Skip to main content

Aptamers in Diagnostic and Molecular Imaging Applications

  • Chapter
  • First Online:
Aptamers in Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 174))

Abstract

The origin of the term diagnostic comes from the Greek word gnosis, meaning “to know.” In medicine, a diagnostic can predict the pathology risk, disease status, treatment, and prognosis, even following therapy. An early and correct diagnosis is necessary for an efficient treatment. Moreover, it is possible to predict if and why a therapy will be successful or fail, enabling the timely application of alternative therapeutic strategies. Available diagnostics are due to the advances in biotechnology; however, more sensitive, low-cost, and noninvasive methodologies are still a challenge. Knowledge about molecular characteristics provide personalized information, which is the goal of future medicine. Today, multiple diagnostic techniques have emerged, with which it is possible to distinguish molecular patterns.

In this way, aptamers are the perfect tools to recognize molecular targets and can be easily modified to confer additional functions. Their versatile characteristics and low cost make aptamers ideal for diagnostic applications.

This chapter is a review of aptamer-based diagnostics in biomedicine, with a special focus on probe design and molecular imaging.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ellington A, Szostak J (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    CAS  PubMed  Google Scholar 

  2. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    CAS  PubMed  Google Scholar 

  3. Bayat P, Nosrati R, Alibolandi M et al (2018) SELEX methods on the road to protein targeting with nucleic acid aptamers. Biochimie 154:132–155

    CAS  PubMed  Google Scholar 

  4. Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Ed Engl 48:2672–2689

    CAS  PubMed  Google Scholar 

  5. Xiang D, Zheng C, Zhou S et al (2015) Superior performance of aptamer in tumor penetration over antibody: implication of aptamer-based theranostics in solid tumors. Theranostics 5:1083–1097

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang Y, Lai B, Juhas M (2019) Recent advances in aptamer discovery and applications. Molecules 24:e941

    PubMed  Google Scholar 

  7. Bouchard P, Hutabarat R, Thompson K (2010) Discovery and development of therapeutic aptamers. Annu Rev Pharmacol Toxicol 50:237–257

    CAS  PubMed  Google Scholar 

  8. Kaur H, Bruno J, Kumar A et al (2018) Aptamers in the therapeutics and diagnostics pipelines. Theranostics 8:4016–4032

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chandola C, Kalme S, Casteleijn M et al (2016) Application of aptamers in diagnostics, drug-delivery and imaging. J Biosci 41:535–561

    CAS  PubMed  Google Scholar 

  10. Chen K, Chen X (2010) Design and development of molecular imaging probes. Curr Top Med Chem 10:1227–1236

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sicco E, Báez J, Margenat J et al (2018) Derivatizations of Sgc8-c aptamer to prepare metallic radiopharmaceuticals as imaging diagnostic agents: syntheses, isolations, and physicochemical characterizations. Chem Biol Drug Des 91:74–755

    Google Scholar 

  12. Wang T, Chen C, Larcher L et al (2019) Three decades of nucleic acid aptamer technologies: lessons learned, progress and opportunities on aptamer development. Biotechnol Adv 37:28–50

    CAS  PubMed  Google Scholar 

  13. Barciszewski J, Medgaard M, Koch T et al (2009) Locked nucleic acid aptamers. Methods Mol Biol 535:165–186

    CAS  PubMed  Google Scholar 

  14. Steele F, Gold L (2012) The sweet allure of XNA. Nat Biotech 30:624–625

    CAS  Google Scholar 

  15. Cheung Y, Kwok J, Law A et al (2013) Structural basis for discriminatory recognition of Plasmodium lactate dehydrogenase by a DNA aptamer. Proc Natl Acad Sci U S A 110:15967–15972

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheng A, Calabro V, Frankel A (2001) Design of RNA-binding proteins and ligands. Curr Opin Struct Biol 11:478–484

    CAS  PubMed  Google Scholar 

  17. Lakhin A, Tarantul V, Gening L (2013) Aptamers: problems, solutions and prospects. Acta Nat 5:34–43

    CAS  Google Scholar 

  18. Darmostuk M, Rimpelova S, Gbelcova H et al (2015) Current approaches in SELEX: an update to aptamer selection technology. Biotechnol Adv 33:1141–1161

    CAS  PubMed  Google Scholar 

  19. Cowperthwaite M, Ellington A (2008) Bioinformatic analysis of the contribution of primer sequences to aptamer structures. J Mol Evol 67:95–102

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Eaton BE (1997) The joys of in vitro selection: chemically dressing oligonucleotides to satiate protein targets. Curr Opin Chem Biol 1:10–16

    CAS  PubMed  Google Scholar 

  21. Sacca B, Lacroix L, Mergny JL (2005) The effect of chemical modifications on the thermal stability of different g-quadruplex-forming oligonucleotides. Nucleic Acids Res 33:1182–1192

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmidt KS, Borkowski S, Kurreck J et al (2004) Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. Nucleic Acids Res 32:5757–5765

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hasegawa H, Savory N, Abe K et al (2016) Methods for improving aptamer binding affinity. Molecules 21:421

    PubMed  PubMed Central  Google Scholar 

  24. Drabik A, Ner-Kluza J, Mielczarek P et al (2018) Advances in the study of aptamer-protein target identification using the chromatographic approach. J Proteome Res 17:2174–2181

    CAS  PubMed  Google Scholar 

  25. Wiedman GR, Zhao Y, Mustaev A et al (2017) An aptamer-based biosensor for the azole class of antifungal drugs. mSphere 2(4):e00274–e00217

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Blind M, Blank M (2015) Aptamer selection technology and recent advances. Mol Ther Nucleic Acids 4(1):e223

    PubMed  PubMed Central  Google Scholar 

  27. Kalra P, Dhiman A, Cho W et al (2018) Simple methods and rational design for enhancing aptamer sensitivity and specificity. Front Mol Biosci 5:41

    PubMed  PubMed Central  Google Scholar 

  28. Kinghorn A, Fraser L, Lang S et al (2017) Aptamer bioinformatics. Int J Mol Sci 18:e2516

    PubMed  Google Scholar 

  29. Röthlisberger P, Hollenstein M (2018) Aptamer chemistry. Adv Drug Deliv Rev 134:3–21

    PubMed  Google Scholar 

  30. Kalia J, Raines R (2010) Advances in bioconjugation. Curr Org Chem 14:138–147

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bruno JG (2015) Predicting the uncertain future of aptamer-based diagnostics and therapeutics. Molecules 20:6866–6887

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hori S, Herrera A, Rossi JJ et al (2018) Current advances in aptamers for cancer diagnosis and therapy. Cancers 10:9

    PubMed Central  Google Scholar 

  33. Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287:820–825

    CAS  PubMed  Google Scholar 

  34. Musumeci D, Platella C, Riccardi C et al (2017) Fluorescence sensing using DNA aptamers in cancer research and clinical diagnostics. Cancers 9(12):174

    PubMed Central  Google Scholar 

  35. di Primo C, Dausse E, Toulmé JJ (2011) Surface plasmon resonance investigation of RNA aptamer-RNA ligand interactions. Methods Mol Biol 764:279–300

    PubMed  Google Scholar 

  36. Biancoa M, Sonatob A, de Girolamoc A et al (2017) An aptamer-based SPR-polarization platform for high sensitive OTA detection. Sens Act B 241:314–320

    Google Scholar 

  37. Wang F, Cao S, Yan R et al (2017) Selectivity/specificity improvement strategies in surface-enhanced Raman spectroscopy analysis. Sensors 17(11):E2689

    PubMed  Google Scholar 

  38. Kukushkin VI, Ivanov NM, Novoseltseva AA et al (2019) Highly sensitive detection of influenza virus with SERS aptasensor. PLoS One 14:e0216247

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang Y, Wei H, Li B et al (2007) SERS opens a new way in aptasensor for protein recognition with high sensitivity and selectivity. Chem Commun:5220–5222

    Google Scholar 

  40. Jarczewska M, Górski L, Malinowska E (2016) Electrochemical aptamer-based biosensors as potential tools for clinical diagnostics. Anal Methods 8:3861–3877

    CAS  Google Scholar 

  41. Hamaguchi N, Ellington A, Stanton M (2001) Aptamer beacons for the direct detection of proteins. Anal Biochem 294:126–131

    CAS  PubMed  Google Scholar 

  42. Radi A, Acero Sánchez J, Baldrich E et al (2006) Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. J Am Chem Soc 128:117–124

    CAS  PubMed  Google Scholar 

  43. Ciancio DR, Vargas MR, Thiel WH et al (2018) Aptamers as diagnostic tools in cancer. Pharmaceuticals (Basel) 11(3):86

    CAS  Google Scholar 

  44. Healy J, Lewis S, Kurz M et al (2004) Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm Res 21:2234–2246

    CAS  PubMed  Google Scholar 

  45. Vater A, Klussmann S (2015) Turning mirror-image oligonucleotides into drugs: the evolution of Spiegelmer(®) therapeutics. Drug Discov Today 20(1):147–155

    CAS  PubMed  Google Scholar 

  46. Röthlisberger P, Gasse C, Hollenstein M (2017) Nucleic acid aptamers: emerging applications in medical imaging, nanotechnology, neurosciences, and drug delivery. Int J Mol Sci 18:e2430

    PubMed  Google Scholar 

  47. Ni S, Yao H, Wang L et al (2017) Chemical modifications of nucleic acid aptamers for therapeutic purposes. Int J Mol Sci 18:e1683

    PubMed  Google Scholar 

  48. Eulberg D, Klussmann S (2003) Spiegelmers: biostable aptamers. Chembiochem 4:979–983

    CAS  PubMed  Google Scholar 

  49. Rofstad EK, Galappathi K, Mathiesen BS (2014) Tumor interstitial fluid pressure – a link between tumor hypoxia, microvascular density, and lymph node metastasis. Neoplasia 16:586–594

    PubMed  PubMed Central  Google Scholar 

  50. Kovacevic K, Gilbert J, Jilma B (2010) Pharmacokinetics, pharmacodynamics and safety of aptamers. Adv Drug Deliv Rev 134:36–50

    Google Scholar 

  51. Vorobyeva M, Vorobjev P, Venyaminova A (2016) Multivalent aptamers: versatile tools for diagnostic and therapeutic applications. Molecules 21:E1613

    PubMed  Google Scholar 

  52. Lei Y, Qiao Z, Tang J et al (2018) DNA nanotriangle-scaffolded activatable aptamer probe with ultralow background and robust stability for cancer theranostics. Theranostics 8:4062–4071

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lei Y, He X, Tang J (2018) Ultra-pH-responsive split i-motif based aptamer anchoring strategy for specific activatable imaging of acidic tumor microenvironment. Chem Commun 54(73):10288–10291

    CAS  Google Scholar 

  54. Weissleder R, Nahrendorf M (2015) Advancing biomedical imaging. Proc Natl Acad Sci U S A 112:14424–14428

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    CAS  PubMed  Google Scholar 

  56. Lecchi M, Ottobrini L, Martelli C et al (2007) Instrumentation and probes for molecular and cellular imaging. Q J Nucl Med Mol Imaging 51:111–126

    CAS  PubMed  Google Scholar 

  57. Hicke B, Stephens A, Gould T et al (2006) Tumor targeting by an aptamer. J Nucl Med 47:668–678

    CAS  PubMed  Google Scholar 

  58. Bouvier-Müller A, Ducongé F (2018) Application of aptamers for in vivo molecular imaging and theranostics. Adv Drug Deliv Rev 134:94–106

    PubMed  Google Scholar 

  59. Cassidy P, Radda G (2005) Molecular imaging perspectives. J R Soc Interface 2:133–144

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Alberti C (2012) From molecular imaging in preclinical/clinical oncology to theranostic applications in targeted tumor therapy. Eur Rev Med Pharmacol Sci 16:925–933

    Google Scholar 

  61. Dang X, Bardhan N, Qi J et al (2019) Deep-tissue optical imaging of near cellular-sized features. Sci Rep 9:3873

    PubMed  PubMed Central  Google Scholar 

  62. Haque A, Faizi MSH, Rather JA et al (2017) Next generation NIR fluorophores for tumor imaging and fluorescence-guided surgery: a review. Bioorg Med Chem 25:2017–2034

    CAS  PubMed  Google Scholar 

  63. Hong G, Lee JC, Robinson JT et al (2012) Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med 18:1841–1846

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Condeelis J, Weissleder R (2010) In vivo imaging in cancer. Cold Spring Harb Perspect Biol 2:a003848

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Thompson A, Hughes M, Anastasova S et al (2017) Position paper: the potential role of optical biopsy in the study and diagnosis of environmental enteric dysfunction. Nat Rev Gastroenterol Hepatol 14:727–738

    PubMed  Google Scholar 

  66. Wang T, van dam J (2004) Optical biopsy: a new frontier in endoscopic detection and diagnosis. Clin Gastroenterol Hepatol 2:744–753

    PubMed  PubMed Central  Google Scholar 

  67. Calzada V, Moreno M, Newton J et al (2017) Development of new PTK7-targeting aptamer-fluorescent and -radiolabelled probes for evaluation as molecular imaging agents: lymphoma and melanoma in vivo proof of concept. Bioorg Med Chem 25:1163–1171

    CAS  PubMed  Google Scholar 

  68. Farrar C, Christopher M, Hudry E et al (2014) RNA aptamer probes as optical imaging agents for the detection of amyloid plaques. PLoS One 9:e89901

    PubMed  PubMed Central  Google Scholar 

  69. Calzada V, Báez J, Sicco J et al (2017) Preliminary in vivo characterization of a theranostic aptamer: Sgc8-cDOTA-67Ga. Aptamers 1:19–27

    Google Scholar 

  70. Wu X, Chen J, Wu M et al (2015) Aptamers: active targeting ligands for cancer diagnosis and therapy. Theranostics 5:322–344

    PubMed  PubMed Central  Google Scholar 

  71. Wu X, Zhao Z, Bai H et al (2015) Aptamer selected against pancreatic ductal adenocarcinoma for in vivo imaging and clinical tissue recognition. Theranostics 5:985–994

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Li C, Kuo T, Su H et al (2015) Fluorescence-guided probes of aptamer-targeted gold nanoparticles with computed tomography imaging accesses for in vivo tumor resection. Sci Rep 5:15675

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sharma T, Bruno J, Dhiman A (2017) ABCs of DNA aptamer and related assay development. Biotechnol Adv 35:275–301

    CAS  PubMed  Google Scholar 

  74. Shi H, He X, Wang K et al (2011) Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. Proc Natl Acad Sci U S A 108:3900–3905

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang A, Farokhzad O (2014) Current progress of aptamer-based molecular imaging. J Nucl Med 55:353–356

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tang J, Huang N, Zhang X et al (2017) Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma. Int J Nanomedicine 12:3899–3911

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Samimi E, Karami P, Ahar M (2017) A review on aptamer conjugated quantum dot nanosystems for cancer imaging and theranostic. J Nanomed Res 5:00117

    Google Scholar 

  78. Wu P, Yan X (2013) Doped quantum dots for chemo/biosensing and bioimaging. Chem Soc Rev 42:5489–5521

    CAS  PubMed  Google Scholar 

  79. Zhang C, Ji X, Zhang Y et al (2013) One-pot synthesized aptamer-functionalized CdTe:Zn2+ quantum dots for tumor-targeted fluorescence imaging in vitro and in vivo. Anal Chem 85:5843–5849

    CAS  PubMed  Google Scholar 

  80. Kim D, Jeong Y, Jon S (2010) A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4:3689–3696

    CAS  PubMed  Google Scholar 

  81. Kuo T, Lai W, Li C et al (2014) AS1411 aptamer-conjugated Gd2O3:Eu nanoparticles for target-specific computed tomography/magnetic resonance/fluorescence molecular imaging. Nano Res 7:658–669

    CAS  Google Scholar 

  82. Najjar A, Johnson J, Schellingerhout D (2018) The emerging role of amino acid PET in neuro-oncology. Bioengineering 5:e104

    PubMed  Google Scholar 

  83. Boros E, Gale E, Caravan P (2015) MR imaging probes: design and applications. Dalton Trans 44:4804–4818

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dulińska-Litewka J, Łazarczyk A, Hałubiec P et al (2019) Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Materials 12:E617

    PubMed  Google Scholar 

  85. Zhang Y, Zhang T, Liu M et al (2018) Aptamer-targeted magnetic resonance imaging contrast agents and their applications. J Nanosci Nanotechnol 18:3759–3774

    CAS  PubMed  Google Scholar 

  86. Wang A, Bagalkot V, Vasilliou C et al (2008) Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 3:1311–1315

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yigit M, Mazumdar D, Lu Y (2008) MRI detection of thrombin with aptamer functionalized superparamagnetic iron oxide nanoparticles. Bioconjug Chem 19:412–417

    CAS  PubMed  Google Scholar 

  88. Li J, You J, Wu C et al (2018) T1-T2 molecular magnetic resonance imaging of renal carcinoma cells based on nano-contrast agents. Int J Nanomedicine 13:4607–4625

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yan H, Gao X, Zhang Y et al (2018) Imaging tiny hepatic tumor xenografts via endoglin-targeted paramagnetic/optical nanoprobe. ACS Appl Mater Interfaces 10:17047–17057

    CAS  PubMed  Google Scholar 

  90. Schutt E, Klein D, Mattrey R et al (2003) Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew Chem Int Ed Engl 42:3218–3235

    CAS  PubMed  Google Scholar 

  91. Nakatsuka M, Mattrey R, Esener S et al (2012) Aptamer-crosslinked microbubbles: smart contrast agents for thrombin-activated ultrasound imaging. Adv Mater 24:6010–6016

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang C, Huang Y, Yeh C (2011) Aptamer-conjugated nanobubbles for targeted ultrasound molecular imaging. Langmuir 27:6971–6976

    CAS  PubMed  Google Scholar 

  93. Gu F, Hu C, Xia Q et al (2018) Aptamer-conjugated multi-walled carbon nanotubes as a new targeted ultrasound contrast agent for the diagnosis of prostate cancer. J Nanopart Res 20:303–323

    PubMed  PubMed Central  Google Scholar 

  94. Townsend D (2008) Dual-modality imaging: combining anatomy and function. J Nucl Med 49:938–955

    PubMed  Google Scholar 

  95. Tavitian B, Ducongé F, Boisgard R et al (2009) In vivo imaging of oligonucleotidic aptamers. Methods Mol Biol 535:241–259

    CAS  PubMed  Google Scholar 

  96. Charlton J, Sennello J, Smith D (1997) In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. Chem Biol 4:809–816

    CAS  PubMed  Google Scholar 

  97. Kim HJ, Park JY, Lee TS (2019) PET imaging of HER2 expression with an 18F-fluoride labeled aptamer. PLoS One 14:e0211047

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gijs M, Becker G, Plenevaux A et al (2016) Biodistribution of novel 68Ga-radiolabelled HER2 aptamers in mice. J Nucl Med Radiat Ther 7:300

    Google Scholar 

  99. Boisgard R, Kuhnast B, Vonhoff S et al (2005) In vivo biodistribution and pharmacokinetics of 18F-labelled Spiegelmers: a new class of oligonucleotidic radiopharmaceuticals. Eur J Nucl Med Mol Imaging 32:470–477

    CAS  PubMed  Google Scholar 

  100. Dos Santos S, Rodrigues Corrêa C, Branco de Barros A et al (2015) Identification of Staphylococcus aureus infection by aptamers directly radiolabeled with technetium-99m. Nucl Med Biol 42:292–298

    CAS  PubMed  Google Scholar 

  101. Kryza D, Debordeaux F, Azéma L et al (2016) Ex vivo and in vivo imaging and biodistribution of aptamers targeting the human matrix metalloprotease-9 in melanomas. PLoS One 11:e0149387

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Calzada, V. (2019). Aptamers in Diagnostic and Molecular Imaging Applications. In: Urmann, K., Walter, JG. (eds) Aptamers in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 174. Springer, Cham. https://doi.org/10.1007/10_2019_115

Download citation

Publish with us

Policies and ethics