Skip to main content

Extraction and Isolation of Natural Organic Compounds from Plant Leaves Using Ionic Liquids

  • Chapter
  • First Online:
Application of Ionic Liquids in Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 168))

Abstract

Plants contain many kinds of natural organic compounds, and their compounds possess many useful properties. Natural organic compounds are important for the development of medicines, pesticides, fragrances, cosmetics, and synthetic chemicals. In this chapter, we introduce efficient methods for extraction and isolation of valuable natural organic compounds from various plant leaves by using cellulose-dissolving ionic liquids. High-polarity ionic liquids, which can dissolve cellulose, contribute to the extraction of natural organic compounds from plant leaves probably by breaking down plant cell walls, which are composed of cellulose, hemicellulose, and lignin. Extraction and isolation of shikimic acid from ginkgo leaves, caffeoylquinic acids from sweet potato leaves, and neral and geranial (which combine to form citral) from lemon myrtle leaves were performed. Ionic liquids can achieve extraction rates greater than those achieved with water and other organic solvents.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith HD (1937) Structure of cellulose. Ind Eng Chem 29:1081–1084

    Article  CAS  Google Scholar 

  2. Brandt A, Gräsvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583

    Article  CAS  Google Scholar 

  3. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  4. Ohno H, Fukaya Y (2009) Task specific ionic liquids for cellulose technology. Chem Lett 38:2–7

    Article  CAS  Google Scholar 

  5. Zhao H, Baker GA, Song Z, Olubajo O, Crittle T, Peters D (2008) Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem 10:696–705

    Article  CAS  Google Scholar 

  6. Vitz J, Erdmenger T, Haensch C, Schubert US (2009) Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem 11:417–424

    Article  CAS  Google Scholar 

  7. Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formates. Biomacromolecules 7:3295–3297

    Article  CAS  Google Scholar 

  8. Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46

    Article  CAS  Google Scholar 

  9. Du FY, Xiao XH, Li GK (2007) Application of ionic liquids in the microwave-assisted extraction of trans-resveratrol from Rhizoma Polygoni Cuspidati. J Chromatogr A 1140:56–62

    Article  CAS  Google Scholar 

  10. Du FY, Xiao XH, Luo XJ, Li GK (2009) Application of ionic liquids in the microwave-assisted extraction of polyphenolic compounds from medicinal plants. Talanta 78:1177–1184

    Article  CAS  Google Scholar 

  11. Lu Y, Ma W, Hu R, Dai X, Pan YJ (2008) Ionic liquid-based microwave-assisted extraction of phenolic alkaloids from the medicinal plant Nelumbo nucifera Gaertn. J Chromatogr A 1208:42–46

    Article  CAS  Google Scholar 

  12. Ma W, Lu Y, Hu R, Chen J, Zhang Z, Pan Y (2010) Application of ionic liquids based microwave-assisted extraction of three alkaloids N-nornuciferine, O-nornuciferine, and nuciferine from lotus leaf. Talanta 80:1292–1297

    Article  CAS  Google Scholar 

  13. Zeng H, Wang Y, Kong J, Nie C, Yuan Y (2010) Ionic liquid-based microwave-assisted extraction of rutin from Chinese medicinal plants. Talanta 83:582–590

    Article  CAS  Google Scholar 

  14. Bica K, Gaertner P, Rogers RD (2011) Ionic liquids and fragrances—direct isolation of orange essential oil. Green Chem 13:1997–1999

    Article  CAS  Google Scholar 

  15. Usuki T, Yasuda N, Yoshizawa-Fujita M, Rikukawa M (2011) Extraction and isolation of shikimic acid from Ginkgo biloba leaves utilizing an ionic liquid that dissolves cellulose. Chem Commun 47:10560–10562

    Article  CAS  Google Scholar 

  16. Usuki T, Onda S, Yoshizawa-Fujita M, Rikikawa M (2017) Use of [C4mim]Cl for efficient extraction of caffeoylquinic acids from sweet potato leaves. Sci Rep 7:6890

    Article  Google Scholar 

  17. Munakata K, Yoshizawa-Fujita M, Rikukawa M, Usuki T (2017) Improved extraction yield of citral from lemon myrtle using a cellulose-dissolving ionic liquid. Aust J Chem 70:699–704

    Article  CAS  Google Scholar 

  18. Eijkman JF (1885) Sur les principes constituants de I’Illicium religiosum (Sieb.) (Shikimi-no-Ki en Japonais). Rec Trav Chim Pays-Bas 4:32–54

    Article  Google Scholar 

  19. Farina V, Brown JD (2006) Tamiflu: the supply problem. Angew Chem Int Ed 45:7330–7334

    Article  CAS  Google Scholar 

  20. KOSÉ Corporation, Maniwa Fumio, Itagura Laboratory. Whitening agent with shikimic acid as the active ingredient. Japanese patent nos. 2008-063308 and 2009-215266

    Google Scholar 

  21. Togame Y (1984) The worldwide distribution of the ginkgo. Koshien Jr Univ J 4:1–14

    Google Scholar 

  22. Ressmann AK, Gaertner P, Bica K (2011) From plant to drug: ionic liquids for the reactive dissolution of biomass. Green Chem 13:1442–1447

    Article  CAS  Google Scholar 

  23. Zirbs R, Strassl K, Gaertner P, Schroder C, Bica K (2013) Exploring ionic liquid–biomass interactions: towards the improved isolation of shikimic acid from star anise pods. RSC Adv 3:26010–26016

    Article  CAS  Google Scholar 

  24. Pham TPT, Cho C-W, Yun Y-S (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44:352–372

    Article  CAS  Google Scholar 

  25. Erbeldinger M, Mesiano AJ, Russell AJ (2000) Enzymatic catalysis of formation of Z-aspartame in ionic liquid—an alternative to enzymatic catalysis in organic solvents. Biotechnol Prog 16:1129–1131

    Article  CAS  Google Scholar 

  26. Lau RM, Sorgedrager MJ, Carrea G, van Rantwijk F, Secundo F, Sheldon RA (2004) Dissolution of Candida antarctica lipase B in ionic liquids: effects on structure and activity. Green Chem 6:483–487

    Article  Google Scholar 

  27. De Diego TD, Lozano P, Gmouh S, Vaultier M, Iborra JL (2005) Understanding structure–stability relationships of Candida antarctica lipase B in ionic liquids. Biomacromolecules 6:1457–1464

    Article  CAS  Google Scholar 

  28. Onda S, Usuki T, Yoshizawa-Fujita M, Rikukawa M (2015) Ionic liquid-mediated extraction of bilobalide from Ginkgo biloba leaves. Chem Lett 44:1461–1463

    Article  CAS  Google Scholar 

  29. Islam MS, Yoshimoto M, Yahara S, Okuno S, Ishiguro K, Yamakawa O (2002) Identification and characterization of foliar polyphenolic composition in sweet potato (Ipomoea batatas L.) genotypes. J Agric Food Chem 50:3718–3722

    Article  CAS  Google Scholar 

  30. Miyamae Y, Kurisu M, Murakami K, Han J, Isoda H, Irie K, Shigemori H (2012) Protective effects of caffeoylquinic acids on the aggregation and neurotoxicity of the 42-residue amyloid β-protein. Bioorg Med Chem 20:5844–5849

    Article  CAS  Google Scholar 

  31. Tan T, Lai CJS, OuYang H, He MZ, Feng Y (2016) Ionic liquid-based ultrasound-assisted extraction and aqueous two-phase system for analysis of caffeoylquinic acids from Flos Lonicerae Japonicae. J Pharm Biomed Anal 120:134–141

    Article  CAS  Google Scholar 

  32. Lassak EV. Revision of Backhousia citriodora essential oil standard. RIRDC publication no. 11/137. Rural Industries Research and Development Corporation, Canberra, 2012

    Google Scholar 

  33. Murata C, Yoshizawa-Fujita M, Rikikawa M, Usuki T (2017) Extraction of essential oils from lemongrass using ionic liquid. Asian J Chem 29:309–312

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Sophia University Special Grant for Academic Research. We thank Prof. Masahiro Rikukawa (Sophia University) for his support and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toyonobu Usuki or Masahiro Yoshizawa-Fujita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Usuki, T., Yoshizawa-Fujita, M. (2018). Extraction and Isolation of Natural Organic Compounds from Plant Leaves Using Ionic Liquids. In: Itoh, T., Koo, YM. (eds) Application of Ionic Liquids in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 168. Springer, Cham. https://doi.org/10.1007/10_2018_80

Download citation

Publish with us

Policies and ethics