://doi.org/10.1002/smll.201804326

    Article  CAS  Google Scholar 

  60. Garcia-Cordero JL, Fan ZH (2017) Sessile droplets for chemical and biological assays. Lab Chip 17:2150–2166. https://doi.org/10.1039/C7LC00366H

    Article  CAS  PubMed  Google Scholar 

  61. Burbaum JJ (1998) Miniaturization technologies in HTS: how fast, how small, how soon? Drug Discov Today 3:313–322. https://doi.org/10.1016/S1359-6446(98)01203-3

    Article  Google Scholar 

  62. Krull R, Haarstrick A, Hempel DC (2014) Bioverfahrenstechnik. In: Grote K-H, Feldhusen J (eds) Dubbel. Springer, Berlin, pp 972–992

    Google Scholar 

  63. Büchs J, Maier U, Milbradt C, Zoels B (2000) Power consumption in shaking flasks on rotary shaking machines: II. Nondimensional description of specific power consumption and flow regimes in unbaffled flasks at elevated liquid viscosity. Biotechnol Bioeng 68:594–601. https://doi.org/10.1002/(SICI)1097-0290(20000620)68:6<594::AID-BIT2>3.0.CO;2-U

    Article  PubMed  Google Scholar 

  64. Büchs J, Maier U, Milbradt C, Zoels B (2000) Power consumption in shaking flasks on rotary shaking machines: I. power consumption measurement in unbaffled flasks at low liquid viscosity. Biotechnol Bioeng 68:589–593. https://doi.org/10.1002/(SICI)1097-0290(20000620)68:6<589::AID-BIT1>3.0.CO;2-J

    Article  PubMed  Google Scholar 

  65. Tajsoleiman T, Mears L, Krühne U et al (2019) An industrial perspective on scale-down challenges using miniaturized bioreactors. Trends Biotechnol 37:697–706. https://doi.org/10.1016/j.tibtech.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  66. Schäpper D, Alam MNHZ, Szita N et al (2009) Application of microbioreactors in fermentation process development: a review. Anal Bioanal Chem 395:679–695. https://doi.org/10.1007/s00216-009-2955-x

    Article  CAS  PubMed  Google Scholar 

  67. Hegab HM, ElMekawy A, Stakenborg T (2013) Review of microfluidic microbioreactor technology for high-throughput submerged microbiological cultivation. Biomicrofluidics 7:021502. https://doi.org/10.1063/1.4799966

    Article  CAS  PubMed Central  Google Scholar 

  68. Lattermann C, Büchs J (2015) Microscale and miniscale fermentation and screening. Curr Opin Biotechnol 35:1–6. https://doi.org/10.1016/j.copbio.2014.12.005

    Article  CAS  PubMed  Google Scholar 

  69. Bareither R, Pollard D (2011) A review of advanced small-scale parallel bioreactor technology for accelerated process development: current state and future need. Biotechnol Prog 27:2–14. https://doi.org/10.1002/btpr.522

    Article  CAS  PubMed  Google Scholar 

  70. Rathore AS, Winkle H (2009) Quality by design for biopharmaceuticals. Nat Biotechnol 27:26–34. https://doi.org/10.1038/nbt0109-26

    Article  CAS  PubMed  Google Scholar 

  71. Kensy F, John GT, Hofmann B, Büchs J (2005) Characterisation of operation conditions and online monitoring of physiological culture parameters in shaken 24-well microtiter plates. Bioprocess Biosyst Eng 28:75–81. https://doi.org/10.1007/s00449-005-0010-7

    Article  CAS  PubMed  Google Scholar 

  72. Lattermann C, Funke M, Hansen S et al (2014) Cross-section perimeter is a suitable parameter to describe the effects of different baffle geometries in shaken microtiter plates. J Biol Eng 8:1–10. https://doi.org/10.1186/1754-1611-8-18

    Article  Google Scholar 

  73. Kensy F, Zang E, Faulhammer C et al (2009) Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates. Microb Cell Factories 8:31. https://doi.org/10.1186/1475-2859-8-31

    Article  CAS  Google Scholar 

  74. Wewetzer SJ, Kunze M, Ladner T et al (2015) Parallel use of shake flask and microtiter plate online measuring devices (RAMOS and BioLector) reduces the number of experiments in laboratory-scale stirred tank bioreactors. J Biol Eng 9:9. https://doi.org/10.1186/s13036-015-0005-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ladner T, Mühlmann M, Schulte A et al (2017) Prediction of Escherichia coli expression performance in microtiter plates by analyzing only the temporal development of scattered light during culture. J Biol Eng 11:1–15. https://doi.org/10.1186/s13036-017-0064-5

    Article  CAS  Google Scholar 

  76. Back A, Rossignol T, Krier F et al (2016) High-throughput fermentation screening for the yeast Yarrowia lipolytica with real-time monitoring of biomass and lipid production. Microb Cell Factories 15:147. https://doi.org/10.1186/s12934-016-0546-z

  77. Käß F, Prasad A, Tillack J et al (2014) Rapid assessment of oxygen transfer impact for Corynebacterium glutamicum. Bioprocess Biosyst Eng 37:2567–2577. https://doi.org/10.1007/s00449-014-1234-1

    Article  CAS  PubMed  Google Scholar 

  78. Mühlmann M, Kunze M, Ribeiro J et al (2017) Cellulolytic RoboLector – towards an automated high-throughput screening platform for recombinant cellulase expression. J Biol Eng 11:1. https://doi.org/10.1186/s13036-016-0043-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Böhm E, Voglauer R, Steinfellner W et al (2004) Screening for improved cell performance: selection of subclones with altered production kinetics or improved stability by cell sorting. Biotechnol Bioeng 88:699–706. https://doi.org/10.1002/bit.20271

    Article  CAS  PubMed  Google Scholar 

  80. Huber R, Ritter D, Hering T et al (2009) Robo-lector – a novel platform for automated high-throughput cultivations in microtiter plates with high information content. Microb Cell Factories 8:42. https://doi.org/10.1186/1475-2859-8-42

    Article  CAS  Google Scholar 

  81. Hemmerich J, Adelantado N, Barrigón JM et al (2014) Comprehensive clone screening and evaluation of fed-batch strategies in a microbioreactor and lab scale stirred tank bioreactor system: application on Pichia pastoris producing Rhizopus oryzae lipase. Microb Cell Factories. https://doi.org/10.1186/1475-2859-13-36

  82. Jensen SI, Lennen RM, Herrgård MJ, Nielsen AT (2016) Seven gene deletions in seven days: fast generation of Escherichia coli strains tolerant to acetate and osmotic stress. Sci Rep 5:17874. https://doi.org/10.1038/srep17874

    Article  CAS  Google Scholar 

  83. Wiegmann V, Martinez CB, Baganz F (2020) Using a parallel micro-cultivation system (micro-matrix) as a process development tool for cell culture applications. In: Pörtner R (ed) Animal cell biotechnology. Methods in molecular biology, vol 2095. Humana, New York, pp 69–81

    Chapter  Google Scholar 

  84. Micheletti M, Barrett T, Doig SD et al (2006) Fluid mixing in shaken bioreactors: implications for scale-up predictions from microlitre-scale microbial and mammalian cell cultures. Chem Eng Sci 61:2939–2949. https://doi.org/10.1016/j.ces.2005.11.028

    Article  CAS  Google Scholar 

  85. Lamping S, Zhang H, Allen B, Ayazi Shamlou P (2003) Design of a prototype miniature bioreactor for high throughput automated bioprocessing. Chem Eng Sci 58:747–758. https://doi.org/10.1016/S0009-2509(02)00604-8

    Article  CAS  Google Scholar 

  86. Betts JPJ, Warr SRC, Finka GB et al (2014) Impact of aeration strategies on fed-batch cell culture kinetics in a single-use 24-well miniature bioreactor. Biochem Eng J 82:105–116. https://doi.org/10.1016/j.bej.2013.11.010

    Article  CAS  Google Scholar 

  87. Isett K, George H, Herber W, Amanullah A (2007) Twenty-four-well plate miniature bioreactor high-throughput system: assessment for microbial cultivations. Biotechnol Bioeng 98:1017–1028. https://doi.org/10.1002/bit.21484

    Article  CAS  PubMed  Google Scholar 

  88. Chen A, Chitta R, Chang D, Amanullah A (2009) Twenty-four well plate miniature bioreactor system as a scale-down model for cell culture process development. Biotechnol Bioeng 102:148–160. https://doi.org/10.1002/bit.22031

    Article  CAS  PubMed  Google Scholar 

  89. Betts JI, Doig SD, Baganz F (2006) Characterization and application of a miniature 10 mL stirred-tank bioreactor, showing scale-down equivalence with a conventional 7 L reactor. Biotechnol Prog 22:681–688. https://doi.org/10.1021/bp050369y

    Article  CAS  PubMed  Google Scholar 

  90. Reed JL, Patel TR, Chen KH et al (2006) Systems approach to refining genome annotation. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.0603364103

  91. Friedman AJ, Blecher K, Schairer D et al (2011) Improved antimicrobial efficacy with nitric oxide releasing nanoparticle generated S-nitrosoglutathione. Nitric Oxide 25:381–386. https://doi.org/10.1016/j.niox.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  92. Medina A, Lambert RJW, Magan N (2012) Rapid throughput analysis of filamentous fungal growth using turbidimetric measurements with the bioscreen C: a tool for screening antifungal compounds. Fungal Biol. https://doi.org/10.1016/j.funbio.2011.11.001

  93. Harms P, Kostov Y, French JA et al (2006) Design and performance of a 24-station high throughput microbioreactor. Biotechnol Bioeng 93:6–13. https://doi.org/10.1002/bit.20742

    Article  CAS  PubMed  Google Scholar 

  94. Zhang H, Lamping SR, Pickering SCR et al (2008) Engineering characterisation of a single well from 24-well and 96-well microtitre plates. Biochem Eng J 40:138–149. https://doi.org/10.1016/j.bej.2007.12.005

    Article  CAS  Google Scholar 

  95. Kreye S, Stahn R, Nawrath K et al (2019) A novel scale-down mimic of perfusion cell culture using sedimentation in an automated microbioreactor (SAM). Biotechnol Prog 35:1–11. https://doi.org/10.1002/btpr.2832

    Article  CAS  Google Scholar 

  96. Ratcliffe E, Glen KE, Workman VL et al (2012) A novel automated bioreactor for scalable process optimisation of haematopoietic stem cell culture. J Biotechnol 161:387–390. https://doi.org/10.1016/j.jbiotec.2012.06.025

    Article  CAS  PubMed  Google Scholar 

  97. Rameez S, Mostafa SS, Miller C, Shukla AA (2014) High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control. Biotechnol Prog 30:718–727. https://doi.org/10.1002/btpr.1874

    Article  CAS  PubMed  Google Scholar 

  98. Velez-Suberbie ML, Betts JPJ, Walker KL et al (2018) High throughput automated microbial bioreactor system used for clone selection and rapid scale-down process optimization. Biotechnol Prog 34:58–68. https://doi.org/10.1002/btpr.2534

    Article  CAS  PubMed  Google Scholar 

  99. Wales R, Lewis G (2010) Novel automated micro-scale bioreactor technology: a qualitative and quantitative mimic for early process development. Bioprocess J 9:22–25. https://doi.org/10.12665/J91.Wales

    Article  Google Scholar 

  100. Hortsch R, Weuster-Botz D (2009) Power consumption and maximum energy dissipation in a milliliter-scale bioreactor. Biotechnol Prog 26. https://doi.org/10.1002/btpr.338

  101. Riedlberger P, Brüning S, Weuster-Botz D (2013) Characterization of stirrers for screening studies of enzymatic biomass hydrolyses on a milliliter scale. Bioprocess Biosyst Eng 36:927–935. https://doi.org/10.1007/s00449-012-0826-x

    Article  CAS  PubMed  Google Scholar 

  102. Schmideder A, Weuster-Botz D (2017) High-performance recombinant protein production with Escherichia coli in continuously operated cascades of stirred-tank reactors. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-017-1927-y

  103. Schmideder A, Severin TS, Cremer JH, Weuster-Botz D (2015) A novel milliliter-scale chemostat system for parallel cultivation of microorganisms in stirred-tank bioreactors. J Biotechnol 210:19–24. https://doi.org/10.1016/j.jbiotec.2015.06.402

    Article  CAS  PubMed  Google Scholar 

  104. Long Q, Liu X, Yang Y et al (2014) The development and application of high throughput cultivation technology in bioprocess development. J Biotechnol 192:323–338. https://doi.org/10.1016/j.jbiotec.2014.03.028

    Article  CAS  PubMed  Google Scholar 

  105. Betts JI, Baganz F (2006) Miniature bioreactors: current practices and future opportunities. Microb Cell Factories 5:21. https://doi.org/10.1186/1475-2859-5-21

    Article  CAS  Google Scholar 

  106. Funke M, Buchenauer A, Schnakenberg U et al (2010) Microfluidic biolector-microfluidic bioprocess control in microtiter plates. Biotechnol Bioeng 107:497–505. https://doi.org/10.1002/bit.22825

    Article  CAS  PubMed  Google Scholar 

  107. Zhang Z, Boccazzi P, Choi H-G et al (2006) Microchemostat – microbial continuous culture in a polymer-based, instrumented microbioreactor. Lab Chip 6:906–913. https://doi.org/10.1039/B518396K

    Article  CAS  PubMed  Google Scholar 

  108. Edlich A, Magdanz V, Rasch D et al (2010) Microfluidic reactor for continuous cultivation of Saccharomyces cerevisiae. Biotechnol Prog 26:1259–1270. https://doi.org/10.1002/btpr.449

    Article  CAS  PubMed  Google Scholar 

  109. Schmolke H, Demming S, Edlich A et al (2010) Polyelectrolyte multilayer surface functionalization of poly(dimethylsiloxane) (PDMS) for reduction of yeast cell adhesion in microfluidic devices. Biomicrofluidics 4:044113. https://doi.org/10.1063/1.3523059

    Article  CAS  PubMed Central  Google Scholar 

  110. Rieger M, Kappeli O, Fiechter A (1983) The role of limited respiration In the incomplete oxidation of glucose by Saccharomyces cerevisiae. Microbiology 129:653–661. https://doi.org/10.1099/00221287-129-3-653

  111. von Meyenburg K (1969) Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth. Arch Mikrobiol 66:289–303. https://doi.org/10.1007/BF00414585

    Article  Google Scholar 

  112. von Meyenburg K (1969) Katabolitrepression und der Sprossungszyklus von Saccharomyces cerevisiae. ETH Zürich

    Google Scholar 

  113. Lladó Maldonado S, Krull J, Rasch D et al (2019) Application of a multiphase microreactor chemostat for the determination of reaction kinetics of Staphylococcus carnosus. Bioprocess Biosyst Eng 42:953–961. https://doi.org/10.1007/s00449-019-02095-9

    Article  CAS  PubMed  Google Scholar 

  114. Doig SD, Diep A, Baganz F (2005) Characterisation of a novel miniaturised bubble column bioreactor for high throughput cell cultivation. Biochem Eng J 23:97–105. https://doi.org/10.1016/j.bej.2004.10.014

    Article  CAS  Google Scholar 

  115. Doig SD, Ortiz-Ochoa K, Ward JM, Baganz F (2008) Characterization of oxygen transfer in miniature and lab-scale bubble column bioreactors and comparison of microbial growth performance based on constant kLa. Biotechnol Prog 21:1175–1182. https://doi.org/10.1021/bp050064j

    Article  CAS  Google Scholar 

  116. Weuster-Botz D, Altenbach-Rehm J, Hawrylenko A (2001) Process-engineering characterization of small-scale bubble columns for microbial process development. Bioprocess Biosyst Eng 24:3–11. https://doi.org/10.1007/s004490100222

    Article  CAS  Google Scholar 

  117. Stocks SM (2013) Industrial enzyme production for the food and beverage industries: process scale up and scale down. In: Microbial production of food ingredients, enzymes and nutraceuticals. Elsevier, pp 144–172

    Google Scholar 

  118. Crater JS, Lievense JC (2018) Scale-up of industrial microbial processes. FEMS Microbiol Lett 365. https://doi.org/10.1093/femsle/fny138

  119. Wiegmann V, Martinez CB, Baganz F (2018) A simple method to determine evaporation and compensate for liquid losses in small-scale cell culture systems. Biotechnol Lett 40:1029–1036. https://doi.org/10.1007/s10529-018-2556-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Silk NJ, Denby S, Lewis G et al (2010) Fed-batch operation of an industrial cell culture process in shaken microwells. Biotechnol Lett 32:73–78. https://doi.org/10.1007/s10529-009-0124-0

    Article  CAS  PubMed  Google Scholar 

  121. Dietzel A (2016) Microsystems for pharmatechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-26920-7

  122. Ying Lin H, Neubauer P (2000) Influence of controlled glucose oscillations on a fed-batch process of recombinant Escherichia coli. J Biotechnol 79:27–37. https://doi.org/10.1016/S0168-1656(00)00217-0

    Article  Google Scholar 

  123. Tescione L, Lambropoulos J, Paranandi MR et al (2015) Application of bioreactor design principles and multivariate analysis for development of cell culture scale down models. Biotechnol Bioeng 112:84–97. https://doi.org/10.1002/bit.25330

    Article  CAS  PubMed  Google Scholar 

  124. Xu P, Clark C, Ryder T et al (2017) Characterization of TAP Ambr 250 disposable bioreactors, as a reliable scale-down model for biologics process development. Biotechnol Prog 33:478–489. https://doi.org/10.1002/btpr.2417

    Article  CAS  PubMed  Google Scholar 

  125. Islam RS, Tisi D, Levy MS, Lye GJ (2008) Scale-up of Escherichia coli growth and recombinant protein expression conditions from microwell to laboratory and pilot scale based on matched kLa. Biotechnol Bioeng 99:1128–1139. https://doi.org/10.1002/bit.21697

  126. Nienow AW (2015) Mass transfer and mixing across the scales in animal cell culture. In: Al-Rubeai M (ed) Animal cell culture. Springer, Cham, pp 137–167. https://doi.org/10.1007/978-3-319-10320-4_5

  127. Gill NK, Appleton M, Baganz F, Lye GJ (2008) Design and characterisation of a miniature stirred bioreactor system for parallel microbial fermentations. Biochem Eng J 39:164–176. https://doi.org/10.1016/j.bej.2007.09.001

    Article  CAS  Google Scholar 

  128. Haringa C, Tang W, Wang G et al (2018) Computational fluid dynamics simulation of an industrial P. chrysogenum fermentation with a coupled 9-pool metabolic model: towards rational scale-down and design optimization. Chem Eng Sci 175:12–24. https://doi.org/10.1016/j.ces.2017.09.020

  129. Margaritis A, Zajic JE (1978) Mixing, mass transfer, and scale-up of polysaccharide fermentations. Biotechnol Bioeng 20:939–1001. https://doi.org/10.1002/bit.260200702

    Article  CAS  Google Scholar 

  130. Schmidt FR (2005) Optimization and scale up of industrial fermentation processes. Appl Microbiol Biotechnol 68:425–435. https://doi.org/10.1007/s00253-005-0003-0

    Article  CAS  PubMed  Google Scholar 

  131. Xu S, Hoshan L, Jiang R et al (2017) A practical approach in bioreactor scale-up and process transfer using a combination of constant P/V and vvm as the criterion. Biotechnol Prog 33:1146–1159. https://doi.org/10.1002/btpr.2489

    Article  CAS  PubMed  Google Scholar 

  132. Breslauer DN, Lee PJ, Lee LP (2006) Microfluidics-based systems biology. Mol BioSyst 2:97. https://doi.org/10.1039/b515632g

    Article  CAS  PubMed  Google Scholar 

  133. El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442:403–411. https://doi.org/10.1038/nature05063

    Article  CAS  PubMed  Google Scholar 

  134. Junne S, Neubauer P (2018) How scalable and suitable are single-use bioreactors? Curr Opin Biotechnol 53:240–247. https://doi.org/10.1016/j.copbio.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  135. Ladner T, Grünberger A, Probst C et al (2017) Application of mini- and micro-bioreactors for microbial bioprocesses. In: Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 433–461

    Chapter  Google Scholar 

  136. Doig SD, Baganz F, Lye GJ (2006) High-throughput screening and process optimisation. In: Ratledge C, Kristiansen B (eds) Basic biotechnology. Cambridge University Press, Cambridge, pp 289–306

    Chapter  Google Scholar 

  137. Lennen RM, Nilsson Wallin AI, Pedersen M et al (2016) Transient overexpression of DNA adenine methylase enables efficient and mobile genome engineering with reduced off-target effects. Nucleic Acids Res 44:e36–e36. https://doi.org/10.1093/nar/gkv1090

    Article  PubMed  Google Scholar 

  138. Motta Dos Santos LF, Coutte F, Ravallec R et al (2016) An improvement of surfactin production by B. subtilis BBG131 using design of experiments in microbioreactors and continuous process in bubbleless membrane bioreactor. Bioresour Technol 218:944–952. https://doi.org/10.1016/j.biortech.2016.07.053

    Article  CAS  PubMed  Google Scholar 

  139. Unthan S, Baumgart M, Radek A et al (2015) Chassis organism from Corynebacterium glutamicum – a top-down approach to identify and delete irrelevant gene clusters. Biotechnol J 10:290–301. https://doi.org/10.1002/biot.201400041

    Article  CAS  PubMed  Google Scholar 

  140. Kaminski TS, Scheler O, Garstecki P (2016) Droplet microfluidics for microbiology: techniques, applications and challenges. Lab Chip 16:2168–2187. https://doi.org/10.1039/C6LC00367B

    Article  CAS  PubMed  Google Scholar 

  141. Casadevall I, Solvas X, Demello A (2011) Droplet microfluidics: recent developments and future applications. Chem Commun 47:1936–1942. https://doi.org/10.1039/c0cc02474k

    Article  CAS  Google Scholar 

  142. Hernandez-Perez R, Fan ZH, Garcia-Cordero JL (2016) Evaporation-driven bioassays in suspended droplets. Anal Chem 88:7312–7317. https://doi.org/10.1021/acs.analchem.6b01657

    Article  CAS  PubMed  Google Scholar 

  143. Gao L, McCarthy TJ (2006) Contact angle hysteresis explained. Langmuir 22:6234–6237. https://doi.org/10.1021/la060254j

    Article  CAS  PubMed  Google Scholar 

  144. Huebner A, Sharma S, Srisa-Art M et al (2008) Microdroplets: a sea of applications? Lab Chip 8:1244. https://doi.org/10.1039/b806405a

    Article  CAS  PubMed  Google Scholar 

  145. Malic L, Brassard D, Veres T, Tabrizian M (2010) Integration and detection of biochemical assays in digital microfluidic LOC devices. Lab Chip 10:418–431. https://doi.org/10.1039/b917668c

    Article  CAS  PubMed  Google Scholar 

  146. Zhu Y, Zhang Y-X, Cai L-F, Fang Q (2013) Sequential operation droplet array: an automated microfluidic platform for Picoliter-scale liquid handling, analysis, and screening. Anal Chem 85:6723–6731. https://doi.org/10.1021/ac4006414

    Article  CAS  PubMed  Google Scholar 

  147. Dong Z, Fang Q (2020) Automated, flexible and versatile manipulation of nanoliter-to-picoliter droplets based on sequential operation droplet array technique. TrAC Trends Anal Chem 124:115812. https://doi.org/10.1016/j.trac.2020.115812

    Article  CAS  Google Scholar 

  148. Du G-S, Pan J-Z, Zhao S-P et al (2013) Cell-based drug combination screening with a microfluidic droplet array system. Anal Chem 85:6740–6747. https://doi.org/10.1021/ac400688f

    Article  CAS  PubMed  Google Scholar 

  149. Ma Y, Pan J-Z, Zhao S-P et al (2016) Microdroplet chain array for cell migration assays. Lab Chip 16:4658–4665. https://doi.org/10.1039/C6LC00823B

    Article  CAS  PubMed  Google Scholar 

  150. Taniguchi T, Torii T, Higuchi T (2002) Chemical reactions in microdroplets by electrostatic manipulation of droplets in liquid media. Lab Chip 2(1):19–23

    Article  CAS  PubMed  Google Scholar 

  151. Keng PY, Chen S, Ding H et al (2012) Micro-chemical synthesis of molecular probes on an electronic microfluidic device. Proc Natl Acad Sci U S A 109:690–695. https://doi.org/10.1073/pnas.1117566109

    Article  PubMed  Google Scholar 

  152. Rastogi V, Velev OD (2007) Development and evaluation of realistic microbioassays in freely suspended droplets on a chip. Biomicrofluidics 1:014107. https://doi.org/10.1063/1.2714185

    Article  CAS  PubMed Central  Google Scholar 

  153. Sista RS, Eckhardt AE, Wang T et al (2011) Digital microfluidic platform for multiplexing enzyme assays: implications for lysosomal storage disease screening in newborns. Clin Chem 57:1444–1451. https://doi.org/10.1373/clinchem.2011.163139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sista RS, Eckhardt AE, Srinivasan V et al (2008) Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab Chip 8:2188. https://doi.org/10.1039/b807855f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Vergauwe N, Witters D, Ceyssens F et al (2011) A versatile electrowetting-based digital microfluidic platform for quantitative homogeneous and heterogeneous bio-assays. J Micromech Microeng 21:054026. https://doi.org/10.1088/0960-1317/21/5/054026

    Article  CAS  Google Scholar 

  156. Wulff-Burchfield E, Schell WA, Eckhardt AE et al (2010) Microfluidic platform versus conventional real-time polymerase chain reaction for the detection of mycoplasma pneumoniae in respiratory specimens. Diagn Microbiol Infect Dis 67:22–29. https://doi.org/10.1016/j.diagmicrobio.2009.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Liu Y-J, Yao D-J, Lin H-C et al (2008) DNA ligation of ultramicro volume using an EWOD microfluidic system with coplanar electrodes. J Micromech Microeng 18:045017. https://doi.org/10.1088/0960-1317/18/4/045017

    Article  CAS  Google Scholar 

  158. Malic L, Veres T, Tabrizian M (2009) Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization. Biosens Bioelectron 24:2218–2224. https://doi.org/10.1016/j.bios.2008.11.031

    Article  CAS  PubMed  Google Scholar 

  159. Malic L, Veres T, Tabrizian M (2011) Nanostructured digital microfluidics for enhanced surface plasmon resonance imaging. Biosens Bioelectron 26:2053–2059. https://doi.org/10.1016/j.bios.2010.09.001

    Article  CAS  PubMed  Google Scholar 

  160. Chang Y-H, Lee G-B, Huang F-C et al (2006) Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed Microdevices 8:215–225. https://doi.org/10.1007/s10544-006-8171-y

    Article  CAS  PubMed  Google Scholar 

  161. Welch ERF, Lin YY, Madison A, Fair RB (2011) Picoliter DNA sequencing chemistry on an electrowetting-based digital microfluidic platform. Biotechnol J 6:165–176. https://doi.org/10.1002/biot.201000324

    Article  CAS  PubMed  Google Scholar 

  162. Jebrail MJ, Yang H, Mudrik JM et al (2011) A digital microfluidic method for dried blood spot analysis. Lab Chip 11:3218–3224. https://doi.org/10.1039/c1lc20524b

    Article  CAS  PubMed  Google Scholar 

  163. Erbil HY, McHale G, Newton MI (2002) Drop evaporation on solid surfaces: constant contact angle mode. Langmuir 18:2636–2641. https://doi.org/10.1021/la011470p

    Article  CAS  Google Scholar 

  164. Lee CY, In WK (2014) Prediction of water droplet evaporation on zircaloy surface. J Nucl Sci Technol 51:448–456. https://doi.org/10.1080/00223131.2014.873359

    Article  CAS  Google Scholar 

  165. Larson RG (2014) Transport and deposition patterns in drying sessile droplets. AICHE J 60:1538–1571. https://doi.org/10.1002/aic.14338

    Article  CAS  Google Scholar 

  166. Hu H, Larson RG (2005) Analysis of the microfluid flow in an evaporating sessile droplet. Langmuir 21:3963–3971. https://doi.org/10.1021/la047528s

    Article  CAS  PubMed  Google Scholar 

  167. De Angelis F, Gentile F, Mecarini F et al (2011) Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat Photonics. https://doi.org/10.1038/nphoton.2011.222

  168. Yang S, Dai X, Stogin BB, Wong T-S (2016) Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc Natl Acad Sci 113:268–273. https://doi.org/10.1073/pnas.1518980113

    Article  CAS  PubMed  Google Scholar 

  169. Ebrahimi A, Dak P, Salm E et al (2013) Nanotextured superhydrophobic electrodes enable detection of attomolar-scale DNA concentration within a droplet by non-faradaic impedance spectroscopy. Lab Chip 13:4248. https://doi.org/10.1039/c3lc50517k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Coluccio ML, Gentile F, Das G et al (2015) Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain. Sci Adv 1:e1500487. https://doi.org/10.1126/sciadv.1500487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wong T-S, Kang SH, Tang SKY et al (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447. https://doi.org/10.1038/nature10447

    Article  CAS  PubMed  Google Scholar 

  172. Dak P, Ebrahimi A, Alam MA (2014) Non-faradaic impedance characterization of an evaporating droplet for microfluidic and biosensing applications. Lab Chip 14:2469–2479. https://doi.org/10.1039/C4LC00193A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yanagimachi I, Nashida N, Iwasa K, Suzuki H (2005) Enhancement of the sensitivity of electrochemical stripping analysis by evaporative concentration using a super-hydrophobic surface. Sci Technol Adv Mater 6:671–677. https://doi.org/10.1016/j.stam.2005.06.017

    Article  CAS  Google Scholar 

  174. Küster SK, Fagerer SR, Verboket PE et al (2013) Interfacing droplet microfluidics with matrix-assisted laser desorption/ionization mass spectrometry: label-free content analysis of single droplets. Anal Chem 85:1285–1289. https://doi.org/10.1021/ac3033189

    Article  CAS  PubMed  Google Scholar 

  175. Delvigne F, Zune Q, Lara AR et al (2014) Metabolic variability in bioprocessing: implications of microbial phenotypic heterogeneity. Trends Biotechnol 32:608–616. https://doi.org/10.1016/j.tibtech.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  176. Avery SV (2006) Microbial cell individuality and the underlying sources of heterogeneity. Nat Rev Microbiol 4:577–587. https://doi.org/10.1038/nrmicro1460

    Article  CAS  PubMed  Google Scholar 

  177. Love KR, Bagh S, Choi J, Love JC (2013) Microtools for single-cell analysis in biopharmaceutical development and manufacturing. Trends Biotechnol 31:280–286. https://doi.org/10.1016/j.tibtech.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  178. Dusny C, Schmid A (2015) Microfluidic single-cell analysis links boundary environments and individual microbial phenotypes. Environ Microbiol 17:1839–1856. https://doi.org/10.1111/1462-2920.12667

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the German Research Foundation (DFG) within the project Development of micro-reactors for biopharmaceutical applications (KR 1897/5-1, 310619924).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Krull .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frey, L.J., Krull, R. (2020). Microbioreactors for Process Development and Cell-Based Screening Studies. In: Bahnemann, J., Grünberger, A. (eds) Microfluidics in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 179. Springer, Cham. https://doi.org/10.1007/10_2020_130

Download citation

Publish with us

Policies and ethics