Skip to main content

Sustainability and Life Cycle Assessment in Industrial Biotechnology: A Review of Current Approaches and Future Needs

  • Chapter
  • First Online:
Book cover Sustainability and Life Cycle Assessment in Industrial Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 173))

Abstract

The development and implementation of industrial biotechnology (IB) is associated with high expectations for reductions of environmental impacts and risks, particularly in terms of climate change and fossil resource depletion, positive socioeconomic effects, hopes for new competitive products and processes, and development in rural areas. However, not all products and processes are really advantageous with regard to sustainability criteria, and not all are economically successful and accepted by stakeholders. Sustainability and life cycle assessment can play an important role to assess IB products and processes, often accompanying development processes from the early stages onwards. Such assessments can identify key factors regarding sustainability criteria, enable a determination of both product and process performance, or aid in prospectively estimating such performance and its consequences. Thus, development processes, investment decisions, policymaking, and the communication with stakeholders can be supported. This contribution reviews the field of sustainability and life cycle assessment in IB. We explore relevant literature from a methodical and application perspective and categorise suitable methodologies, methods, and tools. We characterise IB from an assessment perspective and indicate challenges, discuss approaches to address these, and identify possible fields of future research. Thus, students, researchers, and practitioners in the field of IB will obtain an up-to-date overview, references to relevant fields of literature, and guidance for own studies in this important and fast-emerging topic.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    International Reference Life Cycle Data System.

  2. 2.

    The ILCD handbook series was developed by the European Commission to harmonise LCA studies funded by the Commission and provides an excellent detailed overview of LCA.

  3. 3.

    The exact search string was TITLE (“Life Cycle” OR “Sustainability”) AND TITLE (“Analysis” OR “Assessment” OR “Management”) AND TITLE-ABS-KEY (“Biotechn∗” OR “Biochem∗” OR “Enzym∗”).

  4. 4.

    “Recent” refers to the so-called short carbon cycle. Included is a formation of the organic matter of plants, algae, maritime organisms, woods, microorganisms, animals, and organic residues from households, agriculture, and animals from the food and fodder industry (cf. VDI 6310 [61]).

References

  1. Venkatesh A, Posen ID, MacLean HL et al (2019) Environmental aspects of biotechnology. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2019_98

  2. Lindner JP, Beck T, Bos U et al (2019) Assessing land use and biodiversity impacts of industrial biotechnology. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2019_114

  3. Asveld L, Osseweijer P, Posada JA (2019) Societal and ethical issues in industrial biotechnology. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2019_100

  4. Macombe C (2019) Social life cycle assessment for industrial biotechnology. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2019_99

  5. Chen C, Reniers G (2018) Risk assessment of processes and products in industrial biotechnology. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2018_74

  6. Saling P (2019) Assessing industrial biotechnology products with LCA and eco-efficiency. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2019_102

  7. Hodgson E, Ruiz-Molina M-E, Marazza D et al (2016) Horizon scanning the European bio-based economy: a novel approach to the identification of barriers and key policy interventions from stakeholders in multiple sectors and regions. Biofuels Bioprod Bioref 10(5):508–522. https://doi.org/10.1002/bbb.1665

    Article  CAS  Google Scholar 

  8. Festel G (2018) Economic aspects of industrial biotechnology. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2018_70

  9. Ness B, Urbel-Piirsalu E, Anderberg S et al (2007) Categorising tools for sustainability assessment. Ecol Econ 60(3):498–508. https://doi.org/10.1016/j.ecolecon.2006.07.023

    Article  Google Scholar 

  10. Saurat M, Ritthoff M, Smith L (2016) Overview of existing sustainability assessment methods and tools, and of relevant standards: deliverable 1.1 in the EU project SAMT – Sustainbility assessment methods and tools to support decision-making in the process industries

    Google Scholar 

  11. Singh RK, Murty HR, Gupta SK et al (2009) An overview of sustainability assessment methodologies. Ecol Indicators 9(2):189–212. https://doi.org/10.1016/j.ecolind.2008.05.011

    Article  Google Scholar 

  12. WCED (1987) Our common future. Oxford University Press, Oxford

    Google Scholar 

  13. Purvis B, Mao Y, Robinson D (2019) Three pillars of sustainability: in search of conceptual origins. Sustain Sci 14(3):681–695. https://doi.org/10.1007/s11625-018-0627-5

    Article  Google Scholar 

  14. Rockström J, Steffen W, Noone K et al (2009) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc 14(2). https://doi.org/10.5751/ES-03180-140232

  15. Sala S, Ciuffo B, Nijkamp P (2015) A systemic framework for sustainability assessment. Ecol Econ 119:314–325. https://doi.org/10.1016/j.ecolecon.2015.09.015

    Article  Google Scholar 

  16. Becker B (1997) Sustainability assessment: a review of values, concepts and methodological approaches. Issues in agriculture, vol 10. CGIAR, Washington, D.C.

    Google Scholar 

  17. Sala S, Farioli F, Zamagni A (2013) Progress in sustainability science: lessons learnt from current methodologies for sustainability assessment: Part 1. Int J Life Cycle Assess 18(9):1653–1672. https://doi.org/10.1007/s11367-012-0508-6

    Article  Google Scholar 

  18. Sala S, Farioli F, Zamagni A (2013) Life cycle sustainability assessment in the context of sustainability science progress (part 2). Int J Life Cycle Assess 18(9):1686–1697. https://doi.org/10.1007/s11367-012-0509-5

    Article  CAS  Google Scholar 

  19. Klöpffer W (2003) Life-cycle based methods for sustainable product development. Int J Life Cycle Assess 8(3):157–159

    Article  Google Scholar 

  20. Comes T, Doll C et al (2010) Challenges for national clean air policy: a national integrated assessment model for Germany. Ökologisches Wirtschaften 25(2):34–37

    Google Scholar 

  21. Wrisberg N, Udo de Haes HA, Helias A, Triebswetter U et al (eds) (2002) Analytical tools for environmental design and management in a systems perspective: the combined use of analytical tools. Eco-efficiency in industry and science, vol 10. Springer, Dordrecht

    Google Scholar 

  22. Finnveden G, Moberg Å (2005) Environmental systems analysis tools – an overview. J Clean Prod 13(12):1165–1173. https://doi.org/10.1016/j.jclepro.2004.06.004

    Article  Google Scholar 

  23. Gasparatos A, Scolobig A (2012) Choosing the most appropriate sustainability assessment tool. Ecol Econ 80:1–7. https://doi.org/10.1016/j.ecolecon.2012.05.005

    Article  Google Scholar 

  24. Singh RK, Murty HR, Gupta SK et al (2012) An overview of sustainability assessment methodologies. Ecol Indic 15(1):281–299. https://doi.org/10.1016/j.ecolind.2011.01.007

    Article  Google Scholar 

  25. de Meester S, van der Vorst G, van Langenhove H et al (2013) Sustainability assessment methods and tools. In: Reniers GLL, Sörensen K, Vrancken K (eds) Management principles of sustainable industrial chemistry, vol 32. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 55–88

    Chapter  Google Scholar 

  26. Pihkola H, Pajula T, Federley M et al (2017) Sustainability assessment in the process industries – current practice and paths for future development: conclusions and recommendations from the SAMT project, vol 299. VTT Technology, Espoo

    Google Scholar 

  27. Organisation for Economic Co-operation and Development (2010) Guidance on sustainability impact assessment. https://doi.org/10.1787/9789264086913-en

  28. Pope J, Annandale D, Morrison-Saunders A (2004) Conceptualising sustainability assessment. Environ Impact Assess Rev 24(6):595–616. https://doi.org/10.1016/j.eiar.2004.03.001

    Article  Google Scholar 

  29. Guinée J (2016) Life cycle sustainability assessment: what is it and what are its challenges? In: Clift R, Druckman A (eds) Taking stock of industrial ecology. Springer International Publishing, Cham, pp 45–68

    Chapter  Google Scholar 

  30. DIN EN ISO Environmental management – Life cycle assessment – Principles and framework(ISO 14040:2006). Accessed 20 Mar 2019

    Google Scholar 

  31. Baitz M (2017) Attributional life cycle assessment. In: Curran MA (ed) Goal and scope definition in life cycle assessment. Springer, Dordrecht, pp 123–143

    Chapter  Google Scholar 

  32. Hottle TA, Bilec MM, Landis AE (2017) Biopolymer production and end of life comparisons using life cycle assessment. Resour Conserv Recycl 122:295–306. https://doi.org/10.1016/j.resconrec.2017.03.002

    Article  Google Scholar 

  33. Maga D, Thonemann N, Hiebel M et al (2019) Comparative life cycle assessment of first- and second-generation ethanol from sugarcane in Brazil. Int J Life Cycle Assess 24(2):266–280. https://doi.org/10.1007/s11367-018-1505-1

    Article  CAS  Google Scholar 

  34. Haitz F, Radloff S, Rupp S et al (2018) Chemo-enzymatic epoxidation of lallemantia ibericaseed oil: process development and economic-ecological evaluation. Appl Biochem Biotechnol 185(1):13–33. https://doi.org/10.1007/s12010-017-2630-1

    Article  CAS  PubMed  Google Scholar 

  35. Laure S, Leschinsky M, Fröhling M et al (2017) Assessment of an organosolv lignocellulose biorefinery concept based on a a material flow analysis of a pilot plant. Cellul Chem Technol 48(9–10):793–798

    Google Scholar 

  36. Silalertruksa T, Gheewala SH, Pongpat P et al (2017) Environmental sustainability of oil palm cultivation in different regions of Thailand: greenhouse gases and water use impact. J Clean Prod 167:1009–1019. https://doi.org/10.1016/j.jclepro.2016.11.069

    Article  CAS  Google Scholar 

  37. Vargas-Ramirez JM, Wiesenborn DP, Ripplinger DG et al (2017) Carbon footprint of industrial-beet sugars stored as raw thick juice for use as a fermentation feedstock. J Clean Prod 162:1418–1429. https://doi.org/10.1016/j.jclepro.2017.06.153

    Article  CAS  Google Scholar 

  38. DIN EN ISO Environmental management – Life cycle assessment – Requirements and guidelines(ISO 14044:2006 + Amd 1:2017). Accessed 20 Mar 2019

    Google Scholar 

  39. Hunkeler DJ (ed) (2008) Environmental life cycle costing. CRC Press, Boca Raton

    Google Scholar 

  40. Guinée JB, Heijungs R, Huppes G et al (2011) Life cycle assessment: past, present, and future. Environ Sci Technol 45(1):90–96. https://doi.org/10.1021/es101316v

    Article  CAS  PubMed  Google Scholar 

  41. Curran MA (2017) Chapter 1: overview of goal and scope definition in life cycle assessment. In: Curran MA (ed) Goal and scope definition in life cycle assessment. Springer, Dordrecht, pp 1–62

    Chapter  Google Scholar 

  42. IES (2010) ILCD handbook: analysing of existing environmental impact assessment methodologies for use in life cycle assessment. IES, Ispra

    Google Scholar 

  43. Huijbregts MAJ, Steinmann ZJN, Elshout PMF et al (2016) ReCiPe 2016: a harmonized life cycle impact assessment method at midpoint and endpoint level report I: characterization. National Institute of Public Health and Environment Ministry of Health, Wellness and Sport, Bilthoven

    Google Scholar 

  44. Kühnen M, Hahn R (2017) Indicators in social life cycle assessment: a review of frameworks, theories, and empirical experience. J Indus Ecol 21(6):1547–1565. https://doi.org/10.1111/jiec.12663

    Article  Google Scholar 

  45. Benoît C, Mazijn B (2009) Guidelines for social life cycle assessment of products. United Nations Environment Programme, Paris

    Google Scholar 

  46. Hauschild MZ (2018) Introduction to LCA methodology. In: Hauschild MZ, Rosenbaum RK, Olsen SI (eds) Life cycle assessment: theory and practice. Springer, Cham

    Chapter  Google Scholar 

  47. Comes T, Hiete M, Schultmann F (2013) An approach to multi-criteria decision problems under severe uncertainty. J Multi-Criteria Decis Anal 20(1–2):29–48. https://doi.org/10.1002/mcda.1487

    Article  Google Scholar 

  48. Bjørn A, Laurent A, Owsianiak M et al (2018) Chapter 7: goal definition. In: Hauschild MZ, Rosenbaum RK, Olsen SI (eds) Life cycle assessment: theory and practice. Springer, Cham, pp 67–74

    Chapter  Google Scholar 

  49. Beaussier T, Caurla S, Bellon-Maurel V et al (2019) Coupling economic models and environmental assessment methods to support regional policies: a critical review. J Clean Prod 216:408–421. https://doi.org/10.1016/j.jclepro.2019.01.020

    Article  Google Scholar 

  50. Kirchherr J, Reike D, Hekkert M (2017) Conceptualizing the circular economy: an analysis of 114 definitions. Resour Conserv Recycl 127:221–232. https://doi.org/10.1016/j.resconrec.2017.09.005

    Article  Google Scholar 

  51. Searchinger T, Heimlich R, Houghton RA et al (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240. https://doi.org/10.1126/science.1151861

    Article  CAS  PubMed  Google Scholar 

  52. Arvidsson R, Tillman A-M, Sandén BA et al (2018) Environmental assessment of emerging technologies: recommendations for prospective LCA. J Indus Ecol 22(6):1286–1294. https://doi.org/10.1111/jiec.12690

    Article  CAS  Google Scholar 

  53. Olsen SI, Borup M, Andersen PD (2018) Chapter 21: future-oriented LCA. In: Hauschild MZ, Rosenbaum RK, Olsen SI (eds) Life cycle assessment: theory and practice. Springer, Cham, pp 499–518

    Chapter  Google Scholar 

  54. Buyle M, Audenaert A, Billen P et al (2019) The future of Ex-Ante LCA? Lessons learned and practical recommendations. Sustainability 11(19):5456. https://doi.org/10.3390/su11195456

    Article  Google Scholar 

  55. Bergesen JD, Suh S (2016) A framework for technological learning in the supply chain: a case study on CdTe photovoltaics. Appl Energy 169:721–728. https://doi.org/10.1016/j.apenergy.2016.02.013

    Article  CAS  Google Scholar 

  56. Curran MA (ed) (2017) Goal and scope definition in life cycle assessment. Springer, Dordrecht

    Google Scholar 

  57. Klöpffer W, Grahl B (2014) Life cycle assessment (LCA): a guide to best practice. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  58. Jolliet O, Saadé-Sbeih M, Shaked S et al (2016) Environmental life cycle assessment. CRC Press, Boca Raton

    Google Scholar 

  59. Bjørn A, Owsianiak M, Laurent A et al (2018) Scope definition. In: Hauschild MZ, Rosenbaum RK, Olsen SI (eds) Life cycle assessment: theory and practice. Springer, Cham, pp 75–116

    Chapter  Google Scholar 

  60. Stichnothe H (2019) Sustainability evaluation. Adv Biochem Eng Biotechnol 166:519–539. https://doi.org/10.1007/10_2016_71

    Article  CAS  PubMed  Google Scholar 

  61. VDI e.V (2016) VDI 6310: Nachhaltigkeitsbewertung und Klassifikation von Bioraffinerien. Beuth, Berlin

    Google Scholar 

  62. Fröhling M, Schweinle J, Meyer J-C et al (2011) Logistics of renewable raw materials. In: Ulber R, Sell D, Hirth T (eds) Renewable raw materials: new feedstocks for the chemical industry, vol 47. Wiley, Hoboken, pp 49–94

    Chapter  Google Scholar 

  63. Zimmer T, Rudi A, Müller A-K et al (2017) Modeling the impact of competing utilization paths on biomass-to-liquid (BtL) supply chains. Appl Energy 208:954–971. https://doi.org/10.1016/j.apenergy.2017.09.056

    Article  Google Scholar 

  64. Raschka A, Carus M (2012) Stoffliche Nutzung von Biomasse: Basisdaten für Deutschland, Europa und die Welt. Umweltbundesamt Förderkennzeichen 3710 93 109. nova-Institut GmbH, Hürth

    Google Scholar 

  65. Jering A, Klatt A, Seven J et al (2013) Sustainable use of global land and biomass resources. Umweltbundesamt, Dessau-Roßlau

    Google Scholar 

  66. UNEP (2014) Assessing global land use: balancing consumption with sustainable supply. United Nations Environment Programme, Nairobi

    Google Scholar 

  67. Lenk F, Bröring S, Herzog P et al (2007) On the usage of agricultural raw materials--energy or food? An assessment from an economics perspective. Biotechnol J 2(12):1497–1504. https://doi.org/10.1002/biot.200700153

    Article  CAS  PubMed  Google Scholar 

  68. Wright MM, Brown RC (2007) Comparative economics of biorefineries based on the biochemical and thermochemical platforms. Biofuels Bioprod Bioref 1(1):49–56. https://doi.org/10.1002/bbb.8

    Article  CAS  Google Scholar 

  69. Bask A, Rajahonka M (2017) The role of environmental sustainability in the freight transport mode choice. Int J Phys Distrib Logist Manag 47(7):560–602. https://doi.org/10.1108/IJPDLM-03-2017-0127

    Article  Google Scholar 

  70. Santos G, Behrendt H, Teytelboym A (2010) Part II: policy instruments for sustainable road transport. Res Transp Econ 28(1):46–91. https://doi.org/10.1016/j.retrec.2010.03.002

    Article  Google Scholar 

  71. Kerdoncuff P (2008) Modellierung und Bewertung von Prozessketten zur Herstellung von Biokraftstoffen der zweiten Generation. Karlsruhe, Karlsruhe

    Google Scholar 

  72. Schwaderer F (2012) Integrierte Standort-, Kapazitäts- und Technologieplanung von Wertschöpfungsnetzwerken zur stofflichen und energetischen Biomassenutzung. Zugl.: Karlsruhe, Karlsruher Inst. für Technologie (KIT), Diss., 2012, Technische Informationsbibliothek u. Universitätsbibliothek; KIT Scientific-Publ, Hannover, Karlsruhe

    Google Scholar 

  73. Hiete M, Ludwig J, Schultmann F (2012) Intercompany energy integration. J Indus Ecol 16(5):689–698. https://doi.org/10.1111/j.1530-9290.2012.00462.x

    Article  Google Scholar 

  74. Jegannathan KR, Nielsen PH (2013) Environmental assessment of enzyme use in industrial production – a literature review. J Clean Prod 42:228–240. https://doi.org/10.1016/j.jclepro.2012.11.005

    Article  CAS  Google Scholar 

  75. Ma SK, Gruber J, Davis C et al (2010) A green-by-design biocatalytic process for atorvastatin intermediate. Green Chem 12(1):81–86. https://doi.org/10.1039/b919115c

    Article  CAS  Google Scholar 

  76. Renner I, Klöpffer W (2005) Untersuchung der Anpassung von Ökobilanzen an spezifische Erfordernisse biotechnischer Prozesse und Produkte. UBA-Texte, Berlin

    Google Scholar 

  77. Fantke P, Ernstoff A (2018) LCA of chemicals and chemical products. In: Hauschild MZ, Rosenbaum RK, Olsen SI (eds) Life cycle assessment: theory and practice, vol 22. Springer, Cham, pp 783–815

    Chapter  Google Scholar 

  78. Jiménez-González C (2018) Life cycle assessment. In: Constable D, Jiménez-González C, Anastas PT (eds) Green metrics, vol 29. Wiley-VCH, Weinheim, pp 95–124

    Google Scholar 

  79. Kralisch D (2008) Application of LCA in process development. In: Lapkin A, Constable DJC (eds) Green chemistry metrics. Wiley, Chichester, pp 248–271

    Chapter  Google Scholar 

  80. Kralisch D, Ott D, Gericke D (2015) Rules and benefits of life cycle assessment in green chemical process and synthesis design: a tutorial review. Green Chem 17(1):123–145. https://doi.org/10.1039/c4gc01153h

    Article  CAS  Google Scholar 

  81. Sadhukhan J, Ng KS, Hernandez EM (2014) Biorefineries and chemical processes: design, integration and sustainability analysis. Wiley, Chichester

    Book  Google Scholar 

  82. Zhang L, Wang Q, Hessel V (2018) Green chemistry metrics and life cycle assessment for microflow continuous processing. In: Constable D, Jiménez-González C, Anastas PT (eds) Green metrics, vol 37. Wiley-VCH, Weinheim, pp 157–206

    Google Scholar 

  83. Woodley JM (2018) Benchmarking the sustainability of biocatalytic processes. In: Constable D, Jiménez-González C, Anastas PT (eds) Green metrics, vol 86. Wiley-VCH, Weinheim, pp 207–230

    Google Scholar 

  84. Constable D, Jiménez-González C, Anastas PT (eds) (2018) Green metrics. Handbook of green chemistry, vol 11. Wiley-VCH, Weinheim

    Google Scholar 

  85. Dicks AP, Hent A (2015) Green chemistry metrics: a guide to determining and evaluating process greenness. SpringerBriefs in molecular science. Springer, Cham

    Google Scholar 

  86. Lapkin A, Constable DJC (eds) (2008) Green chemistry metrics. Wiley, Chichester

    Google Scholar 

  87. McCarty LS, Borgert CJ (2006) Review of the toxicity of chemical mixtures: theory, policy, and regulatory practice. Regul Toxicol Pharmacol 45(2):119–143. https://doi.org/10.1016/j.yrtph.2006.03.004

    Article  CAS  PubMed  Google Scholar 

  88. Smith R (2016) Chemical process design and integration.2nd edn. Wiley, New York

    Google Scholar 

  89. Constable DJC (2018) Green chemistry metrics. In: Constable D, Jiménez-González C, Anastas PT (eds) Green metrics. Wiley-VCH, Weinheim, pp 1–27

    Google Scholar 

  90. Andraos J (2008) Application of green metrics analysis to chemical reactions and synthesis plans. In: Lapkin A, Constable DJC (eds) Green chemistry metrics. Wiley, Chichester, pp 69–199

    Chapter  Google Scholar 

  91. Sheldon RA, Sanders JPM (2015) Toward concise metrics for the production of chemicals from renewable biomass. Catal Today 239:3–6. https://doi.org/10.1016/j.cattod.2014.03.032

    Article  CAS  Google Scholar 

  92. Sheldon RA (2017) The E factor 25 years on: the rise of green chemistry and sustainability. Green Chem 19(1):18–43. https://doi.org/10.1039/c6gc02157c

    Article  CAS  Google Scholar 

  93. Constable DJC, Jimenez-Gonzalez C, Lapkin A (2008) Process metrics. In: Lapkin A, Constable DJC (eds) Green chemistry metrics. Wiley, Chichester, pp 228–247

    Chapter  Google Scholar 

  94. Anastas ND, Leazer J, Gonzalez MA et al (2018) Expanding rational molecular design beyond pharma: metrics to guide safer chemical design. In: Constable D, Jiménez-González C, Anastas PT (eds) Green metrics, vol 37. Wiley-VCH, Weinheim, pp 29–48

    Google Scholar 

  95. DOD (2011) Technology readiness assessment guidance. Department of Defense, Wahsington

    Google Scholar 

  96. European Commission (2011) High level expert group on key enabling technologies 2011. European Commission, Brussels

    Google Scholar 

  97. German Federal Government (2012) Biorefineries roadmap. German Federal Government, Berlin

    Google Scholar 

  98. Biwer A, Rudershausen A, Heinzle E et al (2001) Ökologische und ökonomische Evaluation biokatalytischer Prozesse während ihrer Entwicklung. Biokatalyse (Special edition of DBU BioSpektrum) 7:6–8. 15–24

    Google Scholar 

  99. Thomassen G, van Dael M, van Passel S et al (2019) How to assess the potential of emerging green technologies? Towards a prospective environmental and techno-economic assessment framework. Green Chem 21(18):4868–4886. https://doi.org/10.1039/C9GC02223F

    Article  CAS  Google Scholar 

  100. JRC-IEA (2010) ILCD handbook – general guide on LCA – detailed guidance. Publications Office of the European Union, Luxembourg

    Google Scholar 

  101. Ekvall T, Azapagic A, Finnveden G et al (2016) Attributional and consequential LCA in the ILCD handbook. Int J Life Cycle Assess 21(3):293–296. https://doi.org/10.1007/s11367-015-1026-0

    Article  Google Scholar 

  102. Zamagni A, Guinée J, Heijungs R et al (2012) Lights and shadows in consequential LCA. Int J Life Cycle Assess 17(7):904–918. https://doi.org/10.1007/s11367-012-0423-x

    Article  Google Scholar 

  103. Nilsson A, Shabestary K, Brandão M et al (2019) Environmental impacts and limitations of third-generation biobutanol: Life cycle assessment of n-butanol produced by genetically engineered cyanobacteria. J Indus Ecol:6. https://doi.org/10.1111/jiec.12843

  104. Parsons S, Chuck CJ, McManus MC (2018) Microbial lipids: progress in life cycle assessment (LCA) and future outlook of heterotrophic algae and yeast-derived oils. J Clean Prod 172:661–672. https://doi.org/10.1016/j.jclepro.2017.10.014

    Article  CAS  Google Scholar 

  105. Weidema BP, Ekvall T, Heijungs R (2009) Guidelines for application of deepended and broadened LCA. Technical Report of CALCAS project

    Google Scholar 

  106. Moni SM, Mahmud R, High K et al (2019) Life cycle assessment of emerging technologies: a review. J Indus Ecol:1. https://doi.org/10.1111/jiec.12965

  107. Tsatsakis AM, Nawaz MA, Kouretas D et al (2017) Environmental impacts of genetically modified plants: a review. Environ Res 156:818–833. https://doi.org/10.1016/j.envres.2017.03.011

    Article  CAS  PubMed  Google Scholar 

  108. Harder R, Peters GM, Molander S et al (2016) Including pathogen risk in life cycle assessment: the effect of modelling choices in the context of sewage sludge management. Int J Life Cycle Assess 21(1):60–69. https://doi.org/10.1007/s11367-015-0996-2

    Article  Google Scholar 

  109. Kodym A, Afza R (2003) Physical and chemical mutagenesis. Methods Mol Biol 236:189–204. https://doi.org/10.1385/1-59259-413-1:189

    Article  CAS  PubMed  Google Scholar 

  110. Seager TP, Trump BD, Poinsatte-Jones K et al (2017) Why life cycle assessment does not work for synthetic biology. Environ Sci Technol 51(11):5861–5862. https://doi.org/10.1021/acs.est.7b01604

    Article  CAS  PubMed  Google Scholar 

  111. Guinée JB, Heijungs R, van der Voet E (2009) A greenhouse gas indicator for bioenergy: some theoretical issues with practical implications. Int J Life Cycle Assess 14(4):328–339. https://doi.org/10.1007/s11367-009-0080-x

    Article  CAS  Google Scholar 

  112. Brandão M, Levasseur A, Kirschbaum MUF et al (2013) Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. Int J Life Cycle Assess 18(1):230–240. https://doi.org/10.1007/s11367-012-0451-6

    Article  CAS  Google Scholar 

  113. Garcia R, Freire F (2014) Carbon footprint of particleboard: a comparison between ISO/TS 14067, GHG Protocol, PAS 2050 and climate declaration. J Clean Prod 66:199–209. https://doi.org/10.1016/j.jclepro.2013.11.073

    Article  CAS  Google Scholar 

  114. Brandão M, Kirschbaum MUF, Cowie AL et al (2019) Quantifying the climate change effects of bioenergy systems: comparison of 15 impact assessment methods. GCB Bioenergy 11(5):727–743. https://doi.org/10.1111/gcbb.12593

    Article  Google Scholar 

  115. Rosenbaum RK, Hauschild MZ, Boulay A-M et al (2018) Life cycle impact assessment. In: Hauschild MZ, Rosenbaum RK, Olsen SI (eds) Life cycle assessment: theory and practice, vol 20. Springer, Cham, pp 167–270

    Chapter  Google Scholar 

  116. Wijnants L, Allacker K, de Troyer F (2019) Life-cycle assessment of timber frame constructions – the case of rooftop extensions. J Clean Prod 216:333–345. https://doi.org/10.1016/j.jclepro.2018.12.278

    Article  Google Scholar 

  117. Fenner AE, Kibert CJ, Woo J et al (2018) The carbon footprint of buildings: a review of methodologies and applications. Renew Sustain Energy Rev 94:1142–1152. https://doi.org/10.1016/j.rser.2018.07.012

    Article  Google Scholar 

  118. Elshout PMF, van der Velde M, van Zelm R et al (2019) Comparing greenhouse gas footprints and payback times of crop-based biofuel production worldwide. Biofuels:1–7. https://doi.org/10.1080/17597269.2019.1630056

  119. Ögmundarson Ó, Sukumara S, Laurent A et al (2020) Environmental hotspots of lactic acid production systems. GCB Bioenergy 12(1):19–38. https://doi.org/10.1111/gcbb.12652

    Article  CAS  Google Scholar 

  120. Cherubini F, Strømman AH (2011) Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour Technol 102:437–451

    Article  CAS  PubMed  Google Scholar 

  121. IPCC (2019) 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories. IPCC, Geneva

    Google Scholar 

  122. Pachauri RK, Mayer L, IPCC SYR TSU (eds) (2015) Climate change 2014: synthesis report. Intergovernmental Panel on Climate Change, Geneva

    Google Scholar 

  123. IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. IGES, Japan

    Google Scholar 

  124. Crutzen PJ, Mosier AR, Smith KA et al (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8(2):389–395. https://doi.org/10.5194/acp-8-389-2008

    Article  CAS  Google Scholar 

  125. Bleischwitz R, Bringezu S (2009) Sustainable resource management: global trends, visions and policies. Greenleaf Publication, Sheffield

    Google Scholar 

  126. UNESDA (2019) World urbanization prospects the 2018 revision. United Nations, Department of Economic and Social Affairs, Population Division, Bruxelles

    Google Scholar 

  127. Koellner T, de Baan L, Beck T et al (2013) UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18(6):1188–1202. https://doi.org/10.1007/s11367-013-0579-z

    Article  Google Scholar 

  128. Milà i Canals L, Bauer C, Depestele J et al (2007) Key elements in a framework for land use impact assessment within LCA (11 pp). Int J Life Cycle Assess 12(1):5–15. https://doi.org/10.1065/lca2006.05.250

    Article  Google Scholar 

  129. Beck T, Bos U, Wittstock B et al (2016) LANCA®: land use indicator value calculation in life cycle assessment. Fraunhofer-Verlag, Stuttgart

    Google Scholar 

  130. Bos U, Horn R, Beck T et al (2010) LANCA® – characterization factors for life cycle impact assessment: Version 2.0. Fraunhofer-Verlag, Stuttgart

    Google Scholar 

  131. Chaudhary A, Verones F, de Baan L et al (2015) Quantifying land use impacts on biodiversity: combining species-area models and vulnerability indicators. Environ Sci Technol 49(16):9987–9995. https://doi.org/10.1021/acs.est.5b02507

    Article  CAS  PubMed  Google Scholar 

  132. Teixeira RFM, Maia de Souza D, Curran MP et al (2016) Towards consensus on land use impacts on biodiversity in LCA: UNEP/SETAC life cycle initiative preliminary recommendations based on expert contributions. J Clean Prod 112:4283–4287. https://doi.org/10.1016/j.jclepro.2015.07.118

    Article  CAS  Google Scholar 

  133. Maga D, Hiebel M, Thonemann N (2019) Life cycle assessment of recycling options for polylactic acid. Resour Conserv Recycl 149:86–96. https://doi.org/10.1016/j.resconrec.2019.05.018

    Article  Google Scholar 

  134. Butterworth J, Morlet A, Nguyen HP et al (2014) Towards the circular economy: accelerating the scale-up across global supply chains. World Economic Forum, Geneva

    Google Scholar 

  135. Sirkin T, Houten M (1994) The cascade chain: a theory and tool for achieving resource sustainability with applications for product design. Resour Conserv Recycl 10(3):213–276. https://doi.org/10.1016/0921-3449(94)90016-7

    Article  Google Scholar 

  136. OECD (2018) Realising the circular bioeconomy: DSTI/STP/BNCT(2017)7/FINAL. OECD Science Technology and Industry Policy Paper

    Google Scholar 

  137. Venkata Mohan S, Nikhil GN, Chiranjeevi P et al (2016) Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresour Technol 215:2–12. https://doi.org/10.1016/j.biortech.2016.03.130

    Article  CAS  PubMed  Google Scholar 

  138. Rehberger M (2019) Essays on decision support for allocation problems in the life cycle management of innovative technologies. Dissertation, Ulm University

    Google Scholar 

  139. Frischknecht R (2000) Allocation in life cycle inventory analysis for joint production. Int J Life Cycle Assess 5(2):85–95. https://doi.org/10.1007/BF02979729

    Article  Google Scholar 

  140. Thunnissen DP (2003) Uncertainty classification for the design and development of complex systems. In: 3rd annual predictive methods conference. Newport Beach, California, pp 1–16

    Google Scholar 

  141. Huijbregts MAJ (1998) Part I: a general framework for the analysis of uncertainty and variability in life cycle assessment. Int J Life Cycle Assess 3:273–280

    Article  Google Scholar 

  142. Matheys J, van Autenboer W, Timmermans J-M et al (2007) Influence of functional unit on the life cycle assessment of traction batteries. Int J Life Cycle Assess 12(3):191–196. https://doi.org/10.1065/lca2007.04.322

    Article  CAS  Google Scholar 

  143. Tillman A-M, Ekvall T, Baumann H et al (1994) Choice of system boundaries in life cycle assessment. J Clean Prod 2(1):21–29. https://doi.org/10.1016/0959-6526(94)90021-3

    Article  Google Scholar 

  144. Cottle DJ, Cowie AL (2016) Allocation of greenhouse gas production between wool and meat in the life cycle assessment of Australian sheep production. Int J Life Cycle Assess 21(6):820–830. https://doi.org/10.1007/s11367-016-1054-4

    Article  CAS  Google Scholar 

  145. Gac A, Lapasin C, Tribot Laspière P et al Co-products from meat processing: the allocation issue. In: Schenck R, Huizenga D (eds) LCA Food 2014. 9th international conference on life-cycle assessment in the agri-food sector, 8–10 October 2014, San Francisco, USA. American Centre for Life Cycle Assessment, San Francisco, pp 438–442

    Google Scholar 

  146. Rehberger M, Hiete M (2019) Allocation procedures for generic cascade use cases – an evaluation using monte carlo analysis. Mater Sci Forum 959:32–45. https://doi.org/10.4028/www.scientific.net/MSF.959.32

    Article  Google Scholar 

  147. Cavalett O, Chagas MF, Seabra JEA et al (2013) Comparative LCA of ethanol versus gasoline in Brazil using different LCIA methods. Int J Life Cycle Assess 18(3):647–658. https://doi.org/10.1007/s11367-012-0465-0

    Article  CAS  Google Scholar 

  148. Weidema BP, Bauer C, Hischier R et al (2013) Overview and methodology. Data quality guideline for the ecoinvent database version 3. ecoinvent report. The Ecoinvent Centre, St. Gallen

    Google Scholar 

  149. Lloyd SM, Ries R (2007) Characterizing, propagating, and analyzing uncertainty in life-cycle assessment: a survey of quantitative approaches. J Indus Ecol 11(1):161–179. https://doi.org/10.1162/jiec.2007.1136

    Article  Google Scholar 

  150. Rosenbaum RK, Georgiadis S, Fantke P (2018) Uncertainty management and sensitivity analysis. In: Hauschild MZ, Rosenbaum RK, Olsen SI (eds) Life cycle assessment: theory and practice, vol 7. Springer, Cham, pp 271–321

    Chapter  Google Scholar 

  151. Frey C, Penmanm J, Hanle L et al (2006) Uncertainties. In: Eggleston S, Buendia L, Miwa K et al (eds) 2006 IPCC guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies, Hayama

    Google Scholar 

  152. Malça J, Freire F (2010) Uncertainty analysis in biofuel systems. J Indus Ecol 14(2):322–334. https://doi.org/10.1111/j.1530-9290.2010.00227.x

    Article  Google Scholar 

  153. Gilbert A, Huang Y-M, Ryll T (2014) Identifying and eliminating cell culture process variability. Pharm Bioprocess 2(6):519–534. https://doi.org/10.4155/pbp.14.35

    Article  Google Scholar 

  154. Jose GE, Folque F, Menezes JC et al (2011) Predicting Mab product yields from cultivation media components, using near-infrared and 2D-fluorescence spectroscopies. Biotechnol Prog 27(5):1339–1346. https://doi.org/10.1002/btpr.638

    Article  CAS  PubMed  Google Scholar 

  155. McGillicuddy N, Floris P, Albrecht S et al (2018) Examining the sources of variability in cell culture media used for biopharmaceutical production. Biotechnol Lett 40(1):5–21. https://doi.org/10.1007/s10529-017-2437-8

    Article  CAS  PubMed  Google Scholar 

  156. DIN ISO 31000 (2009) Risk management – Principles and guidelines(DIN ISO 31000:2009)

    Google Scholar 

  157. Meyer T, Reniers GLL (2016) Engineering risk management. De Gruyter, Berlin

    Book  Google Scholar 

  158. German Advisory Council on Global Change (WBGU) (2000) Strategies for managing global environmental risks: annual report 1998. World in transition, vol 1998. Springer, Berlin

    Book  Google Scholar 

  159. Renn O, Klinke A (2004) Systemic risks: a new challenge for risk management. EMBO Rep 5 Spec No: S41-6. https://doi.org/10.1038/sj.embor.7400227

  160. Bjørn A, Owsianiak M, Molin C et al (2018) Main characteristics of LCA. In: Hauschild MZ, Rosenbaum RK, Olsen SI (eds) Life cycle assessment: theory and practice, vol 319. Springer, Cham, pp 9–16

    Chapter  Google Scholar 

  161. Guinée JB, Heijungs R, Vijver MG et al (2017) Setting the stage for debating the roles of risk assessment and life-cycle assessment of engineered nanomaterials. Nat Nanotechnol 12(8):727–733. https://doi.org/10.1038/nnano.2017.135

    Article  CAS  PubMed  Google Scholar 

  162. Linkov I, Trump BD, Wender BA et al (2017) Integrate life-cycle assessment and risk analysis results, not methods. Nat Nanotechnol 12(8):740–743. https://doi.org/10.1038/nnano.2017.152

    Article  CAS  PubMed  Google Scholar 

  163. Tsang MP, Kikuchi-Uehara E, Sonnemann GW et al (2017) Evaluating nanotechnology opportunities and risks through integration of life-cycle and risk assessment. Nat Nanotechnol 12(8):734–739. https://doi.org/10.1038/nnano.2017.132

    Article  CAS  PubMed  Google Scholar 

  164. Gan X, Fernandez IC, Guo J et al (2017) When to use what: methods for weighting and aggregating sustainability indicators. Ecol Indic 81:491–502. https://doi.org/10.1016/j.ecolind.2017.05.068

    Article  Google Scholar 

  165. Huppes G, van Oers L, Pretato U et al (2012) Weighting environmental effects: analytic survey with operational evaluation methods and a meta-method. Int J Life Cycle Assess 17(7):876–891. https://doi.org/10.1007/s11367-012-0415-x

    Article  CAS  Google Scholar 

  166. Johnsen FM, Løkke S (2013) Review of criteria for evaluating LCA weighting methods. Int J Life Cycle Assess 18(4):840–849. https://doi.org/10.1007/s11367-012-0491-y

    Article  CAS  Google Scholar 

  167. do Carmo BBT, Margni M, Baptiste P (2017) Addressing uncertain scoring and weighting factors in social life cycle assessment. Int J Life Cycle Assess 22(10):1609–1617. https://doi.org/10.1007/s11367-017-1275-1

    Article  CAS  Google Scholar 

  168. Pesonen H-L, Horn S (2013) Evaluating the sustainability SWOT as a streamlined tool for life cycle sustainability assessment. Int J Life Cycle Assess 18(9):1780–1792. https://doi.org/10.1007/s11367-012-0456-1

    Article  Google Scholar 

  169. Renouf MA, Renaud-Gentié C, Perrin A et al (2018) Effectiveness criteria for customised agricultural life cycle assessment tools. J Clean Prod 179:246–254. https://doi.org/10.1016/j.jclepro.2017.12.170

    Article  Google Scholar 

  170. Arzoumanidis I, Salomone R, Petti L et al (2017) Is there a simplified LCA tool suitable for the agri-food industry? An assessment of selected tools. J Clean Prod 149:406–425. https://doi.org/10.1016/j.jclepro.2017.02.059

    Article  Google Scholar 

  171. Graedel T, Allenby BR (2010) Industrial ecology and sustainable engineering. Prentice Hall, Boston

    Google Scholar 

  172. Hellweg S, Milà i Canals L (2014) Emerging approaches, challenges and opportunities in life cycle assessment. Science 344(6188):1109–1113. https://doi.org/10.1126/science.1248361

    Article  CAS  PubMed  Google Scholar 

  173. Todd JA (1996) Streamlining LCA concepts and thoughts. In: Curran MA (ed) Life cycle assessment. McGraw-Hill, New York

    Google Scholar 

  174. Weitz KA, Todd JA, Curran MA et al (1996) Streamlining life cycle: assessment considerations and a report on the state of practice. Int J Life Cycle Assess:79–85

    Google Scholar 

  175. Todd JA, Curran MA (eds) (1999) Streamlined life-cycle assessment: a final report from the SETAC North America Streamlined LCA Workgroup

    Google Scholar 

  176. Wittstock B, Gantner J, Lenz K, Saunders T, Anderson J, Carter J, Gyetvai Z, Kreißig J., Braune A, Lasvaux S, Bosdevigie B, Bazzana M, Schiopu N, Jayr E, Nibel S, Chevalier J, Hans J, Pullana-i-Palmer P, Gazulla C, Mundy J, Barrow-Williams T, Sjöström C (2012) EeBGuide Guidance Document Part B: Buildings – Operational guidance for life cycle assessment studies of the Energy Efficient Buildings Initiative. https://www.eebguide.eu/. Accessed January 2020

  177. Heidari M, Mathis D, Blanchet P et al (2019) Streamlined life cycle assessment of an innovative bio-based material in construction: a case study of a phase change material panel. Forests 10(2):160. https://doi.org/10.3390/f10020160

    Article  Google Scholar 

  178. Bellon-Maurel V, Short MD, Roux P, Schulz M, Peters GM (2014) Streamlining life cycle inventory data generation in agriculture using traceability data and information and communication technologies – part I: concepts and technical basis. J Clean Prod 69:60–66. https://doi.org/10.1016/j.jclepro.2014.01.079

    Article  Google Scholar 

  179. Zah R, Faist M, Reinhard J et al (2009) Standardized and simplified life-cycle assessment (LCA) as a driver for more sustainable biofuels. J Clean Prod 17:S102–S105. https://doi.org/10.1016/j.jclepro.2009.04.004

    Article  Google Scholar 

  180. Traverso M, Finkbeiner M, Jørgensen A et al (2012) Life cycle sustainability dashboard. J Indus Ecol 16(5):680–688. https://doi.org/10.1111/j.1530-9290.2012.00497.x

    Article  Google Scholar 

  181. Jessinghaus J (2000) On the art of aggregating apples & oranges. Nota di Lavoro, Milano

    Google Scholar 

  182. Dias LC, Freire F, Geldermann J (2019) Perspectives on multi-criteria decision analysis and life-cycle assessment. In: Doumpos M (ed) New perspectives in multiple criteria decision making: innovative applications and case studies, vol 1. Springer, Cham, pp 315–329

    Chapter  Google Scholar 

  183. Finkbeiner M, Schau EM, Lehmann A et al (2010) Towards life cycle sustainability assessment. Sustainability 2(10):3309–3322. https://doi.org/10.3390/su2103309

    Article  Google Scholar 

  184. Pursula T, Aho M, Rönnlund I et al (2018) Environmental sustainability indicators for the bioeconomy. In: Filho WL, Pociovalisteanu DM, de Brito B, Roberto P et al (eds) Towards a sustainable bioeconomy: principles, challenges and perspectives. Springer, Cham, pp 43–61

    Chapter  Google Scholar 

  185. Rönnlund I, Reuter M, Horn S et al (2016) Eco-efficiency indicator framework implemented in the metallurgical industry: part 2 – a case study from the copper industry. Int J Life Cycle Assess 21(12):1719–1748. https://doi.org/10.1007/s11367-016-1123-8

    Article  Google Scholar 

  186. Falcone PM, Hiete M (2019) Exploring green and sustainable chemistry in the context of sustainability transition: the role of visions and policy. Curr Opinion Green Sustain Chem 19:66–75. https://doi.org/10.1016/j.cogsc.2019.08.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Fröhling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fröhling, M., Hiete, M. (2020). Sustainability and Life Cycle Assessment in Industrial Biotechnology: A Review of Current Approaches and Future Needs. In: Fröhling, M., Hiete, M. (eds) Sustainability and Life Cycle Assessment in Industrial Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 173. Springer, Cham. https://doi.org/10.1007/10_2020_122

Download citation

Publish with us

Policies and ethics