Skip to main content

Advances in Transcriptomics of Plants

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 164))

Abstract

The current global population of 7.3 billion is estimated to reach 9.7 billion in the year 2050. Rapid population growth is driving up global food demand. Additionally, global climate change, environmental degradation, drought, emerging diseases, and salty soils are the current threats to global food security. In order to mitigate the adverse effects of these diverse agricultural productivity constraints and enhance crop yield and stress-tolerance in plants, we need to go beyond traditional and molecular plant breeding. The powerful new tools for genome editing, Transcription Activator-Like Effector Nucleases (TALENs) and Clustered Regulatory Interspaced Short Palindromic Repeats (CRISPR)/Cas systems (CRISPR-Cas9), have been hailed as a quantum leap forward in the development of stress-resistant plants. Plant breeding techniques, however, have several drawbacks. Hence, identification of transcriptional regulatory elements and deciphering mechanisms underlying transcriptional regulation are crucial to avoiding unintended consequences in modified crop plants, which could ultimately have negative impacts on human health. RNA splicing as an essential regulated post-transcriptional process, alternative polyadenylation as an RNA-processing mechanism, along with non-coding RNAs (microRNAs, small interfering RNAs and long non-coding RNAs) have been identified as major players in gene regulation. In this chapter, we highlight new findings on the essential roles of alternative splicing and alternative polyadenylation in plant development and response to biotic and abiotic stresses. We also discuss biogenesis and the functions of microRNAs (miRNAs) and small interfering RNAs (siRNAs) in plants and recent advances in our knowledge of the roles of miRNAs and siRNAs in plant stress response.

Graphical Abstract

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. World Population Prospect: The 2015 Revision (2015) United Nations, Department of Economic and Social Affairs, Population Division. [Online] Available at: http://www.un.org/en/development/desa/news/population/2015-report.html. Accessed 7 Aug 2017

  2. Valin H, Sands RD, van der Mensbrugghe D, Nelson GC, Ahammad H, Blanc E, Bodirsky B et al (2014) The future of food demand: understanding differences in global economic models. Agric Econ 45:51–67

    Article  Google Scholar 

  3. Gilbert N (2014) Cross-bred crops get fit faster. Nature 513:292

    Article  PubMed  CAS  Google Scholar 

  4. Kissoudis C, van de Wiel C, RGF V, van der Linden G (2014) Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front Plant Sci 5:207

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gepts P (2002) A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci 42:1780–1790

    Article  Google Scholar 

  6. Nejat N, Cahill DM, Vadamalai G, Ziemann M, Rookes J, Naderali N (2015) Transcriptomics-based analysis using RNA-seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection. Mol Gen Genomics 290:1899–1910

    Article  CAS  Google Scholar 

  7. Nejat N, Mantri N (2017) Plant immune system: crosstalk between responses to biotic and abiotic stresses the missing link in understanding plant defence. Curr Issues Mol Biol 23:1

    Article  PubMed  Google Scholar 

  8. Parker RM, Barnes NM (1999) mRNA: detection by in situ and northern hybridization. Methods Mol Biol 106:247–283

    PubMed  CAS  Google Scholar 

  9. Weis JH, Tan SS, Martin BK, Wittwer CT (1992) Detection of rare mRNAs via quantitative RT-PCR. Trends Genet 8:263–264

    Article  PubMed  CAS  Google Scholar 

  10. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  PubMed  CAS  Google Scholar 

  11. Deepak SA, Kottapalli KR, Rakwal R, Oros G, Rangappa KS, Iwahashi H et al (2007) Real-time PCR: revolutionizing detection and expression analysis of genes. Curr Genomics 8:234–251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Nejat N, Vadamalai G, Dickinson M (2012) Expression patterns of genes involved in the defence and stress response of Spiroplasmacitri infected Madagascar Periwinkle Catharanthusroseus. Int J Mol Sci 13:2301–2313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  PubMed  CAS  Google Scholar 

  14. Harmer SL, Hogenesch JB, Straume M, Chang H-S, Han B, Zhu T et al (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113

    Article  PubMed  CAS  Google Scholar 

  15. Mantri NL, Ford R, Coram TE, Pang ECK (2007) Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genomics 8:303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Mantri NL, Ford R, Coram TE, Pang ECK (2010) Evidence of unique and shared responses to major biotic and abiotic stresses in chickpea. Environ Exp Bot 69:286–292

    Article  Google Scholar 

  17. Zik M, Irish VF (2003) Global identification of target genes regulated by APETALA3 and PISTILLATA foral homeotic gene action. Plant Cell 15:207–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  PubMed  CAS  Google Scholar 

  19. Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mortazavi A, William BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  PubMed  CAS  Google Scholar 

  21. ENCODE (2015) Research applications and users meeting. Bolger Center, Potomac

    Google Scholar 

  22. Rands CM, Meader S, Ponting CP, Lunter G (2014) 8.2% of the human genome is constrained: variation in rates of turnover across functional elements classes in the human lineage. PLoS Genet 10:e1004525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  CAS  Google Scholar 

  24. Ezkurdia I, Juan D, Rodriguez JM, Frankish A, Diekhans M, harrow J, Vazquez J (2014) Multiple evidence strands suggest that there may be as few as 19000 human protein-coding genes. Hum Mol Genet 23:5866–5878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Nejat N, Mantri N (2017) Emerging roles of long non-coding RNAs in plant response to biotic and abiotic stresses. Crit Rev Biotechnol 20:1–13. https://doi.org/10.1080/07388551.2017.1312270

    Article  CAS  Google Scholar 

  26. Isshiki M, Tsumoto A, Shimamoto K (2006) The serine/arginine-rich protein family in rice plays important roles in constitutive and alternative splicing of pre-mRNA. Plant Cell 18:146–158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Reddy AS (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol 58:267–294

    Article  PubMed  CAS  Google Scholar 

  28. Kornblihtt AR, Schor IE, Alló M, Dujardin G, Petrillo E, Muñoz MJ (2013) Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol 14:153–165

    Article  PubMed  CAS  Google Scholar 

  29. Wang J, Smith PJ, Krainer AR, Zhang MQ (2005) Distribution of SR protein exonic splicing enhancer motifs in human protein-coding genes. Nucleic Acids Res 33:5053–5062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Wang Z, Burge CB (2008) Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14:802–813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Le Hir H, Andersen GR (2008) Structural insights into the exon junction complex. Curr Opin Struct Biol 18:112–119

    Article  PubMed  CAS  Google Scholar 

  32. Schaal TD, Hertel KJ, Reed R, Maniatis T (2005) Serine/arginine-rich protein-dependent suppression of exon skipping by exonic splicing enhancers. Proc Natl Acad Sci U S A 102:5002–5007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Dujardin G, Lafaille C, Petrillo E, Buggiano V, LIG A, Fiszbein A, MAG H, Moreno NN, Muñoz MJ, Alló M, Schor IE (2013) Transcriptional elongation and alternative splicing. Biochim Biophys Acta 1829:134–140

    Article  PubMed  CAS  Google Scholar 

  34. Xing D, Li QQ (2011) Alternative polyadenylation and gene expression regulation in plants. Wiley Interdiscip Rev RNA 2:445–458

    Article  PubMed  CAS  Google Scholar 

  35. Li Y, Wang X, Li C, Hu S, Yu J, Song S (2014) Transcriptome-wide N6-methyladenosine profiling of rice callus and leaf reveals the presence of tissue-specific competitors involved in selective mRNA modification. RNA Biol 11:1180–1188

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gilbert WV, Bell TA, Schaening C (2016) Messenger RNA modifications: form, distribution, and function. Science 352:1408–1412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Shen L, Liang Z, Gu X, Chen Y, ZWN T, Hou X, Cai WM, Dedon PC, Liu L, Yu H (2016) N 6-Methyladenosine RNA modification regulates shoot stem cell fate in arabidopsis. Dev Cell 38:186–200

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  39. Bologna NG, Voinnet O (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65:473–503

    Article  PubMed  CAS  Google Scholar 

  40. Jones-Rhoades WM, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  41. Bollman KM, Aukerman MJ, Park MY, Hunter C, Berardini TZ, Poethig RS (2003) HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 130:1493–1504

    Article  PubMed  CAS  Google Scholar 

  42. Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A 102:3691–3696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Meister G (2013) Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 14:447–459

    Article  PubMed  CAS  Google Scholar 

  45. Liu YX, Wang M, Wang XJ (2014) Endogenous small RNA clusters in plants. Genomics Proteomics Bioinformatics 12:64–71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Nagano H, Fukudome A, Hiraguri A, Moriyama H, Fukuhara T (2014) Distinct substrate specificities of Arabidopsis DCL3 and DCL4. Nucleic Acids Res 42:1845–1856

    Article  PubMed  CAS  Google Scholar 

  47. Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16:727–741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884–896

    Article  PubMed  CAS  Google Scholar 

  49. Vazquez F (2006) Arabidopsis endogenous small RNAs: highways and byways. Trends Plant Sci 11:460–468

    Article  PubMed  CAS  Google Scholar 

  50. Fujiwara N, Masuda S, Shiki T (2012) mRNA biogenesis in the nucleus and its export to the cytoplasm. INTECH Open Access Publisher, London

    Book  Google Scholar 

  51. de la Mata M, Kornblihtt AR (2006) RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20. Nat Struct Mol Biol 13:973–980

    Article  PubMed  CAS  Google Scholar 

  52. Huang Y, Li W, Yao X, Lin QJ, Yin JW, Liang Y, Heiner M, Tian B, Hui J, Wang G (2012) Mediator complex regulates alternative mRNA processing via the MED23 subunit. Mol Cell 45:459–469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Lareau LF, Green RE, Bhatnagar RS, Brenner SE (2004) The evolving roles of alternative splicing. Curr Opin Struct Biol 14:273–282

    Article  PubMed  CAS  Google Scholar 

  54. Barrass JD, Beggs JD (2003) Splicing goes global. Trends Genet 19:295–298

    Article  PubMed  CAS  Google Scholar 

  55. Marquez Y, Brown JW, Simpson C, Barta A, Kalyna M (2012) Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res 22:1184–1195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Sablok G, Gupta PK, Baek JM, Vazquez F, Min XJ (2011) Genome-wide survey of alternative splicing in the grass Brachypodiumdistachyon: a emerging model biosystem for plant functional genomics. Biotechnol Lett 33:629–636

    Article  PubMed  CAS  Google Scholar 

  57. Zhang G, Guo G, Hu X, Zhang Y, Li Q, Li R, Zhuang R, Lu Z, He Z, Fang X, Chen L (2010) Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res 20:646–654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Shen Y, Zhou Z, Wang Z, Li W, Fang C, Wu M, Ma Y, Liu T, Kong LA, Peng DL, Tian Z (2014) Global dissection of alternative splicing in paleopolyploid soybean. Plant Cell 26:996–1008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Barbazuk WB, Fu Y, McGinnis KM (2008) Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res 18:1381–1392

    Article  PubMed  CAS  Google Scholar 

  60. Ali GS, Reddy ASN (2008) Regulation of alternative splicing of pre-mRNAs by stresses. Curr Top Microbiol Immunol 326:257–275

    PubMed  CAS  Google Scholar 

  61. James AB, Syed NH, Bordage S, Marshall J, Nimmo GA, Jenkins GI, Herzyk P, Brown JW, Nimmo HG (2012) Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. Plant Cell 24:961–981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Trivedi PK (2011) Differential expression and alternative splicing of rice sulphate transporter family members regulate sulphur status during plant growth, development and stress conditions. Funct Integr Genomics 11:259–273

    Article  PubMed  CAS  Google Scholar 

  63. Wang BB, Brendel V (2004) The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing. Genome Biol 5:1

    Google Scholar 

  64. Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A (2007) The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res 36:D1009–D1014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Wang BB, Brendel V (2006) Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci 103:7175–7180

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Salvo SA, Hirsch CN, Buell CR, Kaeppler SM, Kaeppler HF (2014) Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes. PLoS One 9:e111407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Zhang Z, Komatsu S (2000) Molecular cloning and characterization of cDNAs encoding two isoforms of ribulose-1, 5-biosphosphate carboxylase/oxygenaseactivase in rice (Oryzasativa L.) J Biochem 128:383–389

    Article  PubMed  CAS  Google Scholar 

  68. Razem FA, El-Kereamy A, Abrams SR, Hill RD (2006) The RNA-binding protein FCA is an abscisic acid receptor. Nature 439:290–294

    Article  PubMed  CAS  Google Scholar 

  69. Kaashyap M, Ford R, Bohra A, Kuvalekar A, Mantri N (2017) Improving salt tolerance of chickpea using modern genomics tools and molecular breeding. Curr Genomics 18:557–567. https://doi.org/10.2174/1389202918666170705155252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Nakaminami K, Matsui A, Shinozaki K, Seki M (2012) RNA regulation in plant abiotic stress responses. Biochim Biophys Acta 1819:149–153

    Article  PubMed  CAS  Google Scholar 

  71. Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, Shinozaki K, Yamaguchi-Shinozaki K (2010) Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Gen Genomics 283:185–196

    Article  CAS  Google Scholar 

  72. Zhang YM, Yan YS, Wang LN, Yang K, Xiao N, Liu YF, YP F, Sun ZX, Fang RX, Chen XY (2012) A novel rice gene, NRR responds to macronutrient deficiency and regulates root growth. Mol Plant 5:63–72

    Article  PubMed  CAS  Google Scholar 

  73. Dinesh-Kumar SP, Baker BJ (2000) Alternatively spliced N resistance gene transcripts: their possible role in tobacco mosaic virus resistance. Proc Natl Acad Sci 97:1908–1913

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Zhang XC, Gassmann W (2003) RPS4-mediated disease resistance requires the combined presence of RPS4 transcripts with full-length and truncated open reading frames. Plant Cell 15:2333–2342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S (2006) Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst 81:77–91

    Article  PubMed  CAS  Google Scholar 

  76. Zhang Y, Gu L, Hou Y, Wang L, Deng X, Hang R, Chen D, Zhang X, Zhang Y, Liu C, Cao X (2015) Integrative genome-wide analysis reveals HLP1, a novel RNA-binding protein, regulates plant flowering by targeting alternative polyadenylation. Cell Res 25:864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Cyrek M, Fedak H, Ciesielski A, Guo Y, Sliwa A, Brzezniak L, Krzyczmonik K, Pietras Z, Kaczanowski S, Liu F, Swiezewski S (2016) Seed dormancy in Arabidopsis is controlled by alternative polyadenylation of DOG1. Plant Physiol 170:947–955

    Article  PubMed  CAS  Google Scholar 

  78. Motion GB, Amaro TM, Kulagina N, Huitema E (2015) Nuclear processes associated with plant immunity and pathogen susceptibility. Brief Funct Genomics 14:243–252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Tao P, Huang X, Li B, Wang W, Yue Z, Lei J, Zhong X (2014) Comparative analysis of alternative splicing, alternative polyadenylation and the expression of the two KIN genes from cytoplasmic male sterility cabbage (Brassica oleracea L. var. capitata L.) Mol Gen Genomics 289:361–372

    Article  CAS  Google Scholar 

  80. Thomas PE, Wu X, Liu M, Gaffney B, Ji G, Li QQ, Hunt AG (2012) Genome-wide control of polyadenylation site choice by CPSF30 in Arabidopsis. Plant Cell 24:4376–4388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Wu X, Zhang Y, Li QQ (2016) Plant APA: a portal for visualization and analysis of alternative polyadenylation in plants. Front Plant Sci 7:889

    PubMed  PubMed Central  Google Scholar 

  82. Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H (2013) Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol 161:1375–1391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Zhou M, Luo H (2014) Role of microRNA319 in creeping bentgrass salinity and drought stress response. Plant Signal Behav 9:e28700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Barciszewska-Pacak M, Milanowska K, Knop K, Bielewicz D, Nuc P et al (2015) Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Front Plant Sci 6:410

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hsieh LC, Lin SI, Shih AC, Chen JW, Lin WY, Tseng CY, Li WH, Chiou TJ (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151:2120–2132

    Article  PubMed  PubMed Central  Google Scholar 

  86. Li WX, Oono Y, Zhu J, HeX J, JM W, Iida K et al (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238–2251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Xu Z, Zhong S, Li X, Li W, Rothstein SJ, Zhang S, Bi Y, Xie C (2011) Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. PLoS One 6:e28009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Zhao M, Ding H, Zhu JK, Zhang F, Li WX (2011) Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol 190:906–915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Zhang W, Gao S, Zhou X, Chellappan P, Chen Z, Zhou X, Zhang X et al (2011) Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol Biol 75:93–105

    Article  PubMed  CAS  Google Scholar 

  90. Yang J, Zhang N, Zhou X, Si H, Wang D (2016) Identification of four novel stu-miR169s and their target genes in Solanum tuberosum and expression profiles response to drought stress. Plant Syst Evol 302:55–66

    Article  CAS  Google Scholar 

  91. Borsani O, Zhu JH, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Yao Y, Ni Z, Peng H, Sun F, Xin M, Sunkar R et al (2010) Non-coding small RNAs responsive to abiotic stress in wheat (Triticumaestivum L.) Funct Integr Genomics 10:187–190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Feng JL, Liu SS, Wang MN, Lang QL, Jin CZ (2014) Identification of microRNAs and their targets in tomato infected with Cucumber mosaic virus based on deep sequencing. Planta 240:1335–1352

    Article  PubMed  CAS  Google Scholar 

  94. Zhao W, Li Z, Fan J, Hu C, Yang R, Qi X, Chen H et al (2015) Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato. J Exp Bot 66:4653–4667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxinsignaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  96. Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A, Zhu JK, Staskawicz BJ, Jin HL (2006) A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci USA 103:18002–18007

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  97. Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138

    Article  PubMed  CAS  Google Scholar 

  98. Goeres DC, Van Norman JM, Zhang W, Fauver NA, Spencer ML, Sieburth LE (2007) Components of the Arabidopsis mRNA decapping complex are required for early seedling development. Plant Cell 19:1549–1564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Weber C, Nover L, Fauth M (2008) Plant stress granules and mRNA processing bodies are distinct from heat stress granules. Plant J 56:517–530

    Article  PubMed  CAS  Google Scholar 

  100. Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15:R17–R29

    Article  PubMed  CAS  Google Scholar 

  101. Zamore PD, Haley B (2005) Ribo-genome: the big world of smallRNAs. Science 309:1519–1524

    Article  PubMed  CAS  Google Scholar 

  102. Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant MicroRNAs. Plant Cell 25:2383–2399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Eamens A, Smith NA, Curtin SJ, Wang MB, Waterhouse PM (2009) The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. RNA 15:2219–2235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Carthew R, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Pontier D, Yahubyan G, Vega D, Bulski A, Saez-Vasquez J, Hakimi MA, Lerbs-Mache S, Colot V, Lagrange T (2005) Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev 19:2030–2040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Mack GS (2007) MicroRNA gets down to business. Nat Biotechnol 25:631–638

    Article  PubMed  CAS  Google Scholar 

  107. Hiraguri A et al (2005) Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana. Plant Mol Biol 57:173–188

    Article  PubMed  CAS  Google Scholar 

  108. Yoshikawa M, Peragine A, Park M-Y, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19:2164–2175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Mantri N, Baskar N, Ford R, Pang ECK, Pardeshi V (2013) The role of micro-ribonucleic acids in legumes with a focus on abiotic stress response. Plant Genome 6:3

    Article  CAS  Google Scholar 

  110. Wahid F, Shehzad A, Khan T, Kim YY (2010) MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochem Biophys Acta 1803:1231–1243

    Article  PubMed  CAS  Google Scholar 

  111. Adenot X, Elmayan T, Lauressergues D, Boutet S, Bouche N, Gasciolli V, Vaucheret H (2006) DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr Biol 16:927–932

    Article  PubMed  CAS  Google Scholar 

  112. Poething RS (2009) Small RNAs and developmental timing in plants. Curr Opin Genet Dev 19:374–378

    Article  CAS  Google Scholar 

  113. Talmor-Neiman M, Stav R, Klipcan L, Buxdorf K, Baulcombe DC, Arazi T (2006) Identification of trans-acting siRNAs in moss and an RNA-dependent RNA polymerase required for their biogenesis. Plant J 48:511–521

    Article  PubMed  CAS  Google Scholar 

  114. Zubko E, Meyer P (2007) A natural antisense transcript of the Petunia hybrida Sho gene suggests a role for an antisense mechanism in cytokinin regulation. Plant J 52:1131–1139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Ron M, Saez MA, Williams LE, Fletcher JC, McCormick S (2010) Proper regulation of a sperm-specific cis-nat-siRNA is essential for double fertilization in Arabidopsis. Genes Dev 2010(24):1010–1021

    Article  CAS  Google Scholar 

  116. Lelandais-Brière C, Sorin C, Declerck M, Benslimane A, Crespi M, Hartmann C (2010) Small RNA diversity in plants and its impact in development. Curr Genomics 11:14–23

    Article  PubMed  PubMed Central  Google Scholar 

  117. Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    Article  PubMed  CAS  Google Scholar 

  118. Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  PubMed  CAS  Google Scholar 

  119. Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66:1749–1761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Baldrich P, Sun Segundo B (2016) MicroRNAs in rice innate immunity. Rice (N Y) 9:6. https://doi.org/10.1186/s12284-016-0078-5

    Article  Google Scholar 

  121. Shen D, Suhrkamp I, Wang Y, Liu S, Menkhaus J, Verreet JA, Fan L, Cai D (2014) Identification and characterization of microRNAs in oilseed rape (Brassica napus) responsive to infection with the pathogenic fungus Verticillium longisporum using Brassica AA (Brassica rapa) and CC (Brassica oleracea) as reference genomes. New Phytol 204:577–594

    Article  PubMed  CAS  Google Scholar 

  122. Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, Li H, Xiao F, Ye Z (2011) Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett 33:403–409

    Article  PubMed  CAS  Google Scholar 

  123. Kumar R (2014) Role of microRNAs in biotic and abiotic stress responses in crop plants. Appl Biochem Biotechnol 174:93–115

    Article  PubMed  CAS  Google Scholar 

  124. Chen L, Wang T, Zhao M, Tian Q, Zhang WH (2012) Identification of aluminum-responsive microRNAs in Medicagotruncatula by genome-wide highthroughput sequencing. Planta 235:375–386

    Article  PubMed  CAS  Google Scholar 

  125. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Thiebaut F, Rojas CA, Almeida KL, Grativol C, Domiciano GC, Lamb CRC, Engler Jde A, Hemerly AS, Ferreira PCG (2012) Regulation of miR319 during cold stress in sugarcane. Plant Cell Environ 35:502–512

    Article  PubMed  CAS  Google Scholar 

  127. Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryzasativa. J Exp Bot 61:4157–4168

    Article  PubMed  CAS  Google Scholar 

  128. Luan M, Xu M, Lu Y, Zhang L, Fan Y, Wang L (2015) Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves. Gene 555:178–185

    Article  PubMed  CAS  Google Scholar 

  129. Xu MY, Zhang L, Li WW, Hu XL, Wang MB, Fan YL et al (2014) Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana. J Exp Bot 65:89–101

    Article  PubMed  CAS  Google Scholar 

  130. Zhang J, Xu Y, Huan Q, Chong K (2009) Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics 10:449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Jin H, Vacic V, Girke T, Lonardi S, Zhu JK (2008) Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis. BMC Mol Biol 9:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H (2007) A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev 21:3123–3134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Zhang X, Xia J, Lii YE, Barrera-Fiqueroa BE, Zhou X, Gao S et al (2012) Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function. Genome Biol 13:R20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Mantri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nejat, N., Ramalingam, A., Mantri, N. (2018). Advances in Transcriptomics of Plants. In: Varshney, R., Pandey, M., Chitikineni, A. (eds) Plant Genetics and Molecular Biology. Advances in Biochemical Engineering/Biotechnology, vol 164. Springer, Cham. https://doi.org/10.1007/10_2017_52

Download citation

Publish with us

Policies and ethics