Skip to main content

Alkaliphiles: The Versatile Tools in Biotechnology

  • Chapter
  • First Online:
Alkaliphiles in Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 172))

Abstract

The extreme environments within the biosphere are inhabited by organisms known as extremophiles. Lately, these organisms are attracting a great deal of interest from researchers and industrialists. The motive behind this attraction is mainly related to the desire for new and efficient products of biotechnological importance and human curiosity of understanding nature. Organisms living in common “human-friendly” environments have served humanity for a very long time, and this has led to exhaustion of the low-hanging “fruits,” a phenomenon witnessed by the diminishing rate of new discoveries. For example, acquiring novel products such as drugs from the traditional sources has become difficult and expensive. Such challenges together with the basic research interest have brought the exploration of previously neglected or unknown groups of organisms. Extremophiles are among these groups which have been brought to focus and garnering a growing importance in biotechnology. In the last few decades, numerous extremophiles and their products have got their ways into industrial, agricultural, environmental, pharmaceutical, and other biotechnological applications.

Alkaliphiles, organisms which thrive optimally at or above pH 9, are one of the most important classes of extremophiles. To flourish in their extreme habitats, alkaliphiles evolved impressive structural and functional adaptations. The high pH adaptation gave unique biocatalysts that are operationally stable at elevated pH and several other novel products with immense biotechnological application potential. Advances in the cultivation techniques, success in gene cloning and expression, metabolic engineering, metagenomics, and other related techniques are significantly contributing to expand the application horizon of these remarkable organisms of the ‘bizarre’ world. Studies have shown the enormous potential of alkaliphiles in numerous biotechnological applications. Although it seems just the beginning, some fantastic strides are already made in tapping this potential. This work tries to review some of the prominent applications of alkaliphiles by focusing such as on their enzymes, metabolites, exopolysaccharides, and biosurfactants. Moreover, the chapter strives to assesses the whole-cell applications of alkaliphiles including in biomining, food and feed supplementation, bioconstruction, microbial fuel cell, biofuel production, and bioremediation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFPs:

Antifreeze proteins

ATP:

Adenosine triphosphate

CD:

Cyclodextrins

CGTase:

Cyclo-maltodextrin glucanotransferase

CMC:

Critical micelle concentration

DP:

Degree of polymerization

ECF:

Elemental chlorine free

EDTA:

Ethylenediaminetetraacetic acid

EPS:

Exopolysaccharide

GWh:

Gigawatt hours

IFT:

Interfacial tension

MEOR:

Microbial enhanced oil recovery

MFC:

Microbial fuel cell

MPa:

Megapascal

mW:

Milliwatt

NADH:

Reduced nicotinamide adenine dinucleotide

NADPH:

Reduced nicotinamide adenine dinucleotide phosphate

PCR:

Polymerase chain reaction

PGP:

Plant growth promoting

PGPR:

Plant growth-promoting rhizobacteria

TCF:

Total chlorine free

Wa:

Water activity

Wh:

Watt-hour

References

  1. Transparency (2016) Global Biotechnology market recovering from post-recession crunch, expected to reach US$414.5 bn by 2017. https://www.transparencymarketresearch.com/pressrelease/global-biotechnology-market.htm. Accessed 18 Feb 2020

  2. Global Market Insights (2019) Biotechnology market size to exceed $729bn by 2025. https://www.gminsights.com/pressrelease/biotechnology-market. Accessed 18 Feb 2020

  3. Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov., represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch Microbiol 145:56–61

    CAS  Google Scholar 

  4. Kisková J, Stramová Z, Javorský P, Sedláková-Kaduková J, Pristaš P (2019) Analysis of the bacterial community from high alkaline (pH > 13) drainage water at a brown mud disposal site near Žiar nad Hronom (Banská Bystrica region, Slovakia) using 454 pyrosequencing. Folia Microbiol 64:83–90

    Google Scholar 

  5. Mei N, Postec A, Erauso G, Joseph M, Pelletier B, Payri C et al (2016) Serpentinicella alkaliphila gen. nov., sp. nov., a novel alkaliphilic anaerobic bacterium isolated from the serpentinite-hosted Prony hydrothermal field, New Caledonia. Int J Syst Evol Microbiol 66:4464–4470

    CAS  PubMed  Google Scholar 

  6. Schleper C, Pühler G, Kühlmorgen B, Zillig W (1995) Life at extremely low pH. Nature 375:741–742

    CAS  PubMed  Google Scholar 

  7. Xu Y, Nogi Y, Kato C, Liang Z, Rüger HJ, De Kegel D, Glansdorff N (2003) Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int J Syst Evol Microbiol 53:533–538

    CAS  PubMed  Google Scholar 

  8. Margesin R, Collins T (2019) Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Appl Microbiol Biotechnol 103:2537–2549

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934

    CAS  PubMed  Google Scholar 

  10. Rothschild L, Mancinelli R (2001) Life in extreme environments. Nature 409:1092–1101

    CAS  PubMed  Google Scholar 

  11. Grant S, Grant WD, Jones BE, Kato C, Lina L (1999) Novel archaeal phylotypes from an East Aftrican alkaline saltern. Extremophiles 3:139–145

    CAS  PubMed  Google Scholar 

  12. Rampelotto PH (2013) Extremophiles and extreme environments. Life (Basel) 3:482–485

    Google Scholar 

  13. Satyanarayana T, Raghukumar C, Sisinthy S (2005) Extremophilic microbes: diversity and perspectives. Curr Sci 89:78–90

    Google Scholar 

  14. Ventosa A, de la Haba RR, Sánchez-Porro C, Papke RT (2015) Microbial diversity of hypersaline environments: a metagenomic approach. Curr Opin Microbiol 25:80–87

    CAS  PubMed  Google Scholar 

  15. Aguilera A (2013) Eukaryotic organisms in extreme acidic environments, the Río Tinto case. Life (Basel) 3:363–374

    Google Scholar 

  16. Kavembe GD, Meyer A, Wood CM (2016) Fish populations in East African saline lakes in Soda Lakes of East Africa. Springer, Cham, pp 227–257

    Google Scholar 

  17. Lanzén A, Simachew A, Gessesse A, Chmolowska D, Jonassen I, Øvreås L (2013) Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of Ethiopian soda lakes. PLoS One 8(8):e72577

    PubMed  PubMed Central  Google Scholar 

  18. Singh R, Kumar M, Mittal A, Mehta PK (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6:174. https://doi.org/10.1007/s13205-016-0485-8

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lentzen G, Schwarz T (2006) Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72:623–634

    CAS  PubMed  Google Scholar 

  20. Van-Doan T, Hashim S, Hatti-Kaul R, Mamo G (2012) Ectoine mediated protection of enzyme from the effect of pH and temperature stress: a study using Bacillus halodurans xylanase as a model. Appl Microbiol Biotechnol 97:6271–6278

    Google Scholar 

  21. Aguilera JA, Bischof KB, Karsten UK, Hanelt DH, Wiencke CW (2002) Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fjord. II. Pigment accumulation and biochemical defence systems against high light stress. Mar Biol 140:1087–1095

    CAS  Google Scholar 

  22. Bünger J (1999) Ectoine added protection and care for the skin. Eur Secur 7:22–24

    Google Scholar 

  23. de la Coba F, Aguilera J, de Galvez MV, Alvarez M, Gallego E, Figueroa FL, Herrera E (2009) Prevention of the ultraviolet effects on clinical and histopathological changes, as well as the heat shock protein-70 expression in mouse skin by topical application of algal UV-absorbing compounds. J Dermatol Sci 55:161–169

    PubMed  Google Scholar 

  24. Gabani P, Singh OV (2013) Radiation-resistant extremophiles and their potential in biotechnology and therapeutics. Appl Microbiol Biotechnol 97:993–1004

    CAS  PubMed  Google Scholar 

  25. Heinrich U, Garbe B, Tronnier H (2007) In vivo assessment of ectoin: a randomized, vehicle-controlled clinical trial. Skin Pharmacol Physiol 20:211–218

    CAS  PubMed  Google Scholar 

  26. Llewellyn CA, Airs RL (2010) Distribution and abundance of MAAs in 33 species of microalgae across 13 classes. Mar Drugs 8:1273–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Roenneke B, Rosenfeldt N, Derya SM, Novak JF, Marin K, Krämer R, Seibold GM (2018) Production of the compatible solute α-d-glucosylglycerol by metabolically engineered Corynebacterium glutamicum. Microb Cell Fact 17:94

    PubMed  PubMed Central  Google Scholar 

  28. Giddings LA, Newman DJ (2015) Bioactive compounds from terrestrial extremophiles. Springer, Berlin

    Google Scholar 

  29. Bosma E, Oost J, De Vos W, van Kranenburg R (2013) Sustainable production of bio-based chemicals by extremophiles. Cur Biotechnol 2:360–379

    CAS  Google Scholar 

  30. Nicolaus B, Kambourova M, Oner ET (2010) Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ Technol 31:1145–1158

    CAS  PubMed  Google Scholar 

  31. Rodrigo-Baños M, Garbayo I, Vílchez C, Bonete MJ, Martínez-Espinosa RM (2015) Carotenoids from Haloarchaea and their potential in biotechnology. Mar Drugs 13:5508–5532

    PubMed  PubMed Central  Google Scholar 

  32. Barnard D, Casanueva A, Tuffin M, Cowan D (2010) Extremophiles in biofuel synthesis. Environ Technol 31:871–888

    CAS  PubMed  Google Scholar 

  33. Demain AL, Newcomb M, Wu JH (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang Y, Guo D, Lu J, Dürre P, Dong W, Yan W et al (2018) Consolidated bioprocessing of butanol production from xylan by a thermophilic and butanologenic Thermoanaerobacterium sp. M5. Biotechnol Biofuels 11:89. https://doi.org/10.1186/s13068-018-1092-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Salameh M, Wiegel J (2007) Lipases from extremophiles and potential for industrial applications. Adv Appl Microbiol 61:253–283

    CAS  PubMed  Google Scholar 

  36. Luca PD, Musacchio A, Taddei R (1981) Acidophilic algae from the fumaroles of Mount Lawu (Java), locus classicus of Cyanidium caldarium Geitler. Gionr Bot Ital 115:1–9

    Google Scholar 

  37. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    CAS  PubMed  Google Scholar 

  38. de Vrije T, de Haas GG, Tan GB, Keijsers ERP, Claassen PAM (2002) Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int J Hydrogen Energy 27:1381–1390

    Google Scholar 

  39. Ren N, Cao G, Wang A, Lee DJ, Guo W, Zhu Y (2008) Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrogen Energy 33:6124–6132

    CAS  Google Scholar 

  40. Baker SE, Hopkins RC, Blanchette CD, Walsworth VL, Sumbad R, Fischer NO et al (2009) Hydrogen production by a hyperthermophilic membrane-bound hydrogenase in water-soluble nanolipoprotein particles. J Am Chem Soc 131:7508–7509

    CAS  PubMed  Google Scholar 

  41. Nishimura H, Sako Y (2009) Purification and characterization of the oxygen-thermostable hydrogenase from the aerobic hyperthermophilic archaeon Aeropyrum camini. J Biosci Bioeng 108:299–303

    CAS  PubMed  Google Scholar 

  42. Lipscomb GL, Schut GJ, Thorgersen MP, Nixon WJ, Kelly RM, Adams MW (2006) Engineering hydrogen gas production from formate in a hyperthermophile by heterologous production of an 18-subunit membrane-bound complex. J Biol Chem 289:2873–2879

    Google Scholar 

  43. Sun X, Griffith M, Pasternak J, Glick B (1995) Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 41:776–784

    CAS  PubMed  Google Scholar 

  44. Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML et al (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 17:316–331

    PubMed  Google Scholar 

  45. Saikia J, Sarma RK, Dhandia R, Yadav A, Bharali R, Gupta VK, Saikia R (2018) Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep 8:3560. https://doi.org/10.1038/s41598-018-21921-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ullah A, Nisar M, Ali H, Hazrat A, Hayat K, Keerio AA et al (2019) Drought tolerance improvement in plants: an endophytic bacterial approach. Appl Microbiol Biotechnol 103:7385–7397

    CAS  PubMed  Google Scholar 

  47. Kearl J, McNary C, Lowman JS, Mei C, Aanderud ZT, Smith ST et al (1997) Salt-tolerant halophyte rhizosphere bacteria stimulate growth of alfalfa in salty soil. Front Microbiol 10:1849. https://doi.org/10.3389/fmicb.2019.01849

    Article  Google Scholar 

  48. Hidayati N, Juhaeti T, Fauzia S (2009) Mercury and cyanide contaminations in gold mine environment and possible solution of cleaning up by using phytoextraction. HAYATI J Biosci 16:88–94

    Google Scholar 

  49. Podar M, Reysenbach AL (2006) New opportunities revealed by biotechnological explorations of extremophiles. Curr Opin Biotechnol 17:250–255

    CAS  PubMed  Google Scholar 

  50. Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation – part A. Appl Microbiol Biotechnol 97:7529–7541

    CAS  PubMed  Google Scholar 

  51. Herschy B, Whicher A, Camprubí C, Eloi WC, Dartnell L et al (2014) An origin-of-life reactor to simulate alkaline hydrothermal vents. J Mol Evol 79:213–227

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sojo V, Herschy B, Whicher A, Camprubí E, Lane N (2016) The origin of life in alkaline hydrothermal vents. Astrobiology 16:181–197

    CAS  PubMed  Google Scholar 

  53. Horikoshi K (1991) Microorganisms in alkaline environments. Kodansha-VCH, Tokyo

    Google Scholar 

  54. Kevbrin VV (2019) Isolation and cultivation of alkaliphiles. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2018_84

  55. Lebre PH, Cowan DA (2019) Genomics of alkaliphiles. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2018_83

  56. Cheevadhanarak S, Paithoonrangsarid K, Prommeenate P, Kaewngam W, Musigkain A, Tragoonrung S et al (2012) Draft genome sequence of Arthrospira platensis C1 (PCC9438). Stand Genomic Sci 6:43–53

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N et al (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28:4317–4331

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wernick DG, Choi KY, Tat CA, Lafontaine Rivera JG, Liao JC (2013) Genome sequence of the extreme obligate alkaliphile Bacillus marmarensis strain DSM 21297. Genome Announc 1(6):e00967-e00913. Doi:https://doi.org/10.1128/genomeA.00967-13

  59. Grant WD, Heaphy S (2010) Metagenomics and recovery of enzyme genes from alkaline saline environments. Environ Technol 31:1135–1143

    CAS  PubMed  Google Scholar 

  60. Mamo G (2019) Challenges and adaptations of life in alkaline habitats. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2019_97

  61. Röhm O (1913) German Patent DE 283923

    Google Scholar 

  62. Cameron BA (2007) Laundering in cold water: detergent considerations for consumers. Fam Consum Sci Res J 36:151–162

    Google Scholar 

  63. Golden JS, Subramanian V, Irizarri GMAU, White P, Meier F (2010) Energy and carbon impact from residential laundry in the United States. J Integr Environ Sci 7:53–73

    Google Scholar 

  64. Sundus H, Mukhtar H, Nawaz A (2016) Industrial applications and production sources of serine alkaline proteases: a review. J Bacteriol Mycol Open Acces 3:191–194

    Google Scholar 

  65. Kirschner EM (1997) Soaps and detergents: despite price pressures, ingredients suppliers aim to provide better quality and service, address environmental concerns, and introduced new products. Chem Eng News 75:30–46

    Google Scholar 

  66. Chen SJ, Cheng CY, Chen TL (1998) Production of an alkaline lipase by Acinetobacter radioresistens. J Ferment Bioeng 86:308–312

    CAS  Google Scholar 

  67. Cherif S, Sami M, Hadrich F, Abdelkafi S, Sayadi S (2011) A newly high alkaline lipase: an ideal choice for application in detergent formulations. Lipids Health Dis 10:221

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang YX, Srivastava KC, Shen GJ, Wang HY (1995) Thermostable alkaline lipase from a newly isolated thermophilic Bacillus, strain A30-1 (ATCC 53841). J Ferment Bioeng 79:433–438

    CAS  Google Scholar 

  69. Ito S, Shikata S, Ozaki K, Kawai S, Okamoto K, Inoue S et al (1989) Alkaline cellulase for laundry detergents: production by Bacillus sp. KSM-635 and enzymatic properties. Agric Biol Chem 53:1275–1281

    CAS  Google Scholar 

  70. Karmakar M, Ray RR (2011) Current trends in research and application of microbial cellulases. Res J Microbiol 6:41–53

    CAS  Google Scholar 

  71. Bettiol JP, Showell MS (2002) Detergent compositions comprising a mannanase and a protease, US Patent No. 6 376 445

    Google Scholar 

  72. Kumar BK, Balakrishnan H, Rele MV (2004) Compatibility of alkaline xylanases from an alkaliphilic Bacillus NCL (87-6-10) with commercial detergents and proteases. J Ind Microbiol Biotechnol 31:83–87

    CAS  Google Scholar 

  73. Bruhlmann F, Kim KS, Zimmerman W, Fletcher A (1994) Pectinolytic enzymes from Actinomycetes for degumming of ramie bast fibers. Appl Environ Microbiol 60:2107–2112

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hoondal GS, Tiwari RP, Tewari R, Dahiya N, Beg QK (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59:409–418

    CAS  PubMed  Google Scholar 

  75. Dalmay P, Smith A, Chotard T, Turner PS, Gloaguen V, Krausz P (2010) Properties of cellulosic fibre reinforced plaster: influence of hemp or flax fibres on the properties of set gypsum. J Mater Sci 45:793–803

    CAS  Google Scholar 

  76. Shah DU, Schubel PJ, Clifford MJ (2013) Can flax replace E-glass in structural composites? A small wind turbine blade case study. Compos Part B 52:172–181

    CAS  Google Scholar 

  77. Takagi H (2019) Review of functional properties of natural fiber-reinforced polymer composites: thermal insulation, biodegradation and vibration damping properties. Adv Compos Mater 28:525–543

    CAS  Google Scholar 

  78. Cao J, Zheng L, Chen S (1992) Screening of pectinase producer from alkalophilic bacteria and study on its potential application in degumming of ramie. Enzyme Microb Technol 14:1013–1016

    CAS  Google Scholar 

  79. Kapoor M, Beg QK, Bhushan B, Singh K, Dadhich KS, Hoondal GS (2001) Application of an alkaline and thermostable polygalacturonase from Bacillus sp. MG-cp-2 in degumming of ramie (Boehmeria nivea) and sunn hemp (Crotalaria juncea) bast fibers. Process Biochem 36:803–807

    CAS  Google Scholar 

  80. Kobayashi T, Higaki N, Suzumatsu A, Sawada K, Hagihar H, Kawai S, Ito S (2001) Purification and properties of a high-molecular-weight, alkaline exopolygalacturonase from a strain of Bacillus. Enzyme Microb Technol 29:70–75

    CAS  PubMed  Google Scholar 

  81. Kobayashi T, Koike K, Yoshimatsu T, Higaki N, Suzumatsu A, Ozawa T et al (1999) Purification and properties of a low-molecular-weight, high-alkaline pectate lyase from an alkaliphilic strain of Bacillus. Biosci Biotechnol Biochem 63:65–72

    CAS  PubMed  Google Scholar 

  82. Sorokin D, Panteleeva A, Tourova T, Kaparullina E, Muyzer G (2011) Natronoflexus pectinivorans gen. nov. sp. nov., an obligately anaerobic and alkaliphilic fermentative member of bacteroidetes from soda lakes. Extremophiles 15:691–696

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Doshi R, Shelke V (2001) Enzymes in the textile industry-an environment-friendly approach. Indian J Fibre Text Res 26:202–206

    CAS  Google Scholar 

  84. Shelke V (2001) Enzymatic decolourization of denims: a novel approach. Colourage 48(1):25

    CAS  Google Scholar 

  85. Anish R, Rahman MS, Rao M (2007) Application of cellulases from an alkalothermophilic Thermomonospora sp. in biopolishing of denims. Biotechnol Bioeng 96:48–56

    CAS  PubMed  Google Scholar 

  86. Fukumori F, Kudo NT, Horikoshi K (1985) Purification and properties of a cellulase from alkaliphilic Bacillus no 1139. Gen Microbiol 131:3339–3345

    CAS  Google Scholar 

  87. Kim J, Hur S, Hong J (2005) Purification and characterization of an alkaline cellulase from a newly isolated alkalophilic Bacillus sp. HSH-810. Biotechnol Lett 27:313–316

    CAS  PubMed  Google Scholar 

  88. Global Paper and Pulp Market (2019) Paper and pulp market 2019 industry size, trends, global growth, insights and forecast research report 2024. https://www.360marketupdates.com/global-paper-and-pulp-market-13684507. Accessed 12 Feb 2020

  89. Statista (2019) Distribution of pulp production worldwide in 2017 by region. https://www.statista.com/statistics/596035/pulp-production-distribution-worldwide-by-region/. Accessed 23 Jan 2020

  90. Statista (2019) Paper industry – statistics & facts. https://www.statista.com/topics/1701/paper-industry/. Accessed 23 Jan 2020

  91. Abad S, Santos V, Parajó JC (2001) Totally chlorine-free bleaching of Acetosolv pulps: a clean approach to dissolving pulp manufacture. J Chem Technol Biotechnol 76:1117–1123

    CAS  Google Scholar 

  92. AET (Alliance for Environmental Technology) (2006) Trends in world bleached chemical pulp production: 1990-2005. http://www.aet.org/science_of_ecf/eco_risk/2005_pulp.html. Accessed 9 Feb 2020

  93. Arnand A, Sharma N, Mishra S, Bajpai P, Lachenal D (2006) Enzymes improve ECF bleaching of pulp. Bioresources 1:34–44

    Google Scholar 

  94. Gangwar A, Prakash R, Nagaraja Tejo P (2014) Applicability of microbial xylanases in paper pulp bleaching: a review. Bioresources 9:3733–3754

    Google Scholar 

  95. Lin XQ, Han SY, Zhang N, Hu H, Zheng SP, Ye YR, Lin Y (2013) Bleach boosting effect of xylanase a from Bacillus halodurans C-125 in ECF bleaching of wheat straw pulp. Enzyme Microb Technol 52:91–98

    CAS  PubMed  Google Scholar 

  96. Singh A, Kuhad ARC, Ward OP (2007) Industrial application of microbial cellulases. In: Kuhad RC, Singh A (eds) Lignocellulose biotechnology: future prospects. I.K. International Publishing House, New Delhi, pp 345–358

    Google Scholar 

  97. Suominen P, Reinikainen T (1993) Foundation for biotechnical and industrial fermentation research, in proceedings of the 2nd symposium on Trichoderma reesei cellulases and other hydrolases (TRICEL ’93), vol 8, Espoo, Finland

    Google Scholar 

  98. Thakur VV, Jain RK, Mathur RM (2012) Studies on xylanase and laccase enzymatic prebleaching to reduce chlorine-based chemicals during CEH and ECF bleaching. Bioresources 7:2220–2235

    CAS  Google Scholar 

  99. Viikari L, Suurnäkki A, Grönqvist S, Raaska L, Ragauskas A (2009) Forest products: biotechnology in pulp and paper processing. In: Encyclopedia of microbiology. Academic Press, New York, pp 80–94

    Google Scholar 

  100. Akhtar M (1994) Biochemical pulping of aspen wood chips with three strains of Ceriporiopsis subvermispora. Holzforschung 48:199–202

    CAS  Google Scholar 

  101. Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    CAS  PubMed  Google Scholar 

  102. Pere J, Puolakka A, Nousiainen P, Buchert J (2001) Action of purified Trichoderma reesei cellulases on cotton fibers and yarn. J Biotechnol 89:247–255

    CAS  PubMed  Google Scholar 

  103. Dienesm D, Egyházi A, Réczey K (2004) Treatment of recycled fiber with Trichoderma cellulases. Ind Crop Prod 20:11–21

    Google Scholar 

  104. Mansfield SD, Wong KKY, De Jong E, Saddler JN (1996) Modification of Douglas-fir mechanical and kraft pulps by enzyme treatment. Tappi J 79:125–132

    CAS  Google Scholar 

  105. Virk A, Sharma P, Capalash N (2012) Use of laccase in pulp and paper industry. Biotechnol Prog 28:21–32

    CAS  PubMed  Google Scholar 

  106. Chen Y, Wan J, Ma Y, Tang B, Han W, Ragauskas AR (2012) Modification of old corrugated container pulp with laccase and laccase - mediator system. Bioresour Technol 110:297–301

    CAS  PubMed  Google Scholar 

  107. Mocchiutti P, Zanuttini M, Kruus K, Suurnäkki A (2008) Improvement of the fiber-bonding capacity of unbleached recycled pulp by the Laccase/Mediator treatment. Tappi J 7:17–22

    Google Scholar 

  108. Saxena A, Chauhan PS (2017) Role of various enzymes for deinking paper: a review. Crit Rev Biotechnol 37:598–612

    CAS  PubMed  Google Scholar 

  109. Pathak P, Bhardwaj NK, Singh AK (2011) Optimization of chemical and enzymatic deinking of photocopier waste paper. BioRes 6:447–463

    CAS  Google Scholar 

  110. Knutson K, Ragauskas A (2004) Laccase-mediator biobleaching applied to a direct yellow dyed paper. Biotechnol Prog 20:1893–1896

    CAS  PubMed  Google Scholar 

  111. Leduc C, Lanteigne-Roch LM, Daneault C (2011) Use of enzymes in deinked pulp bleaching. Cell Chem Technol 45:657–663

    CAS  Google Scholar 

  112. Mohandass C, Raghukumar C (2005) Biological deinking of inkjet-printed paper using Vibrio alginolyticus and its enzymes. J Ind Microbiol Biotechnol 32:424–429

    CAS  PubMed  Google Scholar 

  113. Singh G, Arya SK (2019) Utility of laccase in pulp and paper industry: a progressive step towards the green technology. Int J Biol Macromol 134:1070–1084

    CAS  PubMed  Google Scholar 

  114. Kuhad RC, Mehta G, Gupta R, Sharma KK (2010) Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass Bioenergy 34:1189–1194

    CAS  Google Scholar 

  115. Salonen SM (1990) Method for manufacturing paper or cardboard and product containing cellulase. US patent 4980023

    Google Scholar 

  116. Wielen LCV, Panek JC, Pfromm PH (1999) Fracture of toner due to paper swelling. Tappi J 82:115–121

    Google Scholar 

  117. Shrinath A, Szewczak JT, Bowen IJ (1991) A review of ink removal techniques in current deinking technology. Tappi J 74:85–93

    CAS  Google Scholar 

  118. Chakrabarti S, Verma P, Tripathi S, Barnie S, Varadhan R (2011) Stickies: management and control. IPPTA J 23:101–107

    CAS  Google Scholar 

  119. Friberg T (1996) Cost impact of stickies. Prog Pap Recycl 6:70–72

    Google Scholar 

  120. Oldack RC, Gustafson FJ (2005) Initiative to promote environmentally benign adhesives (IPEBA): solving a sticky issue. Prog Pap Recycl 14:6–8

    CAS  Google Scholar 

  121. Venditti RA, Lucas BE, Huo X, Jameel H, Chang HM (2007) Paper recycling factors affecting the screening of pressure sensitive adhesives. Prog Pap Recycl 16:18–31

    CAS  Google Scholar 

  122. Fabry B, Delagoutte T, Serieys L, Schelcher M (2014) Enzyme in paper recycling: effect of enzyme on stickies. ATIP Association Technique de L’Industrie Papetiere 68:10–18

    Google Scholar 

  123. Zhang E, Zhai W, Luo Y, Scott K, Wang X, Diao G (2016) Acclimatization of microbial consortia to alkaline conditions and enhanced electricity generation. Bioresour Technol 211:736–742

    CAS  PubMed  Google Scholar 

  124. Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR et al (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329:305–309

    CAS  PubMed  Google Scholar 

  125. Xie X, Watanabe K, Wojcicki WA, Wang CC, Tang Y (2006) Biosynthesis of lovastatin analogs with a broadly specific acyltransferase. Chem Biol 13:1161–1169

    CAS  PubMed  Google Scholar 

  126. Yazawa K, Numata K (2014) Recent advances in chemoenzymatic peptide syntheses. Molecules 19:13755–13774

    PubMed  PubMed Central  Google Scholar 

  127. Narai-Kanayama A, Hanaishi T, Aso K (2012) α-Chymotrypsin-catalyzed synthesis of poly-L-cysteine in a frozen aqueous solution. J Biotechnol 157:428–436

    CAS  PubMed  Google Scholar 

  128. Uyama H, Fukuoka T, Komatsu I, Watanabe T, Kobayashi S (2002) Protease-catalyzed regioselective polymerization and copolymerization of glutamic acid diethyl ester. Biomacromolecules 3:318–323

    CAS  PubMed  Google Scholar 

  129. Takahagi W, Seo K, Shibuya T, Takano Y, Fujishima K, Saitoh M et al (2019) Peptide synthesis under the alkaline hydrothermal conditions on Enceladus. ACS Earth Space Chem 3:2559–2568

    Google Scholar 

  130. Baker PJ, Numata K (2012) Chemoenzymatic synthesis of poly(L-alanine) in aqueous environment. Biomacromolecules 13:947–951

    CAS  PubMed  Google Scholar 

  131. Chen ST, Chen SY, Hsiao SC, Wang KT (1991) Application of industrial protease “Alcalase” in peptide synthesis. Biomed Biochim Acta 50:S181–S186

    CAS  PubMed  Google Scholar 

  132. Gupta A, Khare SK (2007) Enhanced production and characterization of a solvent stable protease from solvent tolerant Pseudomonas aeruginosa PseA. Enzyme Microb Technol 42:11–16

    CAS  Google Scholar 

  133. Jaouadi B, Badis A, Fodil D, Ferradji F, Rekik H, Zaraî N, Bejar S (2010) Purification and characterization of a thermostable keratinolytic serine alkaline proteinase from Streptomyces sp strain AB1 with high stability in organic solvents. Bioresour Technol 101:8361–8369

    CAS  PubMed  Google Scholar 

  134. Sen S, Dasu VV, Dutt K, Mandal B (2011) Characterization of a novel surfactant and organic solvent stable high-alkaline protease from new Bacillus pseudofirmus SVB1. Res J Microbiol 6:769–783

    CAS  Google Scholar 

  135. Yadav SK, Bisht D, Shikha DNS (2011) Oxidant and solvent stable alkaline protease from Aspergillus flavus and its characterization. Afr J Biotechnol 10:8630–8640

    CAS  Google Scholar 

  136. Wang CH, Guan Z, He YH (2011) Biocatalytic domino reaction: synthesis of 2H-1-benzopyran-2-one derivatives using alkaline protease from Bacillus licheniformis. Green Chem 13:2048–2054

    CAS  Google Scholar 

  137. Wang N, Wu Q, Liu BK, Cai Y, Lin XF (2004) Enzyme catalyzed regioselective synthesis of lipophilic guaifenesin ester derivatives. J MolCatal B: Enzym 27:97–102

    CAS  Google Scholar 

  138. Fujinami S, Fujisawa M (2010) Industrial applications of alkaliphiles and their enzymes – past, present and future. Environ Technol 32:845–856

    Google Scholar 

  139. Qi Q, Zimmermann W (2005) Cyclodextrin glucanotransferase: from gene to applications. Appl Microbiol Biotechnol 66:475–485

    CAS  PubMed  Google Scholar 

  140. Fior Markets (2019) Global cyclodextrin market growth 2019–2024. https://www.fiormarkets.com/report/global-cyclodextrin-market-growth-2019-2024-373093.html. Accessed 10 Feb 2020

  141. Hashim SO (2019) Starch-modifying enzymes. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2019_91

  142. Ameri A, Shakibaie M, Faramarzi MA, Ameri A, Amirpour-Rostami S, Rahimi HR, Forootanfar H (2017) Thermoalkalophilic lipase from an extremely halophilic bacterial strain Bacillus atrophaeus FSHM2: purification, biochemical characterization and application. Biocatal Biotransformation 35:151–160

    CAS  Google Scholar 

  143. Grosse S, Bergeron H, Imura A, Boyd J, Wang S, Kubota K et al (2010) Nature versus nurture in two highly enantioselective esterases from Bacillus cereus and Thermoanaerobacter tengcongensis. J Microbial Biotechnol 3:65–73

    CAS  Google Scholar 

  144. Woo JH, Kang JH, Hwang YO, Cho JC, Kim SJ, Kang SG (2010) Biocatalytic resolution of glycidyl phenyl ether using a novel epoxide hydrolase from a marine bacterium, Rhodobacterales bacterium HTCC2654. J Biosci Bioeng 110:509–509

    CAS  Google Scholar 

  145. Wei XL, Jiang XW, Ye LD, Yuan SF, Chen ZR, Wu M et al (2013) Cloning, expression and characterization of a new enantioselective esterase from a marine bacterium Pelagibacterium halotolerans B2T. J Mol Catal B: Enzym 97:270–277

    CAS  Google Scholar 

  146. Aino K, Hirota K, Okamoto T, Tu Z, Matsuyama H, Yumoto I (2018) Microbial communities associated with indigo fermentation that thrive in anaerobic alkaline environments. Front Microbiol 9:2196

    PubMed  PubMed Central  Google Scholar 

  147. Nakajima K, Hirota K, Nodasaka Y, Yumoto I (2005) Alkalibacterium iburiensesp. nov., an obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 55:1525–1530

    CAS  PubMed  Google Scholar 

  148. Padden AN, Dillon VM, Edmonds J, Collins MD, Alvarez N, John P (1999) An indigo-reducing moderate thermophile from a woad vat, Clostridium isatidis sp. nov. Int J Syst Bacteriol 49:1025–1031

    CAS  PubMed  Google Scholar 

  149. Takahara Y, Tanabe O (1960) Studies on the reduction of indigo in industrial fermentation vat (VII). J Ferment Technol 38:329–331

    CAS  Google Scholar 

  150. Park S, Ryu JY, Seo J, Hur HG (2012) Isolation and characterization of alkaliphilic and thermotolerant bacteria that reduce insoluble indigo to soluble leuco-indigo from indigo dye vat. J Korean Soc Appl Biol Chem 55:83–88

    CAS  Google Scholar 

  151. Yan L, Chen P, Zhang S, Li S, Yan X, Wang N, Liang N, Li H (2016) Biotransformation of ferulic acid to vanillin in the packed bed-stirred fermenters. Sci Rep 6:34644. https://doi.org/10.1038/srep34644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Danesh A, Mamo G, Mattiasson B (2011) Production of haloduracin by Bacillus halodurans using solid-state fermentation. Biotechnol Lett 33:1339–1344

    CAS  PubMed  Google Scholar 

  153. Lawton EM, Cotter PD, Hill C, Ross RP (2007) Identification of a novel two-peptide lantibiotic, Haloduracin, produced by the alkaliphile Bacillus halodurans C-125. FEMS Microbiol Lett 267:64–71

    CAS  PubMed  Google Scholar 

  154. Chun JY, Ryu IH, Park JS, Lee KS (2002) Anticaries activity of antimicrobial material from Bacillus alkalophilshaggy JY-827. J Microbial Biotechnol 12:18–24

    CAS  Google Scholar 

  155. Vasavada SH, Thumar J, Singh SP (2006) Secretion of a potent antibiotic by salt-tolerant and alkaliphilic actinomycete Streptomyces sannanensis strain RJT-1. Curr Sci 91:1393–1397

    CAS  Google Scholar 

  156. Singh LS, Mazumder S, Bora TC (2009) Optimisation of process parameters for growth and bioactive metabolite produced by a salt-tolerant and alkaliphilic actinomycete, Streptomyces tanashiensis strain A2D. J Mycol Med 19:225–233

    Google Scholar 

  157. Kharat KR, Kharat A, Hardikar BP (2009) Antimicrobial and cytotoxic activity of Streptomyces sp. from Lonar Lake. Afr J Biotechnol 8:6645–6648

    Google Scholar 

  158. Thumar JT, Dhulia K, Singh SP (2010) Isolation and partial purification of an antimicrobial agent from halotolerant alkaliphilic Streptomyces aburaviensis strain Kut-8. World J Microbiol Biotechnol 26:2081–2087

    CAS  Google Scholar 

  159. Ding ZG, Li MG, Zhao JY, Ren J, Huang R, Xie MJ et al (2010) Naphthospironone a: an unprecedented and highly functionalized polycyclic metabolite from an alkaline mine waste extremophile. Chemistry 16:3902–3905

    CAS  PubMed  Google Scholar 

  160. Deshmukh D, Puranik P (2010) Application of Plackett-Burman design to evaluate media components affecting antibacterial activity of alkaliphilic cyanobacteria isolated from Lonar Lake. Turk J Biochem 35:114–120

    CAS  Google Scholar 

  161. Neelam DK, Agrawal A, Tomer AK, Bandyopadhayaya S, Sharma A, Jagannadham MV et al (2019) A Piscibacillus sp. isolated from a soda lake exhibits anticancer activity against breast cancer MDA-MB-231 cells. Microorganisms 7:34. https://doi.org/10.3390/microorganisms7020034

    Article  CAS  PubMed Central  Google Scholar 

  162. Dieter A, Hamm A, Fiedler HP, Goodfellow M, Müller WEG, Brun R, Beil W, Bringmann G (2003) Pyrocoll, an antibiotic, antiparasitic and antitumor compound produced by a novel alkaliphilic Streptomyces strain. J Antibiot 56:639–646

    CAS  Google Scholar 

  163. Höltzel A, Dieter A, Schmid DG, Brown R, Goodfellow M, Beil W et al (2003) Lactonamycin Z, an antibiotic and antitumor compound produced by Streptomyces sanglieri strain AK 623. J Antibiot 56:1058–1061

    Google Scholar 

  164. Li YQ, Li MG, Li W, Zhao JY, Ding ZG et al (2007) Griseusin D, a new pyranonaphthoquinone derivative from a alkaphilic Nocardiopsis sp. J Antibiot 60:757–761

    CAS  Google Scholar 

  165. Bisht G, Bharti A, Kumar V, Gusain O (2012) Isolation, purification and partial, characterization of an antifungal agent produced by salt-tolerant alkaliphilic Streptomyces violascens IN2-10. Proc Natl Acad Sci India Sect B Biol Sci 83:109–117

    Google Scholar 

  166. Wang Z, Fu P, Liu P, Wang P, Hou J, Li WJ, Zhu W (2013) New pyran-2-ones from alkalophilic actinomycete, Nocardiopsis alkaliphila sp. Nov. YIM-80379. Chem Biodivers 10:281–287

    CAS  PubMed  Google Scholar 

  167. Helaly SE, Goodfellow M, Zinecker H, Imhoff JF, Süssmuth RD, Fiedler HP (2013) Warkmycin, a novel angucycline antibiotic produced by Streptomyces sp. Acta 2930. J Antibiot 66:669–674

    CAS  Google Scholar 

  168. Adlin J, Remya R, Velmurugan S, Babu M, Citarasu T (2018) Streptomyces castaneoglobisporus AJ9, a haloalkaliphilic actinomycetes isolated from solar salt works in southern India and its pharmacological properties. Indian J Mar Sci 47:475–488

    Google Scholar 

  169. Daliri EB, Oh DH, Lee BH (2017) Bioactive peptides. Foods 6(5):32. https://doi.org/10.3390/foods6050032

    Article  CAS  PubMed Central  Google Scholar 

  170. Li J, Chi Z, Wang X, Peng Y, Chi Z (2009) The selection of alkaline protease-producing yeasts from marine environments and evaluation of their bioactive peptide production. Chinese J Oceanol Limnol 27:753–761

    Google Scholar 

  171. Kim W, Choi K, Kim Y, Park H, Choi J, Lee Y, Oh H, Kwon I, Lee S (1996) Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl Environ Microbiol 62:2482–2488

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Mukherjee AK, Rai SK (2011) A statistical approach for the enhanced production of alkaline protease showing fibrinolytic activity from a newly isolated gram-negative Bacillus sp. strain AS-S20-I. N Biotechnol 28:182–189

    CAS  PubMed  Google Scholar 

  173. Simkhada JR, Mander P, Cho SS, You JC (2010) A novel fibrinolytic protease from Streptomyces sp. CS684. Process Biochem 45:88–93

    CAS  Google Scholar 

  174. Kudrya VA, Simonenko IA (1994) Alkaline serine proteinase and lectin isolation from the culture fluid of Bacillus subtilis. Appl Microbiol Biotechnol 41:505–509

    CAS  Google Scholar 

  175. Davidenko T, Chuenko AV, Kovalenko VN (1997) Immobilized elastoterase. Pharm Chem J 31:396–398

    Google Scholar 

  176. Mamo G, Mattiasson B (2016) Alkaliphilic microorganisms in biotechnology. In: Pabulo HR (ed) Biotechnology of extremophiles. Springer, Cham, pp 243–272

    Google Scholar 

  177. Fior Markets (2019) Global carotenoids market is expected to reach USD 3.59 billion by 2025. https://www.globenewswire.com/news-release/2019/10/15/1929461/0/en/Global-Carotenoids-Market-is-expected-to-reach-USD-3-59-billion-by-2025-Fior-Markets.html. Accessed 12 Feb 2020

  178. Lee PC, Schmidt-Dannert C (2002) Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Microbiol Biotechnol 60:1–11

    CAS  PubMed  Google Scholar 

  179. Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN (2014) Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Fact 13:12

    PubMed  PubMed Central  Google Scholar 

  180. Miyashita K (2009) Function of marine carotenoids. Forum Nutr 61:136–146

    CAS  PubMed  Google Scholar 

  181. Palozza P, Torelli C, Boninsegna A, Simone R, Catalano A, Mele MC, Picci N (2009) Growth-inhibitory effects of the astaxanthin-rich alga Haematococcus pluvialis in human colon cancer cells. Cancer Lett 283:108–117

    CAS  PubMed  Google Scholar 

  182. Jyonouchi H, Sun S, Gross M (1995) Effect of carotenoids on in vitro immunoglobulin production by human peripheral blood mononuclear cells: Astaxanthin, a carotenoid without vitamin A activity, enhances in vitro immunoglobulin production in response to a T-dependent stimulant and antigen. Nutr Cancer 23:171–183

    CAS  PubMed  Google Scholar 

  183. Osanjo GO, Muthike EW, Tsuma L, Okoth MW, Bulimo WD, Lünsdorf H et al (2009) A salt Lake extremophile, Paracoccus bogoriensis sp. nov., efficiently produces xanthophyll carotenoids. Afr J Microbiol Res 3:426–433

    CAS  Google Scholar 

  184. Khalikova E, Somersalo S, Korpela T (2019) Metabolites produced by alkaliphiles with potential biotechnological applications. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2019_96

  185. Sarethy IP, Saxena Y, Kapoor A, Sharma M, Sharma SK, Gupta V, Gupta S (2011) Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol 38:769–790

    CAS  PubMed  Google Scholar 

  186. Asao M, Takaichi S, Madigan MT (2012) Amino acid-assimilating phototrophic heliobacteria from soda lake environments: Heliorestis acidaminivorans sp. nov. and ‘Candidatus Heliomonas lunata’. Extremophiles 16:585–595

    CAS  PubMed  Google Scholar 

  187. Drechsel H, Jung G (1998) Peptide siderophores. J Pept Sci 4:147–181

    CAS  PubMed  Google Scholar 

  188. Melack JM, Kilham P (1974) Photosynthetic rates of phytoplankton in East African alkaline, saline lakes. Limnol Oceanogr 19:743–755

    CAS  Google Scholar 

  189. McMillan DGG, Velasquez I, Nunn BL, Goodlett DR, Hunter KA, Lamont I, Sander SG, Cook GM (2010) Acquisition of iron by alkaliphilic Bacillus species. Appl Environ Microbiol 76:6955–6961

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Figueroa LS, Schwarz B, Richards AM (2015) Structural characterization of amphiphilic siderophores produced by a soda lake isolate, Halomonas sp. SL01, reveals cysteine, phenylalanine and proline containing head groups. Extremophiles 19:1183–1192

    CAS  PubMed  Google Scholar 

  191. Anjum F, Gautam G, Edgard G, Negi S (2016) Biosurfactant production through Bacillus sp. MTCC 5877 and its multifarious applications in food industry. Bioresour Technol 213:262–269

    CAS  PubMed  Google Scholar 

  192. Karlapudi AP, Venkateswarulu TC, Tammineedi J, Kanumuri L, Ravuru BK, Dirisala VR, Kodali VP (2018) Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum 4:241–249

    Google Scholar 

  193. Maximize Market Research (2019) Biosurfactant market – global industry analysis and forecast (2019–2026) by type, by application and by geography. https://www.maximizemarketresearch.com/market-report/global-biosurfactants-market/433/. Accessed 10 Feb 2020

  194. Jain R, Mody K, Mishra A, Jha B (2012) Isolation and structural characterization of biosurfactant produced by an alkaliphilic bacterium Cronobacter sakazakii isolated from oil contaminated wastewater. Carbohydr Polym 87:2320–2326

    CAS  Google Scholar 

  195. Tambekar DH, Dose PN, Gunjakar SR, Gadakh PV (2012) Studies on biosurfactant production from Lonar Lake’s Achromobacter xylosoxidans bacterium. Int J Adv Pharm Biol Chem 1:415–419

    Google Scholar 

  196. Shende AM (2013) Studies on biosurfactant from Exiguobacterium sp. Sci Res Repor 3:193–199

    Google Scholar 

  197. Selim S, El-Alfy S, Hagagy N, Hassanin A, Khattab R, Syaed E (2012) Oil-biodegradation and biosurfactant production by haloalkaliphilic archaea isolated from soda lakes of the Wadi an Natrun, Egypt. J Pure Appl Microbiol 6:1011–1020

    CAS  Google Scholar 

  198. Zarinviarsagh M, Ebrahimipour G, Sadeghi H (2017) Lipase and biosurfactant from Ochrobactrum intermedium strain MZV101 isolated by washing powder for detergent application. Lipids Health Dis 16:177. https://doi.org/10.1186/s12944-017-0565-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Andhare P, Chauhan K, Dave M, Pathak H (2014) Microbial exopolysaccharides: advances in applications and future prospects. In: Biotechnology volume 3: microbial biotechnology. Studium Press LLC, Houston, pp 1–25

    Google Scholar 

  200. Costa OYA, Raaijmakers JM, Kuramae EE (2018) Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol 9:1636

    PubMed  PubMed Central  Google Scholar 

  201. Florenzano G, Sili C, Pelosi E, Vincenzini M (1985) Cyanospira rippkae and Cyanospira capsulata (gen. nov. and spp. nov.): new filamentous heterocystous cyanobacteria from Magadi lake (Kenya). Arch Microbiol 140:301–306

    Google Scholar 

  202. Corsaro MM, Grant WD, Grant S, Marciano CE, Parrilli M (1999) Structure determination of an exopolysaccharide from an alkaliphilic bacterium closely related to Bacillus spp. Eur J Biochem 264:554–561

    CAS  PubMed  Google Scholar 

  203. Joshi AA, Kanekar PP (2011) Production of exopolysaccharide by Vagococcus carniphilus MCM B-1018 isolated from alkaline Lonar Lake, India. Ann Microbiol 61:733–740

    CAS  Google Scholar 

  204. De Philippis R, Micheletti E (2009) Heavy metal removal with exopolysaccharide-producing cyanobacteria. In: Wang LK, Chen JP, Hung YT, Shammas NK (eds) Heavy metals in the environment. CRC Press, Boca Raton, pp 89–122

    Google Scholar 

  205. De Philippis R, Paperi R, Sili C (2007) Heavy metal sorption by released polysaccharides and whole cultures of two exopolysaccharide-producing cyanobacteria. Biodegradation 18:181–187

    CAS  PubMed  Google Scholar 

  206. Zinicovscaia I, Yushin N, Shvetsova M, Frontasyeva M (2018) Zinc removal from model solution and wastewater by Arthrospira (Spirulina) Platensis biomass. Int J Phytoremediation 20:901–908

    CAS  PubMed  Google Scholar 

  207. Han PP, Sun Y, Wu XY, Yuan YJ, Dai YJ, Jia SR (2014) Emulsifying, flocculating, and physicochemical properties of exopolysaccharide produced by cyanobacterium Nostoc flagelliforme. Appl Biochem Biotechnol 172:36–49

    CAS  PubMed  Google Scholar 

  208. Liu C, Wang K, Jiang JH, Liu WJ, Wang JY (2015) A novel bioflocculant produced by a salt-tolerant, alkaliphilic and biofilm-forming strain Bacillus agaradhaerens C9 and its application in harvesting Chlorella minutissima UTEX2341. Biochem Eng J 93:166–172

    CAS  Google Scholar 

  209. Xu L, Yong H, Tu X, Wang Q, Fan J (2019) Physiological and proteomic analysis of Nostoc flagelliforme in response to alkaline pH shift for polysaccharide accumulation. Algal Res 39:101444. https://doi.org/10.1016/j.algal.2019.101444

    Article  Google Scholar 

  210. Tenenbaum DJ (2008) Food vs. fuel: diversion of crops could cause more hunger. Environ Health Perspect 116:A254–A257

    PubMed  PubMed Central  Google Scholar 

  211. Blomqvist J, Eberhard T, Schnürer J, Passoth V (2010) Fermentation characteristics of Dekkera bruxellensis strains. Appl Microbiol Biotechnol 87:1487–1497

    CAS  PubMed  Google Scholar 

  212. Sharma A, Kawarabayasi Y, Satyanarayana T (2012) Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications. Extremophiles 16:1–19

    CAS  PubMed  Google Scholar 

  213. Jiang Y, Xin F, Lu J, Dong W, Zhang W, Zhang M et al (2017) State of the art review of biofuels production from lignocellulose by thermophilic bacteria. Bioresour Technol 245(Pt B):1498–1506

    CAS  PubMed  Google Scholar 

  214. Mamo G (2019) Alkaline active hemicellulases. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2019_101

  215. Temudo MF, Kleerebezem R, van Loosdrecht MCM (2007) Influence of the pH on (open) mixed culture fermentation of glucose: a chemostat study. Biotechnol Bioeng 98:69–79

    CAS  PubMed  Google Scholar 

  216. Temudo MF, Muyzer G, Kleerebezem R, van Loosdrecht MC (2008) Diversity of microbial communities in open mixed culture fermentations: impacts of the pH and carbon source. Appl Microbiol Biotechnol 80:1121–1130

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Wernick DG, Pontrelli SP, Pollock AW, Liao JC (2016) Sustainable biorefining in wastewater by engineered extreme alkaliphile Bacillus marmarensis. Sci Rep 6:20224. https://doi.org/10.1038/srep20224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Ananyev G, Carrieri D, Dismukes GC (2008) Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium “Arthrospira (Spirulina) maxima”. Appl Environ Microbiol 74:6102–6113

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56

    CAS  PubMed  Google Scholar 

  220. Santos AM, Janssen M, Lamers PP, Evers WAC, Wijffels RH (2012) Growth of oil accumulating microalga Neochloris oleoabundans under alkaline saline conditions. Bioresour Technol 104:593–599

    CAS  PubMed  Google Scholar 

  221. Bell TA, Prithiviraj B, Wahlen BD, Fields MW, Peyton BM (2016) A lipid-accumulating alga maintains growth in outdoor, alkaliphilic raceway pond with mixed microbial communities. Front Microbiol 6:1480. https://doi.org/10.3389/fmicb.2015.01480

    Article  PubMed  PubMed Central  Google Scholar 

  222. Chowdhury R, Keen PL, Tao W (2019) Fatty acid profile and energy efficiency of biodiesel production from an alkaliphilic algae grown in the photobioreactor. Bioresour Technol Rep 6:229–236

    Google Scholar 

  223. Vadlamani A, Viamajala S, Pendyala B, Varanasi S (2017) Cultivation of microalgae at extreme alkaline pH conditions: a novel approach for biofuel production. ACS Sustain Chem Eng 5:7284–7294

    CAS  Google Scholar 

  224. Jiang X, Xue Y, Wang A, Wang L, Zhang G, Zeng Q, Yu B, Ma Y (2013) Efficient production of polymer-grade l-lactate by an alkaliphilic Exiguobacterium sp. strain under nonsterile open fermentation conditions. Bioresour Technol 143:665–668

    CAS  PubMed  Google Scholar 

  225. Meng Y, Xue Y, Yu B, Gao C, Ma Y (2012) Efficient production of l-lactic acid with high optical purity by alkaliphilic Bacillus sp. WL-S20. Bioresour Technol 116:334–339

    CAS  PubMed  Google Scholar 

  226. Assavasirijinda N, Ge D, Yu B, Xue Y, Ma Y (2016) Efficient fermentative production of polymer-grade d-lactate by an engineered alkaliphilic Bacillus sp. strain under non-sterile conditions. Microb Cell Fact 15:3. https://doi.org/10.1186/s12934-015-0408-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Calabia BP, Tokiwa Y, Aiba S (2011) Fermentative production of l-(+)-lactic acid by an alkaliphilic marine microorganism. Biotechnol Lett 33:1429–1433

    CAS  PubMed  Google Scholar 

  228. Yokaryo H, Tokiwa (2014) Isolation of alkaliphilic bacteria for production of high optically pure L-(+)-lactic acid. J Gen Appl Microbiol 60: 270–275

    Google Scholar 

  229. Yoshimune K, Yamamoto M, Aoyagi T, Yumoto I (2017) High and rapid L-lactic acid production by alkaliphilic Enterococcus sp. by adding wheat bran hydrolysate. Ferment Technol 6:1. https://doi.org/10.4172/2167-7972.1000138

    Article  CAS  Google Scholar 

  230. Abdel-Rahman MA, Hassan SE, Azab MS, Mahin AA, Gaber MA (2019) High improvement in lactic acid productivity by new alkaliphilic bacterium using repeated batch fermentation integrated with increased substrate concentration. Biomed Res Int 2019:7212870. https://doi.org/10.1155/2019/7212870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Abdel-Rahman MA, Hassan SED, Azab MS, Gaber MA (2016) Effective production of lactic acid by a newly isolated alkaliphilic Psychrobacter maritimus BoMAir 5 strain. J Appl Biotechnol Bioeng 1:68–76

    Google Scholar 

  232. Olvera-Novoa MA, Dominguez-Cen LJ, Olivera-Castillo L, Martinez-Palacios CA (1998) Effect of the use of the microalga Spirulina maxima as fish meal replacement in diets for tilapia. Aquacult Res 29:709–715

    Google Scholar 

  233. Plavsic M, Terzic S, Ahel M, Van Den Berg CMG (2004) Folic acid in coastal waters of the Adriatic Sea. Mar Freshw Res 53:1245–1252

    Google Scholar 

  234. Prasanna R, Sood A, Jaiswal P, Nayak S, Gupta V, Chaudhary V et al (2010) Rediscovering cyanobacteria as valuable sources of bioactive compounds (review). Appl Biochem Microbiol 46:119–134

    CAS  Google Scholar 

  235. Rabelo SF, Lemes AC, Takeuchi KP, Frata MT, Monteiro de Carvalho JC, Danesi EDG (2013) Development of cassava doughnuts enriched with Spirulina platensis biomass. Braz J Food Technol 16:42–51

    CAS  Google Scholar 

  236. Chamorro G, Salazar M, Favila L, Bourges H (1996) Pharmacology and toxicology of the alga Spirulina. Rev Invest Clin 48:389–399

    CAS  PubMed  Google Scholar 

  237. Gantar M, Svirčev Z (2008) Microalgae and cyanobacteria: food for thought. J Phycol 44:260–268

    PubMed  Google Scholar 

  238. Allied Market Research (2019) Spirulina market outlook – 2026. https://www.alliedmarketresearch.com/spirulina-market. Accessed 25 Feb 2020

  239. Holman BWB, Malau-Aduli AEO (2012) Spirulina as a livestock supplement and animal feed. J Anim Physiol Anim Nutr 97:615–623

    Google Scholar 

  240. Nuhu AA (2013) Spirulina (Arthrospira): An important source of nutritional and medicinal compounds. J Mar Biol 2013:325636

    Google Scholar 

  241. Ganuza E, Sellers CE, Bennett BW, Lyons EM, Carney LT (2016) A novel treatment protects Chlorella at commercial scale from the predatory bacterium Vampirovibrio chlorellavorus. Front Microbiol 7:848. https://doi.org/10.3389/fmicb.2016.00848

    Article  PubMed  PubMed Central  Google Scholar 

  242. Rego D, Redondo LM, Geraldes V, Costa L, Navalho J, Pereira M (2014) Control of predators in industrial scale microalgae cultures with pulsed electric fields. Bioelectrochemistry 103:60–64

    PubMed  Google Scholar 

  243. Fan Y, Hu H, Liu H (2007) Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ Sci Technol 41:8154–8158

    CAS  PubMed  Google Scholar 

  244. Zhang Z, Lan D, Zhou P, Li J, Yang B, Wang Y (2016) Control of sticky deposits in wastepaper recycling with thermophilic esterase. Cellul 24:1–11

    Google Scholar 

  245. Yumoto I, Nakamura A, Iwata H, Kojima K, Kusumoto K, Nodasaka Y, Matsuyama H (2002) Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int J Syst Evol Microbiol 52:85–90

    CAS  PubMed  Google Scholar 

  246. Zhang T, Zhang L, Su W, Gao P, Li D, He X et al (2011) The direct electrocatalysis of phenazine-1-carboxylic acid excreted by Pseudomonas alcaliphila under alkaline condition in microbial fuel cells. Bioresour Technol 102:7099–7102

    CAS  PubMed  Google Scholar 

  247. Inglesby AE, Fisher AC (2012) Enhanced methane yields from anaerobic digestion of Arthrospira maxima biomass in an advanced flow-through reactor with an integrated recirculation loop microbial fuel cell. Energ Environ Sci 5:7996–8006

    CAS  Google Scholar 

  248. Foley J, Rozendal R, Hertle C, Lant P, Rabaey K (2010) Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ Sci Technol 44:3629–3637

    CAS  PubMed  Google Scholar 

  249. Azuma M, Ojima Y (2018) Catalyst development of microbial fuel cells for renewable-energy production. In: Shiomi N (ed) Current topics in biochemical engineering. IntechOpen, London. https://doi.org/10.5772/intechopen.81442

    Chapter  Google Scholar 

  250. Li XM, Cheng KY, Wong JW (2013) Bioelectricity production from food waste leachate using microbial fuel cells: effect of NaCl and pH. Bioresour Technol 149:452–458

    CAS  PubMed  Google Scholar 

  251. Jayashree C, Tamilarasan K, Rajkumar M, Arulazhagan P, Yogalakshmi KN, Srikanth M et al (2016) Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm. J Environ Manage 180:351–358

    CAS  PubMed  Google Scholar 

  252. Mamo G, Mattiasson B (2019) Alkaliphiles: the emerging biological tools enhancing concrete durability. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2019_94

  253. Ferris F, Stehmeier L, Kantzas A, Mourits FM (1997) Bacteriogenic mineral plugging. J Can Petrol Technol 36:56–61

    Google Scholar 

  254. Gollapudi UK, Knutson CL, Bang SS, Islam MR (1995) A new method for controlling leaching through permeable channels. Chemosphere 30:695–705

    CAS  Google Scholar 

  255. Ivanov V, Chu J (2008) Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev Environ Sci Biotechnol 7:139–153

    CAS  Google Scholar 

  256. Dejong JT, Fritzges MB, Nüsslein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng 132:1381–1392

    CAS  Google Scholar 

  257. Canakci H, Sidik W, HalilKili I (2015) Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils Found 55:1211–1221

    Google Scholar 

  258. Stabnikov V, Ivanov V, Chu J (2015) Construction biotechnology: a new area of biotechnological research and applications. World J Microbiol Biotechnol 31:1303–1314

    CAS  PubMed  Google Scholar 

  259. Plank J (2004) Application of biopolymers and other biotechnological products in building material. Appl Microbiol Biotechnol 66:1–9

    CAS  PubMed  Google Scholar 

  260. Ye Q, Roh Y, Carroll SL, Blair B, Zhou JZ, Zhang CL et al (2004) Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. Appl Environ Microbiol 70:5595–5602

    PubMed  PubMed Central  Google Scholar 

  261. Roh Y, Chon CH, Moon JW (2007) Metal reduction and biomineralization by an alkaliphilic metal-reducing bacterium, Alkaliphilus metalliredigens (QYMF). Geosci J 11:415–423

    CAS  Google Scholar 

  262. Ibrahim A, Eltayeb M, Elbadawi Y, Alsalamah A (2011) Isolation and characterization of novel potent Cr(VI) reducing alkaliphilic Amphibacillus sp. KSUCR3 from hypersaline soda lakes. Electron J Biotechnol 14:4–4. https://doi.org/10.2225/vol14-issue4-fulltext-4

    Article  CAS  Google Scholar 

  263. Balls PW, Liss PS (1983) Exchange of H2S between water and air. Atmos Environ 187:735–742

    Google Scholar 

  264. de Rink R, Klok JBM, van Heeringen GJ, Keesman KJ, Janssen AJH, Ter Heijne A, Buisman CJN (2020) Biologically enhanced hydrogen sulfide absorption from sour gas under haloalkaline conditions. J Hazard Mater 383:121104. https://doi.org/10.1016/j.jhazmat.2019.121104

    Article  CAS  PubMed  Google Scholar 

  265. Sorokin DY, Van Den Bosch PLF, Abbas B, Janssen AJH, Muyzer G (2008) Microbiological analysis of the population of extremely haloalkaliphilic sulfur-oxidizing bacteria dominating in lab-scale sulfide-removing bioreactors. Appl Microbiol Biotechnol 80:965–975

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Nikolova C, Gutierrez T (2020) Use of microorganisms in the recovery of oil from recalcitrant oil reservoirs: current state of knowledge, technological advances and future perspectives. Front Microbiol 10:2996. https://doi.org/10.3389/fmicb.2019.02996

    Article  PubMed  PubMed Central  Google Scholar 

  267. Zhang B, Huston A, Whipple L, Barrett H, Wall M, Hutchins R, Mirakyan A (2013) A superior, high-performance enzyme for breaking borate crosslinked fracturing fluids under extreme well conditions. SPE Prod Oper 28:210–216

    CAS  Google Scholar 

  268. Saha P, Rao B (2019) Biotransformation of reactive Orange 16 by alkaliphilic bacterium Bacillus flexus VITSP6 and toxicity assessment of biotransformed metabolites. Int J Environ Sci Technol 17:99–114

    Google Scholar 

  269. Shobana S, Thangam B (2012) Biodegradation and decolorization of reactive Orange 16 by Nocardiopsis alba soil isolate. J Bioremed Biodegr 3:6. https://doi.org/10.4172/2155-6199.1000155

    Article  CAS  Google Scholar 

  270. Prasad ASA, Rao KVB (2013) Aerobic biodegradation of azo dye by Bacillus cohnii MTCC 3616; an obligately alkaliphilic bacterium and toxicity evaluation of metabolites by different bioassay systems. Appl Microbiol Biotechnol 97:7469–7481

    CAS  PubMed  Google Scholar 

  271. Lalnunhlimi S, Krishnaswamy V (2016) Decolorization of azo dyes (Direct Blue 151 and Direct Red 31) by moderately alkaliphilic bacterial consortium. Braz J Microbiol 47:39–46

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Kovacic P, Somanathan R (2014) Nitroaromatic compounds: environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism. J Appl Toxicol 34:810–824

    CAS  PubMed  Google Scholar 

  273. Purohit V, Basu AK (2000) Mutagenicity of nitroaromatic compounds. Chem Res Toxicol 13:673–692

    CAS  PubMed  Google Scholar 

  274. Ju KS, Parales RE (2010) Nitroaromatic compounds, from synthesis to biodegradation. Microbiol Mol Biol Rev 74:250–272

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Spain JC (1995) Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49:523–555

    CAS  PubMed  Google Scholar 

  276. Misal S, Humne VI, Lokhande PD, Gawai KR (2015) Biotransformation of nitro aromatic compounds by flavin-free NADHAzoreductase. J Bioremed Biodegr 6:2

    Google Scholar 

  277. Misal SA, Lingojwar DP, Gawai KR (2013) Properties of NAD(P)H azoreductase from alkaliphilic red bacteria Aquiflexum sp. DL6. Protein J 32:601–608

    CAS  PubMed  Google Scholar 

  278. Al-Awadhi H, Sulaiman RH, Mahmoud HM, Radwan SS (2007) Alkaliphilic and halophilic hydrocarbon-utilizing bacteria from Kuwaiti coasts of the Arabian gulf. Appl Microbiol Biotechnol 77:183–186

    CAS  PubMed  Google Scholar 

  279. Mcgenity T, Whitby C, Fahy A (2010) Alkaliphilic hydrocarbon degraders. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1931–1937. https://doi.org/10.1007/978-3-540-77587-4_141

    Chapter  Google Scholar 

  280. Sorkhoh NA, Al-Awadhi H, Al-Mailem DM, Kansour M, Khanafer M, Radwan SS (2010) Agarolytic bacteria with hydrocarbon-utilization potential in fouling material from the Arabian Gulf coast. Int Biodeter Biodegr 64:554–559

    CAS  Google Scholar 

  281. Sugimori D, Dake T, Nakamura S (2000) Microbial degradation of disodium terephthalate by alkaliphilic Dietzia sp. strain GS-1. Biosci Biotechnol Biochem 64:2709–2711

    CAS  PubMed  Google Scholar 

  282. Yumoto I, Yamaga S, Sogabe Y, Nodasaka Y, Matsuyama H, Nakajima K, Suemori A (2003) Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and m-hydroxybenzoate. Int J Syst Evol Microbiol 53:1531–1536

    CAS  PubMed  Google Scholar 

  283. Ahmed A, Othman M, Sarwade VD, Gawai KR (2012) Degradation of anthracene by alkaliphilic bacteria Bacillus badius. Environ Pollut 1:97–104

    CAS  Google Scholar 

  284. Habe H, Kanemitsu M, Nomura M, Takemura T, Iwata K, Nojiri H et al (2004) Isolation and characterization of an alkaliphilic bacterium utilizing pyrene as a carbon source. J Biosci Bioeng 98:306–308

    CAS  PubMed  Google Scholar 

  285. Oie CS, Albaugh CE, Peyton BM (2007) Benzoate and salicylate degradation by Halomonas campisalis, an alkaliphilic and moderately halophilic microorganism. Water Res 41:1235–1242

    CAS  PubMed  Google Scholar 

  286. Huertas MJ, Sáez LB, Roldán MD, Luque-Almagro VM, Martínez-Luque M et al (2010) Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Influence of pH. J Hazard Mater 179:72–78

    CAS  PubMed  Google Scholar 

  287. Luque-Almagro VM, Blasco R, Huertas MJ, Martínez-Luque M, Moreno-Vivian C, Castillo F, Roldan MD (2005) Alkaline cyanide biodegradation by Pseudomonas pseudoalcaligenes CECT5344. Biochem Soc Trans 33:168–169

    CAS  PubMed  Google Scholar 

  288. Wanyonyi WC, Mulaa FJ (2019) Alkaliphilic enzymes and their application in novel leather processing technology for next-generation tanneries. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2019_95

  289. Costa SA, Tzanov T, Carneiro F, Gübitz GM, Cavaco-Paulo A (2002) Recycling of textile bleaching effluents for dyeing using immobilized catalase. Biotechnol Lett 24:173–176

    CAS  Google Scholar 

  290. Oluoch KR, Welander U, Andersson MM, Mulaa FJ, Mattiasson B, Hatti-Kaul R (2006) Hydrogen peroxide degradation by immobilized cells of alkaliphilic Bacillus halodurans. Biocatal Biotransformation 24:215–222

    CAS  Google Scholar 

  291. Paar A, Costa S, Tzanov T, Gudelj M, Robra K-H, Cavacao-Paulo A, Gübitz GM (2001) Thermo-alkali-stable catalases from newly isolated Bacillus sp. for treatment and recycling of textile bleaching effluents. J Biotechnol 89:147–153

    CAS  PubMed  Google Scholar 

  292. Paar A, Raninger A, Desousa F, Beurer I, Cavaco-Paulo A, Gübitz GM (2003) Production of catalase-peroxidase and continuous degradation of hydrogen peroxide by an immobilized alkalothermophilic Bacillus sp. Food Technol Biotechnol 41:101–104

    CAS  Google Scholar 

  293. Kulshreshtha N, Kruthiventi A, Bisht G, Pasha S, Kumar R (2012) Usefulness of organic acid produced by Exiguobacterium sp. 12/1 on neutralization of alkaline wastewater. Sci World J 2012:345101. https://doi.org/10.1100/2012/345101

    Article  CAS  Google Scholar 

  294. Jain RM, Mody KH, Keshri J, Jha B (2011) Biological neutralization of chlor-alkali industry wastewater. Mar Pollut Bull 62:2377–2383

    CAS  PubMed  Google Scholar 

  295. Li Q (2019) Progress in microbial degradation of feather waste. Front Microbiol 10:2717. https://doi.org/10.3389/fmicb.2019.02717

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gashaw Mamo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mamo, G., Mattiasson, B. (2020). Alkaliphiles: The Versatile Tools in Biotechnology. In: Mamo, G., Mattiasson, B. (eds) Alkaliphiles in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 172. Springer, Cham. https://doi.org/10.1007/10_2020_126

Download citation

Publish with us

Policies and ethics