Skip to main content

Genomics of Alkaliphiles

  • Chapter
  • First Online:
Alkaliphiles in Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 172))

Abstract

Alkalinicity presents a challenge for life due to a “reversed” proton gradient that is unfavourable to many bioenergetic processes across the membranes of microorganisms. Despite this, many bacteria, archaea, and eukaryotes, collectively termed alkaliphiles, are adapted to life in alkaline ecosystems and are of great scientific and biotechnological interest due to their niche specialization and ability to produce highly stable enzymes. Advances in next-generation sequencing technologies have propelled not only the genomic characterization of many alkaliphilic microorganisms that have been isolated from nature alkaline sources but also our understanding of the functional relationships between different taxa in microbial communities living in these ecosystems. In this review, we discuss the genetics and molecular biology of alkaliphiles from an “omics” point of view, focusing on how metagenomics and transcriptomics have contributed to our understanding of these extremophiles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

CDS:

Coding sequence

DNA:

Deoxyribonucleic acid

FAD:

Flavin adenine dinucleotide

JGI:

Joint Genome Institute

KOGs:

Eukaryotic Orthologous Groups

Mb:

Mega base pairs

mV:

Millivolts

NAD(P)H:

Nicotinamide adenine dinucleotide phosphate (reduced form)

NADH:

Nicotinamide adenine dinucleotide (reduced form)

pI:

Isoelectric point

PMF:

Proton motive force

PP:

Pentose phosphate

SMF:

Sodium motive force

References

  1. Grant WD, Mwatha WE, Jones BE (1990) Alkaliphiles: ecology, diversity and applications. FEMS Microbiol Rev 75:255–270

    CAS  Google Scholar 

  2. Yumoto I, Fukumori Y, Yamanaka T (1991) Stopped-flow and rapid-scan studies of the redox behavior of cytochrome aco from facultative alkalophilic Bacillus. J Biol Chem 266(2):14310–14316

    PubMed  Google Scholar 

  3. Takami H, Takaki Y, Maeno G, Sasaki R, Masui N, Fumie F et al (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28(21):4317–4331

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER (2013) The next-generation sequencing revolution and its impact on genomics. Cell 155(1):27–38

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A, Shabalov I et al (2014) The genome portal of the department of energy Joint Genome Institute: 2014 updates. Nucleic Acids Res 42:D26–D31

    CAS  PubMed  Google Scholar 

  6. Janto B, Ahmed A, Ito M, Liu J, Hicks DB, Pagnl S et al (2011) Genome of alkaliphilic Bacillus pseudofirmus OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4. Environ Microbiol 13(12):3289–3309

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu S, Wang L, Gan R, Tong T, Bian H, Li Z et al (2018) Signature arsenic detoxification pathways in Halomonas sp. strain GFAJ-1. MBio 9(3):e00515–e00518

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zavarzin GA, Zhilina TN, Kevbrin VV (1999) The alkaliphilic microbial community and its functional diversity. Microbiology 68(5):503–521

    CAS  Google Scholar 

  9. Cheevadhanarak S, Paithoonrangsarid K, Prommeenate P, Kaewngam W, Musigkain A, Tragoonrung S et al (2012) Draft genome sequence of Arthrospira platensis C1 (PCC9438). Stand Genomic Sci 6:43–53

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Paul S, Bag SK, Das S, Harvill ET, Dutta C (2008) Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes. Genome Biol 9:R70

    PubMed  PubMed Central  Google Scholar 

  11. Klanchui A, Cheevadhanarak S, Prommeenate P, Meechai A (2017) Exploring components of the CO2-concentrating mechanism in alkaliphilic cyanobacteria through genome-based analysis. Comput Struct Biotechnol J 15:340–350

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Amaral-Zettler LA (2012) Eukaryotic diversity at pH extremes. Front Microbiol 3:441

    PubMed  Google Scholar 

  13. Takami H (2011) Genomic and evolution of alkaliphilic Bacillus species. In: Horikoshi H (ed) Extremophiles handbook. Springer, Tokyo, pp 183–211

    Google Scholar 

  14. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C et al (2017) Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 34(8):2115–2122

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Takami H, Takaki Y, Uchiyama I (2002) Genome sequence of Oceanobacillus iheyensis isolated from the Iheya ridge and its unexpected adaptive capabilities to extreme environments. Nucleic Acids Res 30(18):3927–3935

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schadewaldt P, Hummel W, Wendel U, Adelmeyer F (1995) Enzymatic method for determination of branched-chain amino acid aminotransferase activity. Anal Biochem 230(2):199–204

    CAS  PubMed  Google Scholar 

  17. Cheng B, Meng Y, Cui Y, Li C, Tao F, Yin H et al (2016) Alkaline response of a halotolerant alkaliphilic halomonas strain and functional diversity of its Na+(K+)/H+ antiporters. J Biol Chem 291(50):26056–26065

    CAS  PubMed  Google Scholar 

  18. Siddaramappa S, Challacombe JF, DeCastro RE, Pfeiffer F, Sastre DE, Gimenez MI et al (2012) A comparative genomics perspective on the genetic content of the alkaliphilic haloarchaeon Natrialba magadii ATCC 43099T. BMC Genomics 13:165

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Saunders E, Tindall BJ, Fahnrich R, Lapidus A, Copeland A, del Rio TG et al (2010) Complete genome sequence of Haloterrigena turkmenica type strain (4kT). Stand Genomic Sci 2(1):107–116

    PubMed  PubMed Central  Google Scholar 

  20. Fujisawa T, Narikawa R, Okamoto S, Ehira S, Yoshimura H, Suzuki I et al (2010) Genomic structure of an economically important Cyanobacterium, Arthrospira (Spirulina) platensis NIES-39. DNA Res 17:85–103

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Grum-Gzhimaylo AA, Georgieva ML, Bondarenko SA, Debets JM, Bilanenko EN (2016) On the diversity of fungi from soda soils. Fungal Divers 76(1):27–74

    Google Scholar 

  22. Keresztes ZG, Felfoldi T, Somogyi B, Szekely G, Dragos N, Marialigeti K et al (2012) First record of picophytoplankton diversity in Central European hypersaline lakes. Extremophiles 16(5):759–769

    PubMed  Google Scholar 

  23. Lanzen A, Simachew A, Gessesse A, Chmolowska D, Jonassen I, Ovreas L (2013) Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of Ethiopian Soda Lakes. PLoS One 8(8):e72577

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Grum-Grzhimaylo AA, Falkoski DL, van den Heuvel J, Valero-Jimenez CA, Min B, Choi IG et al (2018) The obligate alkalophilc soda-lake fungus Sodiomyces alkalinus has shifted to a protein diet. Mol Ecol 27:4808–4819

    CAS  PubMed  Google Scholar 

  25. Pereira EO, Tsang A, McAllister TA, Menassa R (2013) The production and characterization of a new active lipase from Acremonium alcalophilum using a plant bioreactor. Biotechnol Biofuels 6:111

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Reeve W, Chain P, O’Hara G, Ardley J, Nandesena K, Brau L et al (2010) Complete genome sequence of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419. Stand Genomic Sci 2(1):77–86

    PubMed  PubMed Central  Google Scholar 

  27. Zhao B, Mesbah NM, Dalin E, Goodwin L, Nolan M, Pitluck S et al (2011) Complete genome sequence of the anaerobic, halophilic alkalithermophile Natranaerobius thermophilus JW/NM-WN-LF. J Bacteriol 193(15):4023–4024

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G (2014) Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18(5):791–809

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cogne G, Gros JB, Dussap CG (2003) Identification of a metabolic network structure representative of Arthrospira (spirulina) platensis metabolism. Biotechnol Bioeng 84(6):667–676

    CAS  PubMed  Google Scholar 

  30. Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59(7):1441–1461

    CAS  PubMed  Google Scholar 

  31. Zhilina TN, Kevbrin VV, Tourova TP, Lysenko AM, Kostrikina NA, Zavarzin GA (2005) Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal region. Microbiology 74(5):555–566

    Google Scholar 

  32. Garnova ES, Krasil’nikova EN (2003) Carbohydrate metabolism of the Saccharolytic alkaliphilic anaerobes Halonatronum saccarophilum, Amphibacillus fermentum, and Amphibacillus tropicus. Mikrobiologiia 72(5):627–632

    CAS  PubMed  Google Scholar 

  33. Song Y, Xue Y, Ma Y (2013) Global microarray analysis of carbohydrate use in alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5. PLoS One 8(1):e54090

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Detkova EN, Pusheva MA (2006) Energy metabolism in halophilic and alkaliphilic acetogenic bacteria. Microbiology 75(1):1–11

    CAS  Google Scholar 

  35. Frank YA, Kadnikov VV, Likina AP, Banks D, Beletsky AV, Sen’kina EI et al (2016) Characterization and genome analysis of the first facultatively alkaliphilic Thermodesulfovibrio isolated from the deep terrestrial subsurface. Front Microbiol 7:2000

    PubMed  PubMed Central  Google Scholar 

  36. Oremland RS, Hoeft SE, Santini JM, Bano N, Hollibaugh RA, Hollibaugh JT (2002) Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol 68:4795–4802

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hoeft SE, Blum JS, Stolz JF, Tabita FR, Witte B, King GM et al (2007) Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int J Syst Evol Microbiol 57(Pt 3):504–512

    CAS  PubMed  Google Scholar 

  38. Susuki S, Kuenen JG, Schipper K, van der Velde S, Ishii S, Wu A et al (2014) Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site. Nat Commun 5:3900

    Google Scholar 

  39. Krulwich TA, Hicks DB, Swartz TH, Ito M (2007) Bioenergetic adaptations that support alkaliphily. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, pp 311–329

    Google Scholar 

  40. Skulachev VP (1995) Membrane-linked energy transductions. Bioenergetic functions of sodium H+ is not unique as a coupling ion. FEBS J 151(2):199–208

    Google Scholar 

  41. Hicks DB, Krulwich TA (1995) The respiratory chain of alkaliphilic bacteria. Biochim Biophys Acta 1229:303–314

    PubMed  Google Scholar 

  42. Mulkidjanian AY, Galperin MY, Koonin V (2009) Co-evolution of primordial membranes and membrane proteins. Trends Biochem Sci 34(4):206–215

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62(2):504–544

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ito M, Guffanti AA, Krulwich TA (2001) Mrp-dependent Na+/H+ antiporters of Bacillus exhibit characteristics that are unanticipated for completely secondary active transporters. FEBS Lett 496:117–120

    CAS  PubMed  Google Scholar 

  45. Krulwich TA, Ito M, Guffanti AA (2001) The Na(+)-dependence of alkaliphily in Bacillus. Biochim Biophys Acta 1505(1):158–168

    CAS  PubMed  Google Scholar 

  46. Ito M, Xu H, Guffani AA, Wei Y, Zvi L, Clapham DE et al (2004) The voltage-gates Na+ channel NavBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus. Proc Natl Acad Sci U S A 101:10566–10571

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63(4):735–750

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu J, Xue Y, Wang Q, Wei Y, Swartz TH, Hicks DB et al (2005) The activity profile of the NhaD-type Na+(Li+)/H+ antiporter from the soda Lake Haloalkaliphile Alkalimonas amylolytica is adaptive for the extreme environment. J Bacteriol 187(22):7589–7595

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Janausch I, Zientz GE, Tran Q, Kroger HA, Unden G (2002) C4-dicarboxylate carriers and sensors in bacteria. Biochim Biophys Acta 1553:39–56

    CAS  PubMed  Google Scholar 

  50. Wutipraditkul N, Waditee R, Incharoensakdi A, Hibino T, Tanaka Y, Nakamura T et al (2005) Halotolerant cyanobacterium Aphanothece halophytica contains NapA-Type Na+/H+ antiporters with novel ion specificity that are involved in salt tolerance at alkaline pH. Appl Environ Microbiol 71(8):4176–4184

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Krulwich TA (1985) Alkaliphiles: “basic” molecular problems of the pH tolerance and bioenergetics. Mol Microbiol 15(3):403–410

    Google Scholar 

  52. Hirota N, Kitada M, Imae Y (1981) Flagellar motors of alkalophilic Bacillus are powered by an electrochemical potential gradient of Na+. FEBS Lett 132(2):278–280

    CAS  Google Scholar 

  53. Terahara N, Krulwich TA, Ito M (2008) Mutations alter the sodium versus proton use of a Bacillus clausii flagellar motor and confer dual ion use on Bacillus subtilis motors. Proc Natl Acad Sci U S A 105(38):14359–14364

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fujinami S, Terahara N, Krulwich TA, Ito M (2009) Motility and chemotaxis in alkaliphilic Bacillus species. Future Microbiol 4(9):1137–1149

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ren D, Navarro B, Xu H, Yue L, Shi Q, Clapham DE (2001) A prokaryotic voltage-gated sodium channel. Science 294(5550):2372–2375

    CAS  PubMed  Google Scholar 

  56. Olsson K, Keis S, Morgan HW, Dimroth P, Cook GM (2003) Bioenergetic properties of the Thermoalkaliphilic Bacillus sp. strain TA2.A1. J Bacteriol 185(2):461–465

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Guffanti AA, Finkelthal O, Hicks DB, Falk L, Sidhu A, Garro A (1986) Isolation and characterization of new facultatively alkalophilic strains of Bacillus species. J Bacteriol 167(3):766–773

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kitada M, Lewis RJ, Krulwich TA (1983) Respiratory Chain of the alkalophilic bacterium Bacillus firmus RAB and its non-alkalophilic mutant derivative. J Bacteriol 154(1):330–335

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Krulwich TA, Ito M, Hicks DB, Gilmour R, Guffanti AA (1998) pH homeostasis and ATP synthesis: studies of two processes that necessitate inward proton translocation in extremely alkaliphilic Bacillus species. Extremophiles 2:217–222

    CAS  PubMed  Google Scholar 

  60. Hicks AB, Wang Z, Wei Y, Kent R, Guffani AA, Banciu H et al (2003) A tenth atp gene in the conserved atpI gene of a Bacillus atp operon have a role in Mg2+ uptake. PNAS 100(18):10213–10218

    CAS  PubMed  Google Scholar 

  61. Ko YH, Hong S, Pedersen PL (1999) Chemical mechanism of ATP synthase. Magnesium plays a pivotal role in formation of the transition state where ATP is synthesized from ADP and inorganic phosphate. J Biol Chem 274(41):28853–28856

    CAS  PubMed  Google Scholar 

  62. McMillan DGG, Keis S, Dimroth P, Cook GM (2007) A specific adaptation in the alpha subunit of thermoalkaliphilic F1F0-ATP synthase enables ATP synthesis at high pH but not at neutral pH values. J Biol Chem 282:17395–17404

    CAS  PubMed  Google Scholar 

  63. Preiss L, Hicks DB, Suzuki S, Meier T, Krulwich TA (2015) Alkaliphilic bacteria with impact on industrial applications, concepts of early life forms, and bioenergetics of ATP synthesis. Front Bioeng Biotechnol 3:75

    PubMed  PubMed Central  Google Scholar 

  64. Liu J, Fujisawa M, Hicks DB, Krulwich TA (2009) Characterization of the functionally critical AXAXAXA and PXXEXXP motifs of the ATP synthase c-subunit from an alkaliphilic Bacillus. J Biol Chem 284:8714–8725

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Liberton M, Howard Berg R, Heuser J, Roth R, Pakrasi HB (2006) Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystic sp. strain PCC6803. Protoplasma 227(2–4):129–138

    PubMed  Google Scholar 

  66. Pogoryelov D, Yu J, Meier T, Vonck J, Dimroth P, Muller DJ (2005) The c15 ring of the Spirulina platensis F-ATP synthase: F1/F0 symmetry mismatch is not obligatory. EMBO Rep 6(11):1040–1044

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hicks DB, Liu J, Fujisawa M, Krulwich TA (2010) F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. Biochim Biophys Acta 1797:1362–1377

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Pogoryelov D, Sudhir PR, Kovacs L, Gombos |, Brown I, Garab G (2003) Sodium dependency of the photosynthetic electron transport in the alkaliphilic cyanobacterium Arthrospira platensis. J Bioenerg Biomembr 35(5):427–437

    CAS  PubMed  Google Scholar 

  69. Ferguson SA, Keis S, Cook GM (2006) Biochemical and molecular characterization of a Na+-translocating F1F0-ATPase from the thermoalkaliphilic bacterium Clostridium paradoxum. J Bacteriol 188(14):5045–5054

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Stocker A, Keis S, Vonck J, Cook GM, Dimroth P (2007) The structural basis for unidirectional rotation of thermoalkaliphilic F1-ATPase. Structure 15(8):904–914

    CAS  PubMed  Google Scholar 

  71. Xu X, koyama N, Cui M, Yamagishi A, Nosoh Y, Oshima T (1991) Nucleotide sequence of the gene encoding NADH dehydrogenase from an alkalophile, Bacillus sp. strain YN-1. J Biochem 109:678–683

    CAS  PubMed  Google Scholar 

  72. Heikal A, Nakatani Y, Dunn E, Weimar MR, Day CL, Baker EN, Lott JS, Sazanov LA, Cook GM (2014) Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation. Mol Microbiol 91(5):950–964

    CAS  PubMed  Google Scholar 

  73. Quirk PG, Hicks DB, Krulwich TA (1993) Cloning of the cta operon from allkaliphilic Bacillus firmus OF4 and characterization OF the pH-regulated cytochrome caa3 oxidase it encodes. J Biol Chem 268(1):678–685

    CAS  PubMed  Google Scholar 

  74. Brown KR, Allan BM, Do P, Hegg EL (2002) Identification of novel hemes generated by heme A synthase: evidence for two successive monooxygenase reactions. Biochemist 41(36):10906–10913

    CAS  Google Scholar 

  75. Throne-Holst M, Hederstedt L (2000) The Bacillus subtilis ctaB paralogue, yjdK, can complement the heme A synthesis deficiency of a CtaB-deficient mutant. FEMS Microbiol Lett 183(2):247–251

    CAS  PubMed  Google Scholar 

  76. Stothard P (2000) The sequence manipulation suite: JavaScript programs for analysing and formatting protein and DNA sequences. BioTechniques 28:1102–1104

    CAS  PubMed  Google Scholar 

  77. Matsuno T, Yumoto I (2015) Bioenergetics and the role of soluble cytochromes c for alkaline adaptation in gram-negative alkaliphilic Pseudomonas. Biomed Res Int 2015:847945

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the University of Pretoria and the National Research Foundation of South Africa for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don A. Cowan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lebre, P.H., Cowan, D.A. (2019). Genomics of Alkaliphiles. In: Mamo, G., Mattiasson, B. (eds) Alkaliphiles in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 172. Springer, Cham. https://doi.org/10.1007/10_2018_83

Download citation

Publish with us

Policies and ethics