Skip to main content

Aptamer-Modified Nanoparticles in Medical Applications

  • Chapter
  • First Online:
Aptamers in Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 174))

Abstract

Since aptamers have been selected against a broad range of target structures of medical interest and nanoparticles are available with diverse properties, aptamer-modified nanoparticles can be used in various diagnostic and therapeutic applications. While the aptamer is responsible for specificity and affinity of the conjugate, the nanoparticles’ function varies from signal generation in diagnostic approaches to drug loading in drug delivery systems. Within this chapter different medical applications of aptamer-modified nanoparticles will be summarized and underlying principles will be described.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  CAS  PubMed  Google Scholar 

  2. Wu X, Chen J, Wu M, Zhao JX (2015) Aptamers: active targeting ligands for cancer diagnosis and therapy. Theranostics 5(4):322–344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Wang AZ et al (2008) Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 3(9):1311–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen A, Yang S (2015) Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron 71:230–242

    Article  CAS  PubMed  Google Scholar 

  5. Ferreira CDA, De Barros ALB (2013) Aptamer functionalized nanoparticles for cancer targeting. J Mol Pharm Org Process Res 01(02):1–2

    Google Scholar 

  6. Modrejewski J et al (2016) Aptamer-modified polymer nanoparticles for targeted drug delivery. BioNanoMaterials 17(1–2):43–51

    Google Scholar 

  7. Luo YL, Shiao YS, Huang YF (2011) Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. ACS Nano 5(10):7796–7804

    Article  CAS  PubMed  Google Scholar 

  8. Zhu Z et al (2008) Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc 130:10856–10857

    Article  CAS  PubMed  Google Scholar 

  9. Min K et al (2011) Dual-aptamer-based delivery vehicle of doxorubicin to both PSMA (+) and PSMA (−) prostate cancers. Biomaterials 32(8):2124–2132

    Article  CAS  PubMed  Google Scholar 

  10. Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9(7):537–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Patel DJ et al (1997) Structure, recognition and adaptive binding in RNA aptamer complexes. J Mol Biol 272(5):645–664

    Article  CAS  PubMed  Google Scholar 

  12. Urmann K, Modrejewski J, Scheper T, Walter J-G (2017) Aptamer-modified nanomaterials: principles and applications. BioNanoMaterials 18(1–2):1–17

    Google Scholar 

  13. Walter JG, Kökpinar Ö, Friehs K, Stahl F, Scheper T (2008) Systematic investigation of optimal aptamer immobilization for protein-microarray applications. Anal Chem 80(19):7372–7378

    Article  CAS  PubMed  Google Scholar 

  14. Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker JR, Banaszak Holl MM (2007) The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol 14(1):107–115

    Article  CAS  PubMed  Google Scholar 

  15. Vorobyeva M, Vorobjev P, Venyaminova A (2016) Multivalent aptamers: versatile tools for diagnostic and therapeutic applications. Molecules 21(12):1613

    Article  PubMed Central  CAS  Google Scholar 

  16. Li H et al (2015) Multifunctional aptamer-silver conjugates as theragnostic agents for specific cancer cell therapy and fluorescence-enhanced cell imaging. Anal Chem 87(7):3736–3745

    Article  CAS  PubMed  Google Scholar 

  17. Stephanopoulos N, Tong GJ, Hsiao SC, Francis MB (2010) Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells. ACS Nano 4(10):6014–6020

    Article  CAS  PubMed  Google Scholar 

  18. Hsu CL, Chang HT, Chen CT, Wei SC, Shiang YC, Huang CC (2011) Highly efficient control of thrombin activity by multivalent nanoparticles. Chem Eur J 17(39):10994–11000

    Article  CAS  PubMed  Google Scholar 

  19. Huang SS, Wei SC, Chang HT, Lin HJ, Huang CC (2016) Gold nanoparticles modified with self-assembled hybrid monolayer of triblock aptamers as a photoreversible anticoagulant. J Control Release 221:9–17

    Article  CAS  PubMed  Google Scholar 

  20. Zhang G, Zhu C, Huang Y, Yan J, Chen A (2018) A lateral flow strip based aptasensor for detection of Ochratoxin a in corn samples. Molecules 23(2):1–12

    CAS  Google Scholar 

  21. Wang P et al (2016) Aptamer-wrapped gold nanoparticles for the colorimetric detection of omethoate. Sci China Chem 59(2):237–242

    Article  CAS  Google Scholar 

  22. Mohamad A, Teo H, Keasberry NA, Ahmed MU (2019) Recent developments in colorimetric immunoassays using nanozymes and plasmonic nanoparticles. Crit Rev Biotechnol 39(1):50–66

    Article  CAS  PubMed  Google Scholar 

  23. Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650

    Article  CAS  PubMed  Google Scholar 

  24. Cheng N et al (2018) Aptasensor based on fluorophore-quencher nano-pair and smartphone spectrum reader for on-site quantification of multi-pesticides. Biosens Bioelectron 117:75–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dhiman A, Kalra P, Bansal V, Bruno JG, Sharma TK (2017) Aptamer-based point-of-care diagnostic platforms. Sensors Actuators B Chem 246:535–553

    Article  CAS  Google Scholar 

  26. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  27. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Walter JG, Petersen S, Stahl F, Scheper T, Barcikowski S (2010) Laser ablation-based one-step generation and bio-functionalization of gold nanoparticles conjugated with aptamers. J Nanobiotechnol 8(1):21

    Article  CAS  Google Scholar 

  29. Dubois LH, Nuzzo RG (1992) Synthesis, structure, and properties of model organic surfaces

    Google Scholar 

  30. Citartan M, Ch’ng ES, Rozhdestvensky TS, Tang TH (2016) Aptamers as the “capturing” agents in aptamer-based capture assays. Microchem J 128:187–197

    Article  CAS  Google Scholar 

  31. Liu S, Han MY (2010) Silica-coated metal nanoparticles. Chem Asian J 5(1):36–45

    CAS  PubMed  Google Scholar 

  32. Wu Z, Liang J, Ji X, Yang W (2011) Preparation of uniform au@SiO2 particles by direct silica coating on citrate-capped au nanoparticles. Colloids Surf A Physicochem Eng Asp 392(1):220–224

    Article  CAS  Google Scholar 

  33. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782

    Article  CAS  PubMed  Google Scholar 

  34. Li H, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci 101(39):14036–14039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Koczula KM, Gallotta A (2016) Lateral flow assays. Essays Biochem 60(1):111–120

    Article  PubMed  PubMed Central  Google Scholar 

  36. Vaitukaitis JL, Braunstein GD, Ross GT (1972) A radioimmunoassay which specifically measures human chorionic gonadotropin in the presence of human luteinizing hormone. Am J Obstet Gynecol 113(6):751–758

    Article  CAS  PubMed  Google Scholar 

  37. Daviaud J et al (1993) Reliability and feasibility of pregnancy home-use tests: laboratory validation and diagnostic evaluation by 638 volunteers. Clin Chem 39(1):53–59

    Article  CAS  PubMed  Google Scholar 

  38. Schüling T, Eilers A, Scheper T, Walter J (2018) Aptamer-based lateral flow assays. AIMS Bioeng 5(2):78–102

    Article  CAS  Google Scholar 

  39. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592):607–609

    Article  CAS  PubMed  Google Scholar 

  40. Li X, Jiang L, Zhan Q, Qian J, He S (2009) Localized surface plasmon resonance (LSPR) of polyelectrolyte-functionalized gold-nanoparticles for bio-sensing. Colloids Surf A Physicochem Eng Asp 332:172–179

    Article  CAS  Google Scholar 

  41. Kumar S, Gandhi KS, Kumar R (2007) Modeling of formation of gold nanoparticles by citrate method. Ind Eng Chem Res 46(10):3128–3136

    Article  CAS  Google Scholar 

  42. Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LM (2009) LSPR-based nanobiosensors. Nano Today 4(3):244–251

    Article  CAS  Google Scholar 

  43. Chegel V et al (2012) Gold nanoparticles aggregation: drastic effect of cooperative functionalities in a single molecular conjugate. J Phys Chem C 116:2683–2690

    Article  CAS  Google Scholar 

  44. Xia F et al (2010) Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci U S A 107(24):10837–10841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Frohnmeyer E et al (2019) Aptamer lateral flow assays for rapid and sensitive detection of cholera toxin. Analyst 144:1840

    Article  CAS  PubMed  Google Scholar 

  46. Liu J, Zeng J, Tian Y, Zhou N (2018) An aptamer and functionalized nanoparticle-based strip biosensor for on-site detection of kanamycin in food samples. Analyst 143:182

    Article  CAS  Google Scholar 

  47. Wu S, Liu L, Duan N, Li Q, Zhou Y, Wang Z (2018) Aptamer-based lateral flow test strip for rapid detection of zearalenone in corn samples. J Agric Food Chem 66(8):1949–1954

    Article  CAS  PubMed  Google Scholar 

  48. Zhu Q et al (2017) Colorimetric detection of cholic acid based on an aptamer adsorbed gold nanoprobe. RSC Adv 7(31):19250–19256

    Article  CAS  Google Scholar 

  49. Liu J, Bai W, Niu S, Zhu C, Yang S, Chen A (2014) Highly sensitive colorimetric detection of 17b-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles. Sci Rep 4:7571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rafati A, Zarrabi A, Abediankenari S, Aarabi M, Gill P (2018) Sensitive colorimetric assay using insulin g-quadruplex aptamer arrays on DNA nanotubes coupled with magnetic nanoparticles. R Soc Open Sci 5(3)

    Google Scholar 

  51. Chávez JL, Hagen JA, Kelley-Loughnane N (2017) Fast and selective plasmonic serotonin detection with aptamer-gold nanoparticle conjugates. Sensors (Switzerland) 17(4)

    Google Scholar 

  52. Kang KA, Wang J, Jasinski JB, Achilefu S (2011) Fluorescence manipulation by gold nanoparticles: from complete quenching to extensive enhancement. J Nanobiotechnol 9:1–13

    Article  CAS  Google Scholar 

  53. Wang RE, Zhang Y, Cai J, Cai W, Gao T (2011) Aptamer-based fluorescent biosensors. Curr Med Chem 18(27):4175–4184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Musumeci D et al (2017) Fluorescence sensing using DNA aptamers in cancer research and clinical diagnostics. Cancers (Basel) 9(12):174

    Google Scholar 

  55. Zhang C-Y, Johnson LW (2009) Single quantum-dot-based aptameric nanosensor for cocaine. Anal Chem 81(8):3051–3055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rezaei Z, Ranjbar B (2017) Ultra-sensitive, rapid gold nanoparticle-quantum dot plexcitonic self-assembled aptamer-based nanobiosensor for the detection of human cardiac troponin I. Eng Life Sci 17(2):165–174

    Article  CAS  PubMed  Google Scholar 

  57. Nanotech O et al (2009) Aptamer-based detection of epithelial tumor marker mucin 1 with quantum dot-based fluorescence readout. Biochem Biophys Res Commun 57(2):6130–6139

    Google Scholar 

  58. Zhu D et al (2015) Silver nanoparticles-enhanced time-resolved fluorescence sensor for VEGF 165 based on Mn-doped ZnS quantum dots. Biosens Bioelectron 74:1053–1060

    Article  CAS  PubMed  Google Scholar 

  59. Jiang H, Ling K, Tao X, Zhang Q (2015) Theophylline detection in serum using a self-assembling RNA aptamer-based gold nanoparticle sensor. Biosens Bioelectron 70:299–303

    Article  CAS  PubMed  Google Scholar 

  60. Pang Y, Rong Z, Wang J, Xiao R, Wang S (2015) A fluorescent aptasensor for H5N1 influenza virus detection based-on the core–shell nanoparticles metal-enhanced fluorescence (MEF). Biosens Bioelectron 66:527–532

    Article  CAS  PubMed  Google Scholar 

  61. Kim T, Lee C-H, Joo S-W, Lee K (2008) Kinetics of gold nanoparticle aggregation: experiments and modeling. J Colloid Interface Sci 318:238–243

    Article  CAS  PubMed  Google Scholar 

  62. Mao J, Xu M, Ji W, Zhang M (2018) Absorbance enhancement of aptamers/GNP enables sensitive protein detection in rat brains. Chem Commun 54(10):1193–1196

    Article  CAS  Google Scholar 

  63. Panczyk T, Konczak L, Zapotoczny S, Szabelski P, Nowakowska M (2015) Molecular dynamics simulations of proton transverse relaxation times in suspensions of magnetic nanoparticles. J Colloid Interface Sci 437:187–196

    Article  CAS  PubMed  Google Scholar 

  64. Bamrungsap S, Shukoor MI, Chen T, Sefah K, Tan W (2011) Detection of lysozyme magnetic relaxation switches based on aptamer-functionalized superparamagnetic nanoparticles. Anal Chem 83(20):7795–7799

    Google Scholar 

  65. Wei B, Mao K, Liu N, Zhang M, Yang Z (2018) Graphene nanocomposites modified electrochemical aptamer sensor for rapid and highly sensitive detection of prostate specific antigen. Biosens Bioelectron 121:41–46

    Article  CAS  PubMed  Google Scholar 

  66. Eissa S, Zourob M (2017) Aptamer-based label-free electrochemical biosensor array for the detection of total and glycated hemoglobin in human whole blood. Sci Rep 7(1):1016

    Google Scholar 

  67. Selvolini G et al (2018) DNA-based sensor for the detection of an organophosphorus pesticide: profenofos. Sensors 18(7):2035

    Google Scholar 

  68. Mir TA, Yoon JH, Gurudatt NG, Won MS, Shim YB (2015) Ultrasensitive cytosensing based on an aptamer modified nanobiosensor with a bioconjugate: detection of human non-small-cell lung cancer cells. Biosens Bioelectron 74:594–600

    Article  CAS  PubMed  Google Scholar 

  69. Zhu Y, Chandra P, Shim YB (2013) Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine-Au nanoparticle-aptamer bioconjugate. Anal Chem 85(2):1058–1064

    Article  CAS  PubMed  Google Scholar 

  70. Huang YF, Lin YW, Lin ZH, Chang HT (2009) Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering. J Nanopart Res 11(4):775–783

    Article  CAS  Google Scholar 

  71. Wu L et al (2016) A paper-based electrochemiluminescence electrode as an aptamer-based cytosensor using PtNi@carbon dots as nanolabels for detection of cancer cells and for in-situ screening of anticancer drugs. Microchim Acta 183(6):1873–1880

    Article  CAS  Google Scholar 

  72. Zhang HR, Xia XH, Xu JJ, Chen HY (2012) Sensitive cancer cell detection based on Au nanoparticles enhanced electrochemiluminescence of CdS nanocrystal film supplemented by magnetic separation. Electrochem Commun 25(1):112–115

    Article  CAS  Google Scholar 

  73. Tan J et al (2016) Aptamer-functionalized fluorescent silica nanoparticles for highly sensitive detection of leukemia cells. Nanoscale Res Lett 11(1)

    Google Scholar 

  74. Yu M et al (2017) Dual-recognition Förster resonance energy transfer based platform for one-step sensitive detection of pathogenic bacteria using fluorescent vancomycin-gold nanoclusters and aptamer-gold nanoparticles. Anal Chem 89(7):4085–4090

    Article  CAS  PubMed  Google Scholar 

  75. Wang J et al (2015) Magnetically assisted surface-enhanced Raman spectroscopy for the detection of Staphylococcus aureus based on aptamer recognition. ACS Appl Mater Interfaces 7(37):20919–20929

    Article  CAS  PubMed  Google Scholar 

  76. Pathania P, Sharma A, Kumar B, Rishi P, Raman Suri C (2017) Selective identification of specific aptamers for the detection of non-typhoidal salmonellosis in an apta-impedimetric sensing format. Microchim Acta 184(5):1499–1508

    Article  CAS  Google Scholar 

  77. Jo H, Her J, Ban C (2015) Dual aptamer-functionalized silica nanoparticles for the highly sensitive detection of breast cancer. Biosens Bioelectron 71:129–136

    Article  CAS  PubMed  Google Scholar 

  78. Dai P-P, Li J-Y, Yu T, Xu J-J, Chen H-Y (2015) Nanocrystal-based electrochemiluminescence sensor for cell detection with Au nanoparticles and isothermal circular double-assisted signal amplification. Talanta 141:97–102

    Article  CAS  PubMed  Google Scholar 

  79. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug. ACS Nano 3(1):16–20

    Article  CAS  PubMed  Google Scholar 

  80. Mu C et al (2013) Solubilization of flurbiprofen into aptamer-modified PEG-PLA micelles for targeted delivery to brain-derived endothelial cells in vitro. J Microencapsul 30(7):701–708

    Article  CAS  PubMed  Google Scholar 

  81. Farokhzad OC et al (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci 103(16):6315–6320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci 105(45):17356–17361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49(19):3280–3294

    Article  CAS  Google Scholar 

  84. Zhang L et al (2007) Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. ChemMedChem 2(9):1268–1271

    Article  CAS  PubMed  Google Scholar 

  85. Zhou J, Rossi JJ (2014) Cell-type-specific, aptamer-functionalized agents for targeted disease therapy. Mol Ther Nucleic Acids 3:e169

    Google Scholar 

  86. Taghdisi SM et al (2016) Double targeting, controlled release and reversible delivery of daunorubicin to cancer cells by polyvalent aptamers-modified gold nanoparticles. Mater Sci Eng C 61:753–761

    Article  CAS  Google Scholar 

  87. Pattni BS, Chupin VV, Torchilin VP (2015) New developments in liposomal drug delivery. Chem Rev 115(19):10938–10966

    Article  CAS  PubMed  Google Scholar 

  88. Bangham AD, De Gier J, Greville GD (1967) Osmotic properties and water permeability of phospholipid liquid crystals. Chem Phys Lipids 1(3):225–246

    Article  CAS  Google Scholar 

  89. Deamer DW (1978) Preparation and properties of ether-injection liposomes. Ann N Y Acad Sci 308(1):250–258

    Article  CAS  PubMed  Google Scholar 

  90. Jahn A, Vreeland WN, Gaitan M, Locascio LE (2004) Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J Am Chem Soc 126(9):2674–2675

    Article  CAS  PubMed  Google Scholar 

  91. Kang H, O’Donoghue MB, Liu H, Tan W (2010) A liposome-based nanostructure for aptamer directed delivery. Chem Commun 46(2):249–251

    Article  CAS  Google Scholar 

  92. Li L et al (2014) Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials 35(12):3840–3850

    Article  CAS  PubMed  Google Scholar 

  93. Barenholz Y (2012) Doxil® – the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134

    Article  CAS  PubMed  Google Scholar 

  94. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36(7):887–913

    Article  CAS  Google Scholar 

  95. Gao H et al (2012) Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials 33(20):5115–5123

    Article  CAS  PubMed  Google Scholar 

  96. Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, LaVan DA, Langer R (2004) Nanoparticle-aptamer bioconjugates. Cancer Res 64(21):7668–7672

    Article  CAS  PubMed  Google Scholar 

  97. Kolishetti N et al (2010) Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci 107(42):17939–17944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tao W et al (2016) Polydopamine-based surface modification of novel nanoparticle-aptamer bioconjugates for in vivo breast cancer targeting and enhanced therapeutic effects. Theranostics 6(4):470–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Seleci M, Ag Seleci D, Joncyzk R, Stahl F, Blume C, Scheper T (2016) Smart multifunctional nanoparticles in nanomedicine. BioNanoMaterials 17(1–2):33–41

    Google Scholar 

  100. Aravind A et al (2012) Aptamer-labeled PLGA nanoparticles for targeting cancer cells. Cancer Nanotechnol 3(1–6):1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yu C et al (2011) Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro. PLoS One 6(9):1–8

    Google Scholar 

  102. Zhao N, Bagaria HG, Wong MS, Zu Y (2011) A nanocomplex that is both tumor cell-selective and cancer gene-specific for anaplastic large cell lymphoma. J Nanobiotechnol 9:1–12

    Article  CAS  Google Scholar 

  103. He X, Zhao Y, He D, Wang K, Xu F, Tang J (2012) ATP-responsive controlled release system using aptamer-functionalized mesoporous silica nanoparticles. Langmuir 28(35):12909–12915

    Article  CAS  PubMed  Google Scholar 

  104. Le Li L, Yin Q, Cheng J, Lu Y (2012) Polyvalent mesoporous silica nanoparticle-aptamer bioconjugates target breast cancer cells. Adv Healthc Mater 1(5):567–572

    Article  CAS  PubMed  Google Scholar 

  105. Zhu CL, Lu CH, Song XY, Yang HH, Wang XR (2011) Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate. J Am Chem Soc 133(5):1278–1281

    Article  CAS  PubMed  Google Scholar 

  106. Chen H, Tian J, Liu D, He W, Guo Z (2017) Dual aptamer modified dendrigraft poly-l-lysine nanoparticles for overcoming multi-drug resistance through mitochondrial targeting. J Mater Chem B 5(5):972–979

    Article  CAS  PubMed  Google Scholar 

  107. Cohen BA, Bergkvist M (2013) Targeted in vitro photodynamic therapy via aptamer-labeled, porphyrin-loaded virus capsids. J Photochem Photobiol B Biol 121:67–74

    Article  CAS  Google Scholar 

  108. Farokhzad OC, Jon S, Khademhosseini A, Tran TT, Lavan DA, Langer R (2004) Advances in brief nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Synthesis (Stuttg), pp 7668–7672

    Google Scholar 

  109. Xie X et al (2016) EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur J Pharm Sci 83:28–35

    Article  CAS  PubMed  Google Scholar 

  110. Wang J et al (2012) Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 6(6):5070–5077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Hamblin MR (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 32(1):41–52

    PubMed  PubMed Central  Google Scholar 

  112. Agostinis P, Berg K, Cengel K et al (2011) Photodynamic therapy of cancer: an update. Ca Cancer J Clin 61(4):250–281

    Article  PubMed  PubMed Central  Google Scholar 

  113. Sinha N, Member S, Yeow JT (2005) Carbon nanotubes for biomedical applications (carbon nanostructures). IEEE Trans Nanobioscience 4(2):180–195

    Article  PubMed  Google Scholar 

  114. Nair BG, Nagaoka Y, Morimoto H, Yoshida Y, Maekawa T, Kumar DS (2010) Aptamer conjugated magnetic nanoparticles as nanosurgeons. Nanotechnology 21(45)

    Google Scholar 

  115. Weinstein JS et al (2010) Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab 30(1):15–35

    Article  CAS  PubMed  Google Scholar 

  116. Mirau PA, Smith JE, Chávezchávez JL, Hagen JA, Kelley-Loughnane N, Naik R (2018) Structured DNA aptamer interactions with gold nanoparticles. Langmuir 34:18

    Article  CAS  Google Scholar 

  117. Wang R, Billone PS, Mullett WM (2013) Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials. J Nanomater 2013

    Google Scholar 

  118. Bagalkot V et al (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7(10):3065–3070

    Article  CAS  PubMed  Google Scholar 

  119. Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S (2011) Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7(15):2241–2249

    Article  CAS  PubMed  Google Scholar 

  120. Kim D, Jeong YY, Jon S (2010) A drug-loaded aptamer – gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4(7):3689–3696

    Article  CAS  PubMed  Google Scholar 

  121. Chen T et al (2011) Smart multifunctional nanostructure for targeted cancer chemotherapy and magnetic resonance imaging. ACS Nano 5(10):7866–7873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by the Ministry of Science and Culture of Lower Saxony (MWK Niedersachsen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Walter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eilers, A., Witt, S., Walter, J. (2020). Aptamer-Modified Nanoparticles in Medical Applications. In: Urmann, K., Walter, JG. (eds) Aptamers in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 174. Springer, Cham. https://doi.org/10.1007/10_2020_124

Download citation

Publish with us

Policies and ethics