Skip to main content

Aroma Profile Analyses of Filamentous Fungi Cultivated on Solid Substrates

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 169))

Abstract

Filamentous fungi have been used since centuries in the production of food by means of solid substrate fermentation (SSF). The most applied SSF involving fungi is the cultivation of mushrooms, e.g., on tree stumps or sawdust, for human consumption. However, filamentous fungi are also key players during manufacturing of several processed foods, like mold cheese, tempeh, soy sauce, and sake. In addition to their nutritive values, these foods are widely consumed due to their pleasant flavors. Based on the potentials of filamentous fungi to grow on solid substrates and to produce valuable aroma compounds, in recent decades, several studies concentrated on the production of aroma compounds with SSF, turning cheap agricultural wastes into valuable flavors. In this review, we focus on the presentation of common analytical methods for volatile substances and highlight various applications of SSF of filamentous fungi dealing with the production of aroma compounds.

Graphical Abstract

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

6-PP:

6-Pentyl-α-pyrone

AAO:

Aryl alcohol oxidase(s)

ADA:

Aroma dilution analysis

AEDA:

Aroma extract dilution analysis

CAR:

Carboxen

DHS:

Dynamic headspace

DM:

Dry matter

DVB:

Divinylbenzene

FD:

Flavor dilution factor

FID:

Flame ionization detector

GC:

Gas chromatography

HS:

Headspace

LLE:

Liquid-liquid extraction

MS:

Mass spectrometer

O:

Olfactometry

OAV:

Odor activity value

ODP:

Olfactory detection port

PA:

Polyacrylate

PDMS:

Polydimethylsiloxane

PEG:

Polyethylene glycol

SAFE:

Solvent-assisted flavor evaporation

SBSE:

Stir bar sorptive extraction

SmF:

Submerged fermentation

SPME:

Solid-phase microextraction

SSF:

Solid substrate fermentation

TD:

Thermal desorption

VOC:

Volatile organic compound(s)

References

  1. Dunkel A, Steinhaus M, Kotthoff M et al (2014) Nature’s chemical signatures in human olfaction: a foodborne perspective for future biotechnology. Angew Chem Int Ed Engl 53:7124–7143. https://doi.org/10.1002/anie.201309508

    Article  CAS  PubMed  Google Scholar 

  2. Grosch W (2001) Evaluation of the key odorants of foods by dilution experiments, aroma models and omission. Chem Senses 26:533–545. https://doi.org/10.1093/chemse/26.5.533

    Article  CAS  PubMed  Google Scholar 

  3. Biniecka M, Caroli S (2011) Analytical methods for the quantification of volatile aromatic compounds. Trends Anal Chem 30:1756–1770. https://doi.org/10.1016/j.trac.2011.06.015

    Article  CAS  Google Scholar 

  4. Kleofas V, Popa F, Fraatz MA et al (2015) Aroma profile of the anise-like odour mushroom Cortinarius odorifer. Flavour Fragr J 30:381–386. https://doi.org/10.1002/ffj.3250

    Article  CAS  Google Scholar 

  5. Wells MJM (2003) Principles of extraction and the extraction of semivolatile organics from liquids. In: Somenath M (ed) Sample preparation techniques in analytical chemistry. Wiley-VCH, Weinheim, pp 37–138

    Chapter  Google Scholar 

  6. Engel W, Bahr W, Schieberle P (1999) Solvent assisted flavour evaporation – a new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Z Lebensm Unters Forsch 209:237–241. https://doi.org/10.1007/s002170050486

    Article  CAS  Google Scholar 

  7. Zlatkis A, Lichtenstein HA, Tishbee A (1973) Concentration and analysis of trace volatile organics in gases and biological fluids with a new solid adsorbent. Chromatographia 6:67–70. https://doi.org/10.1007/BF02270540

    Article  CAS  Google Scholar 

  8. Pillonel L, Bosset JO, Tabacchi R (2002) Rapid preconcentration and enrichment techniques for the analysis of food volatile. A review. LWT Food Sci Technol 35:1–14. https://doi.org/10.1006/fstl.2001.0804

    Article  CAS  Google Scholar 

  9. Soria AC, García-Sarrió MJ, Sanz ML (2015) Volatile sampling by headspace techniques. TrAC Trends Anal Chem 71:85–99. https://doi.org/10.1016/j.trac.2015.04.015

    Article  CAS  Google Scholar 

  10. Nawrath T, Dickschat JS, Kunze B et al (2010) The biosynthesis of branched dialkylpyrazines in myxobacteria. Chem Biodivers 7:2129–2144. https://doi.org/10.1002/cbdv.201000158

    Article  CAS  PubMed  Google Scholar 

  11. Grob K (1973) Organic substances in potable water and in its precursor. J Chromatogr A 84:255–273. https://doi.org/10.1016/S0021-9673(01)91705-4

    Article  CAS  Google Scholar 

  12. Da Costa NC, Eri S (2009) Identification of aroma chemicals. In: Rowe DJ (ed) Chemistry and technology of flavors and fragrances. Blackwell, CRC Press, Oxford, pp 12–34

    Google Scholar 

  13. Slack GC, Snow NH, Kou D (2003) Extraction of volatile organic compounds from solids and liquids. In: Somenath M (ed) Sample preparation techniques in analytical chemistry. Wiley-VCH, Weinheim, pp 183–225

    Chapter  Google Scholar 

  14. Sghaier L, Vial J, Sassiat P et al (2016) An overview of recent developments in volatile compounds analysis from edible oils: technique-oriented perspectives. Eur J Lipid Sci Technol 118:1853–1879. https://doi.org/10.1002/ejlt.201500508

    Article  CAS  Google Scholar 

  15. Harper M (2000) Sorbent trapping of volatile organic compounds from air. J Chromatogr A 885:129–151. https://doi.org/10.1016/S0021-9673(00)00363-0

    Article  CAS  PubMed  Google Scholar 

  16. Helmig D, Vierling L (1995) Water adsorption capacity of the solid adsorbents Tenax TA, Tenax GR, Carbotrap, Carbotrap C, Carbosieve SIII, and Carboxen 569 and water management techniques for the atmospheric sampling of volatile organic trace gases. Anal Chem 67:4380–4386. https://doi.org/10.1021/ac00119a029

    Article  CAS  Google Scholar 

  17. Bazemore R (2011) Sample preparation. In: Goodner K, Rousseff R (eds) Practical analysis of flavor and fragrance materials, vol 75. Wiley, Hoboken, pp 23–44

    Chapter  Google Scholar 

  18. Bicchi C, Cordero C, Liberto E et al (2008) Headspace sampling of the volatile fraction of vegetable matrices. J Chromatogr A 1184:220–233. https://doi.org/10.1016/j.chroma.2007.06.019

    Article  CAS  PubMed  Google Scholar 

  19. Castro R, Natera R, Benitez P et al (2004) Comparative analysis of volatile compounds of ‘fino’ sherry wine by rotatory and continuous liquid–liquid extraction and solid-phase microextraction in conjunction with gas chromatography-mass spectrometry. Anal Chim Acta 513:141–150. https://doi.org/10.1016/j.aca.2004.02.002

    Article  CAS  Google Scholar 

  20. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148. https://doi.org/10.1021/ac00218a019

    Article  CAS  Google Scholar 

  21. Pawliszyn J (2003) Sample preparation: quo vadis? Anal Chem 75:2543–2558. https://doi.org/10.1021/ac034094h

    Article  CAS  PubMed  Google Scholar 

  22. Hou X, Wang L, Guo Y (2017) Recent developments in solid-phase microextraction coatings for environmental and biological analysis. Chem Lett 46:1444–1455. https://doi.org/10.1246/cl.170366

    Article  CAS  Google Scholar 

  23. Azenha MA, Nogueira PJ, Silva AF (2006) Unbreakable solid-phase microextraction fibers obtained by sol-gel deposition on titanium wire. Anal Chem 78:2071–2074. https://doi.org/10.1021/ac0521246

    Article  CAS  PubMed  Google Scholar 

  24. Silva C, Cavaco C, Perestrelo R et al (2014) Microextraction by packed sorbent (MEPS) and solid-phase microextraction (SPME) as sample preparation procedures for the metabolomic profiling of urine. Metabolites 4:71–97. https://doi.org/10.3390/metabo4010071

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xu C-H, Chen G-S, Xiong Z-H et al (2016) Applications of solid-phase microextraction in food analysis. TrAC Trends Anal Chem 80:12–29. https://doi.org/10.1016/j.trac.2016.02.022

    Article  CAS  Google Scholar 

  26. Lee LW, Cheong MW, Curran P et al (2016) Modulation of coffee aroma via the fermentation of green coffee beans with Rhizopus oligosporus: II. Effects of different roast levels. Food Chem 211:925–936. https://doi.org/10.1016/j.foodchem.2016.05.073

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Q, Zhou L, Chen H et al (2016) Solid-phase microextraction technology for in vitro and in vivo metabolite analysis. Trends Anal Chem 80:57–65. https://doi.org/10.1016/j.trac.2016.02.017

    Article  CAS  Google Scholar 

  28. Rutkowska M, Dubalska K, Konieczka P et al (2014) Microextraction techniques used in the procedures for determining organomercury and organotin compounds in environmental samples. Molecules 19:7581–7609. https://doi.org/10.3390/molecules19067581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gómez-Ríos GA, Reyes-Garcés N, Bojko B et al (2016) Biocompatible solid-phase microextraction nanoelectrospray ionization: an unexploited tool in bioanalysis. Anal Chem 88:1259–1265. https://doi.org/10.1021/acs.analchem.5b03668

    Article  CAS  PubMed  Google Scholar 

  30. Boyacı E, Rodríguez-Lafuente Á, Gorynski K et al (2015) Sample preparation with solid phase microextraction and exhaustive extraction approaches: comparison for challenging cases. Anal Chim Acta 873:14–30. https://doi.org/10.1016/j.aca.2014.12.051

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Z, Pawliszyn J (1993) Headspace solid-phase microextraction. Anal Chem 65:1843–1852. https://doi.org/10.1021/ac00062a008

    Article  CAS  Google Scholar 

  32. Feng J, Qiu H, Liu X et al (2013) The development of solid-phase microextraction fibers with metal wires as supporting substrates. TrAC Trends Anal Chem 46:44–58. https://doi.org/10.1016/j.trac.2013.01.015

    Article  CAS  Google Scholar 

  33. Baltussen E, Sandra P, David F et al (1999) Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. J Microcolumn Sep 11:737–747. https://doi.org/10.1002/(SICI)1520-667X(1999)11:10<737:AID-MCS7>3.0.CO;2-4

    Article  CAS  Google Scholar 

  34. Rykowska I, Wasiak W (2013) Advances in stir bar sorptive extraction coating: a review. Acta Chromatogr 25:27–46. https://doi.org/10.1556/AChrom.25.2013.1.13

    Article  CAS  Google Scholar 

  35. Kawaguchi M, Ito R, Saito K et al (2006) Novel stir bar sorptive extraction methods for environmental and biomedical analysis. J Pharm Biomed Anal 40:500–508. https://doi.org/10.1016/j.jpba.2005.08.029

    Article  CAS  PubMed  Google Scholar 

  36. Merkle S, Kleeberg K, Fritsche J (2015) Recent developments and applications of solid phase microextraction (SPME) in food and environmental analysis – a review. Chromatography 2:293–381. https://doi.org/10.3390/chromatography2030293

    Article  CAS  Google Scholar 

  37. Prieto A, Basauri O, Rodil R et al (2010) Stir-bar sorptive extraction: a view on method optimisation, novel applications, limitations and potential solutions. J Chromatogr A 1217:2642–2666. https://doi.org/10.1016/j.chroma.2009.12.051

    Article  CAS  PubMed  Google Scholar 

  38. Baltussen E, Cramers CA, Sandra PJF (2002) Sorptive sample preparation – a review. Anal Bioanal Chem 373:3–22. https://doi.org/10.1007/s00216-002-1266-2

    Article  CAS  PubMed  Google Scholar 

  39. Gilart N, Marcé RM, Borrull F et al (2014) New coatings for stir-bar sorptive extraction of polar emerging organic contaminants. TrAC Trends Anal Chem 54:11–23. https://doi.org/10.1016/j.trac.2013.10.010

    Article  CAS  Google Scholar 

  40. Kabir A, Locatelli M, Ulusoy H (2017) Recent trends in microextraction techniques employed in analytical and bioanalytical sample preparation. Separations 4:36. https://doi.org/10.3390/separations4040036

    Article  CAS  Google Scholar 

  41. Reineccius G (2010) Instrumental methods of analysis. In: Taylor AJ, Linforth RST (eds) Food flavour technology, 2nd edn. Blackwell, Ames, pp. 229–265

    Google Scholar 

  42. IOFI (2006) Statement on the identification in nature of flavouring substances, made by the working group on methods of analysis of the international organization of the flavour industry (IOFI). Flavour Fragr J 21:185. https://doi.org/10.1002/ffj.1721

    Article  Google Scholar 

  43. Grosch W (2007) Gas chromatography – olfactometry of aroma compounds. In: Berger RG (ed) Flavours and fragrances: chemistry, bioprocessing and sustainability. Springer, Berlin, pp 363–378

    Chapter  Google Scholar 

  44. van den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas – liquid partition chromatography. J Chromatogr A 11:463–471. https://doi.org/10.1016/S0021-9673(01)80947-X

    Article  Google Scholar 

  45. Belitz H-D, Grosch W, Schieberle P (2009) Food chemistry, 4th edn. Springer, Berlin

    Google Scholar 

  46. Kleofas V, Popa F, Niedenthal E et al (2015) Analysis of the volatilome of Calocybe gambosa. Mycol Prog 14:93. https://doi.org/10.1007/s11557-015-1117-0

    Article  Google Scholar 

  47. Trapp T, Jäger DA, Fraatz MA et al (2018) Development and validation of a novel method for aroma dilution analysis by means of stir bar sorptive extraction. Eur Food Res Technol 244:949–957. https://doi.org/10.1007/s00217-017-3003-2

    Article  CAS  Google Scholar 

  48. Zhang Y, Fraatz MA, Horlamus F et al (2014) Identification of potent odorants in a novel nonalcoholic beverage produced by fermentation of wort with shiitake (Lentinula edodes). J Agric Food Chem 62:4195–4203. https://doi.org/10.1021/jf5005463

    Article  CAS  PubMed  Google Scholar 

  49. Zhu Y, Tramper J (2013) Koji – where east meets west in fermentation. Biotechnol Adv 31:1448–1457. https://doi.org/10.1016/j.biotechadv.2013.07.001

    Article  CAS  PubMed  Google Scholar 

  50. Ito K, Yoshida K, Ishikawa T et al (1990) Volatile compounds produced by the fungus Aspergillus oryzae in rice Koji and their changes during cultivation. J Ferment Bioeng 70:169–172. https://doi.org/10.1016/0922-338X(90)90178-Y

    Article  CAS  Google Scholar 

  51. Kum S-J, Yang S-O, Lee SM et al (2015) Effects of Aspergillus species inoculation and their enzymatic activities on the formation of volatile components in fermented soybean paste (doenjang). J Agric Food Chem 63:1401–1418. https://doi.org/10.1021/jf5056002

    Article  CAS  PubMed  Google Scholar 

  52. Feng Y, Su G, Zhao H et al (2015) Characterisation of aroma profiles of commercial soy sauce by odour activity value and omission test. Food Chem 167:220–228. https://doi.org/10.1016/j.foodchem.2014.06.057

    Article  CAS  Google Scholar 

  53. Jeleń H, Majcher M, Ginja A et al (2013) Determination of compounds responsible for tempeh aroma. Food Chem 141:459–465. https://doi.org/10.1016/j.foodchem.2013.03.047

    Article  CAS  PubMed  Google Scholar 

  54. Feng XM, Larsen TO, Schnürer J (2007) Production of volatile compounds by Rhizopus oligosporus during soybean and barley tempeh fermentation. Int J Food Microbiol 113:133–141. https://doi.org/10.1016/j.ijfoodmicro.2006.06.025

    Article  CAS  PubMed  Google Scholar 

  55. Hymery N, Vasseur V, Coton M et al (2014) Filamentous fungi and mycotoxins in cheese: a review. Compr Rev Food Sci Food Saf 13:437–456. https://doi.org/10.1111/1541-4337.12069

    Article  CAS  Google Scholar 

  56. Vitova E, Loupancova B, Stoudkova H et al (2007) Application of SPME-GC method for analysis of the aroma of white surface mould cheeses. J Food Nutr Res 46:84–90

    CAS  Google Scholar 

  57. Kubíčková J, Grosch W (1997) Evaluation of potent odorants of camembert cheese by dilution and concentration techniques. Int Dairy J 7:65–70. https://doi.org/10.1016/S0958-6946(96)00044-1

    Article  Google Scholar 

  58. Kubı́cková J, Grosch W (1998) Quantification of potent odorants in camembert cheese and calculation of their odour activity values. Int Dairy J 8:17–23. https://doi.org/10.1016/S0958-6946(98)00014-4

    Article  Google Scholar 

  59. Karahadian C, Josephson DB, Lindsay RC (1985) Volatile compounds from Penicillium sp. contributing musty-earthy notes to brie and camembert cheese flavors. J Agric Food Chem 33:339–343. https://doi.org/10.1021/jf00063a005

    Article  CAS  Google Scholar 

  60. Kinsella JE, Hwang D (1976) Biosynthesis of flavors by Penicillium roqueforti. Biotechnol Bioeng 18:927–938. https://doi.org/10.1002/bit.260180706

    Article  CAS  Google Scholar 

  61. Gillot G, Jany J-L, Poirier E et al (2017) Functional diversity within the Penicillium roqueforti species. Int J Food Microbiol 241:141–150. https://doi.org/10.1016/j.ijfoodmicro.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  62. Abbas A, Dobson ADW (2011) Yeasts and molds | Penicillium roqueforti. In: Fuquay JW (ed) Encyclopedia of dairy sciences, 2nd edn. Academic Press, Amsterdam, pp 772–775

    Chapter  Google Scholar 

  63. Petrovio SE, Becarevic A, Banka L et al (1991) Effects of various carbon and nitrogen sources on the biosynthesis of extracellular acidic proteinases of Penicillium roqueforti. Biotechnol Lett 13:451–454. https://doi.org/10.1007/BF01031000

    Article  Google Scholar 

  64. Martínez-Rodríguez Y, Acosta-Muñiz C, Olivas GI et al (2014) Effect of high hydrostatic pressure on mycelial development, spore viability and enzyme activity of Penicillium roqueforti. Int J Food Microbiol 168-169:42–46. https://doi.org/10.1016/j.ijfoodmicro.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  65. McSweeney PLH, Sousa MJ (2000) Biochemical pathways for the production of flavour compounds in cheeses during ripening: a review. Lait 80:293–324. https://doi.org/10.1051/lait:2000127

    Article  CAS  Google Scholar 

  66. Cao M, Fonseca LM, Schoenfuss TC et al (2014) Homogenization and lipase treatment of milk and resulting methyl ketone generation in blue cheese. J Agric Food Chem 62:5726–5733. https://doi.org/10.1021/jf4048786

    Article  CAS  PubMed  Google Scholar 

  67. Curioni PMG, Bosset JO (2002) Key odorants in various cheese types as determined by gas chromatography-olfactometry. Int Dairy J 12:959–984. https://doi.org/10.1016/S0958-6946(02)00124-3

    Article  CAS  Google Scholar 

  68. Dartey CK, Kinsella JE (1971) Rate of formation of methyl ketones during blue cheese ripening. J Agric Food Chem 19:771–774. https://doi.org/10.1021/jf60176a029

    Article  CAS  Google Scholar 

  69. Rossi SC, Vandenberghe LPS, Pereira BMP et al (2009) Improving fruity aroma production by fungi in SSF using citric pulp. Food Res Int 42:484–486. https://doi.org/10.1016/j.foodres.2009.01.016

    Article  CAS  Google Scholar 

  70. Christen P, Meza JC, Revah S (1997) Fruity aroma production in solid state fermentation by Ceratocystis fimbriata: influence of the substrate type and the presence of precursors. Mycol Res 101:911–919. https://doi.org/10.1017/S0953756297003535

    Article  CAS  Google Scholar 

  71. Hazelwood LA, Daran J-M, van Maris AJA et al (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266. https://doi.org/10.1128/AEM.02625-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tai Y-S, Xiong M, Zhang K (2015) Engineered biosynthesis of medium-chain esters in Escherichia coli. Metab Eng 27:20–28. https://doi.org/10.1016/j.ymben.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  73. Medeiros ABP, Christen P, Roussos S et al (2003) Coffee residues as substrates for aroma production by Ceratocystis fimbriata in solid state fermentation. Braz J Microbiol 34. https://doi.org/10.1590/S1517-83822003000300013

  74. Kalyani A, Prapulla SG, Karanth NG (2000) Study on the production of 6-pentyl-alpha-pyrone using two methods of fermentation. Appl Microbiol Biotechnol 53:610–612

    Article  CAS  Google Scholar 

  75. Sarhy-Bagnon V, Lozano P, Saucedo-Castañeda G et al (2000) Production of 6-pentyl-α-pyrone by Trichoderma harzianum in liquid and solid state cultures. Process Biochem 36:103–109. https://doi.org/10.1016/S0032-9592(00)00184-9

    Article  CAS  Google Scholar 

  76. de Aráujo ÁA, Pastore GM, Berger RG (2002) Production of coconut aroma by fungi cultivation in solid-state fermentation. Appl Biochem Biotechnol 98:747–751. https://doi.org/10.1385/ABAB:98-100:1-9:747

    Article  Google Scholar 

  77. Fadel HHM, Mahmoud MG, Asker MMS et al (2015) Characterization and evaluation of coconut aroma produced by Trichoderma viride EMCC-107 in solid state fermentation on sugarcane bagasse. Electron J Biotechnol 18:5–9. https://doi.org/10.1016/j.ejbt.2014.10.006

    Article  CAS  Google Scholar 

  78. de Souza Ramos A, Fiaux SB, Leite SGF (2008) Production of 6-pentyl-α-pyrone by Trichoderma harzianum in solid-state fermentation. Braz J Microbiol 39:712–717. https://doi.org/10.1590/S1517-838220080004000022

    Article  PubMed  PubMed Central  Google Scholar 

  79. Yamauchui H, Akita O, Obata T et al (1989) Production and application of a fruity odor in a solid-state culture of Neurospora sp. using pregelatinized polished rice. Agric Biol Chem 53:2881–2886. https://doi.org/10.1271/bbb1961.53.2881

    Article  Google Scholar 

  80. Zhang Y, Zhu X, Li X et al (2017) The process-related dynamics of microbial community during a simulated fermentation of Chinese strong-flavored liquor. BMC Microbiol 17:196. https://doi.org/10.1186/s12866-017-1106-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Aggelopoulos T, Katsieris K, Bekatorou A et al (2014) Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. Food Chem 145:710–716. https://doi.org/10.1016/j.foodchem.2013.07.105

    Article  CAS  PubMed  Google Scholar 

  82. Haidvogel W (2013) Pilzzucht und -verarbeitung. In: Hinker M, Seibert M (eds) Pilze in Innenräumen und am Arbeitsplatz, 1 Aufl. Springer, Wien, pp 51–62

    Google Scholar 

  83. Rühl M, Kües U (2007) Mushroom production. In: Kües U (ed) Wood production, wood technology, and biotechnological impacts. Universitätsverlag Göttingen, Göttingen, pp 555–586

    Google Scholar 

  84. Sánchez C (2010) Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl Microbiol Biotechnol 85:1321–1337. https://doi.org/10.1007/s00253-009-2343-7

    Article  CAS  PubMed  Google Scholar 

  85. Pfaltzgraff LA, de Bruyn M, Cooper EC et al (2013) Food waste biomass: a resource for high-value chemicals. Green Chem 15:307. https://doi.org/10.1039/c2gc36978h

    Article  CAS  Google Scholar 

  86. Rühl M, Zorn H (2016) Speisepilze – wertvolle Lebensmittel seit der Steinzeit: Nutritive und pharmakologische Eigenschaften, Kultivierung und Nutzen für die Entwicklung veganer Lebensmittel. Moderne Ernährung heute, vol 3

    Google Scholar 

  87. Fraatz MA, Zorn H (2010) Fungal flavours. In: Hofrichter M (ed) The mycota X: industrial applications, 2. Aufl. Springer, Berlin, pp S.249–264

    Google Scholar 

  88. Dickschat JS (2017) Fungal volatiles – a survey from edible mushrooms to moulds. Nat Prod Rep 34:310–328. https://doi.org/10.1039/c7np00003k

    Article  CAS  PubMed  Google Scholar 

  89. Gross B, Asther M (1989) Aromas from basidiomycetes: characteristics, analysis and production. Sci Aliment 9:427–454

    CAS  Google Scholar 

  90. Royse DJ, Bahler CC (1986) Effects of genotype, spawn run time, and substrate formulation on biological efficiency of shiitake. Appl Environ Microbiol 52:1425–1427

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kabbaj W, Breheret S, Guimberteau J et al (2002) Comparison of volatile compound production in fruit body and in mycelium of Pleurotus ostreatus identified by submerged and solid-state cultures. Appl Biochem Biotechnol 102:463–469. https://doi.org/10.1385/ABAB:102-103:1-6:463

    Article  PubMed  Google Scholar 

  92. Omarini A, Dambolena JS, Lucini E et al (2016) Biotransformation of 1,8-cineole by solid-state fermentation of Eucalyptus waste from the essential oil industry using Pleurotus ostreatus and Favolus tenuiculus. Folia Microbiol (Praha) 61:149–157. https://doi.org/10.1007/s12223-015-0422-y

    Article  CAS  Google Scholar 

  93. Wu J, Wang C, Huang G et al (2016) Biotransformation of vine tea (Ampelopsis grossedentata) by solid-state fermentation using medicinal fungus Poria cocos. J Food Sci Technol 53:3225–3232. https://doi.org/10.1007/s13197-016-2297-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xia Y, Zhang B, Li W et al (2011) Changes in volatile compound composition of Antrodia camphorata during solid state fermentation. J Sci Food Agric 91:2463–2470. https://doi.org/10.1002/jsfa.4488

    Article  CAS  PubMed  Google Scholar 

  95. Ruiz-Dueñas FJ, Martínez AT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2:164–177. https://doi.org/10.1111/j.1751-7915.2008.00078.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lapadatescu C, Ginies C, Le Quere JL et al (2000) Novel scheme for biosynthesis of aryl metabolites from L-phenylalanine in the fungus Bjerkandera adusta. Appl Environ Microbiol 66:1517–1522

    Article  CAS  Google Scholar 

  97. Lapadatescu C, Bonnarme P (1999) Production of aryl metabolites in solid-state fermentations of the white-rot fungus Bjerkandera adusta. Biotechnol Lett 21:763–769. https://doi.org/10.1023/A:1005527205998

    Article  CAS  Google Scholar 

  98. Lapadatescu C, Feron G, Vergoignan C et al (1997) Influence of cell immobilization on the production of benzaldehyde and benzyl alcohol by the white-rot fungi Bjerkandera adusta, Ischnoderma benzoinum and Dichomitus squalens. Appl Microbiol Biotechnol 47:708–714. https://doi.org/10.1007/s002530050999

    Article  CAS  Google Scholar 

  99. Kleofas V, Sommer L, Fraatz MA et al (2014) Fruiting body production and aroma profile analysis of Agrocybe aegerita cultivated on different substrates. Nat Resour 5:233–240. https://doi.org/10.4236/nr.2014.56022

    Article  CAS  Google Scholar 

  100. Kües U (2015) From two to many: multiple mating types in basidiomycetes. Fungal Biol Rev 29:126–166. https://doi.org/10.1016/j.fbr.2015.11.001

    Article  Google Scholar 

  101. Freihorst D, Brunsch M, Wirth S et al (2018) Smelling the difference: transcriptome, proteome and volatilome changes after mating. Fungal Genet Biol 112:2–11. https://doi.org/10.1016/j.fgb.2016.08.007

    Article  CAS  PubMed  Google Scholar 

  102. Herzog R, Solovyeva I, Rühl M et al (2016) Dikaryotic fruiting body development in a single dikaryon of Agrocybe aegerita and the spectrum of monokaryotic fruiting types in its monokaryotic progeny. Mycol Prog 15:947–957. https://doi.org/10.1007/s11557-016-1221-9

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support by the Deutsche Forschungsgemeinschaft RU 2137/1 and by the excellence initiative LOEWE within the project “AROMAplus” financed by the Hessian Ministry of Science and Art.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Rühl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orban, A., Fraatz, M.A., Rühl, M. (2019). Aroma Profile Analyses of Filamentous Fungi Cultivated on Solid Substrates. In: Steudler, S., Werner, A., Cheng, J. (eds) Solid State Fermentation. Advances in Biochemical Engineering/Biotechnology, vol 169. Springer, Cham. https://doi.org/10.1007/10_2019_87

Download citation

Publish with us

Policies and ethics