Abstract
Industrial biotechnology (IB) uses biological and biochemical processes in industrial production and is often regarded as an emerging key technology revolutionizing the production of many products while protecting resources and the environment and fostering economic development. This contribution describes the background and sketches the content of the volume ‘Sustainability and Life Cycle Assessment of Industrial Biotechnology’ in the Springer series ‘Advances in Biochemical Engineering/Biotechnology’. The field of IB is introduced from different perspectives (milestones in IB history, economics of biotechnology industry, environmental and social as well as ethical issues and impacts, green chemistry) and in several applications fields (production of chemicals, geobiotechnology in mining).
Graphical Abstract

Keywords
- Application
- Economy
- History
- Industrial biotechnology
- LCA
- Outline
- Sustainability asessment
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
German Federal Government (2020) Nationale Bioökonomiestrategie, Berlin
European Commission (2011) High level expert group on key enabling technologies, Brussels
Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85(4):849–860. https://doi.org/10.1007/s00253-009-2246-7
Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF et al (2006) Bio-ethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12):549–556. https://doi.org/10.1016/j.tibtech.2006.10.004
Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36(2):269–274. https://doi.org/10.1007/s10295-008-0495-6
Laure S, Leschinsky M, Fröhling M et al (2017) Assessment of an organosolv lignocellulose biorefinery concept based on a material flow analysis of a pilot plant. Cellul Chem Technol 48(9–10):793–798
Haitz F, Radloff S, Rupp S et al (2018) Chemo-enzymatic epoxidation of Lallemantia Iberica Seed Oil: process development and economic-ecological evaluation. Appl Biochem Biotechnol 185(1):13–33. https://doi.org/10.1007/s12010-017-2630-1
Karlovsky P, Suman M, Berthiller F et al (2016) Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res 32(4):179–205. https://doi.org/10.1007/s12550-016-0257-7
Petersen A, Wang C, Crocoll C et al (2018) Biotechnological approaches in glucosinolate production. J Integr Plant Biol 60(12):1231–1248. https://doi.org/10.1111/jipb.12705
Tyler B, Gullotti D, Mangraviti A et al (2016) Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev 107:163–175. https://doi.org/10.1016/j.addr.2016.06.018
Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53(5):495–508. https://doi.org/10.1007/s002530051648
Falcone PM, Hiete M (2019) Exploring green and sustainable chemistry in the context of sustainability transition: the role of visions and policy. Curr Opin Green Sustain Chem 19:66–75. https://doi.org/10.1016/j.cogsc.2019.08.002
Venkatesh A, Posen ID, MacLean HL et al (2019) Environmental aspects of biotechnology. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2019_98
Saling P (2019) Assessing industrial biotechnology products with LCA and eco-efficiency. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2019_102
Ma SK, Gruber J, Davis C et al (2010) A green-by-design biocatalytic process for atorvastatin intermediate. Green Chem 12(1):81–86. https://doi.org/10.1039/b919115c
Schürrle K (2019) History, current state, and emerging applications of industrial biotechnology. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2018_81
Festel G (2018) Economic aspects of industrial biotechnology. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2018_70
Asveld L, Osseweijer P, Posada JA (2019) Societal and ethical issues in industrial biotechnology. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2019_100
Fröhling M, Hiete M (2020) Sustainability and life cycle assessment in industrial biotechnology: a review of current approaches and future needs. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2020_122
Macombe C (2019) Social life cycle assessment for industrial biotechnology. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2019_99
Lindner JP, Beck T, Bos U et al (2019) Assessing land use and biodiversity impacts of industrial biotechnology. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2019_114
Chen C, Reniers G (2018) Risk assessment of processes and products in industrial biotechnology. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2018_74
Pleissner D, Kümmerer K (2018) Green chemistry and its contribution to industrial biotechnology. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2018_73
Glombitza F, Kermer R, Reichel S (2019) Application potentials of geobiotechnology in mining, mineral processing, and metal recycling. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2018_82
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Fröhling, M., Hiete, M. (2020). The Sustainability and Life Cycle Assessments of Industrial Biotechnology: An Introduction. In: Fröhling, M., Hiete, M. (eds) Sustainability and Life Cycle Assessment in Industrial Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 173. Springer, Cham. https://doi.org/10.1007/10_2020_123
Download citation
DOI: https://doi.org/10.1007/10_2020_123
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-47065-4
Online ISBN: 978-3-030-47066-1
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)