Skip to main content

Reactors for Microbial Electrobiotechnology

  • Chapter
  • First Online:
Bioelectrosynthesis

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hongo M, Iwahara M (1979) Application of electro-energizing method to L-glutamic acid fermentation. Agric Biol Chem 43(10):2075–2081. https://doi.org/10.1080/00021369.1979.10863776

    Article  CAS  Google Scholar 

  2. Schievano A, Pepé Sciarria T, Vanbroekoven K et al (2016) Electro-fermentation – merging electrochemistry with fermentation in industrial applications. Trends Biotechnol 34(11):1–13. https://doi.org/10.1016/j.tibtech.2016.04.007

    Article  CAS  Google Scholar 

  3. Schröder U, Harnisch F, Angenent LT (2015) Microbial electrochemistry and technology: terminology and classification. Energy Environ Sci 8(2):513–519. https://doi.org/10.1039/C4EE03359K

    Article  CAS  Google Scholar 

  4. Rabaey K, Rozendal RA (2010) Microbial electrosynthesis – revisiting the electrical route for microbial production. Nat Rev Microbiol 8(10):706–716. https://doi.org/10.1038/nrmicro2422

    Article  CAS  PubMed  Google Scholar 

  5. Krieg T, Sydow A, Schröder U, Schrader J, Holtmann D (2014) Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends Biotechnol 32(12):645–655. https://doi.org/10.1016/j.tibtech.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  6. Schmitz LM, Rosenthal K, Lütz S (2017) Enzyme-based electrobiotechnological synthesis. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2017_33

    Google Scholar 

  7. Kerzenmacher S (2017) Engineering of microbial electrodes. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2017_16

    Google Scholar 

  8. Rosenbaum MA, Berger C, Schmitz S, Uhlig R (2017) Microbial electrosynthesis: pure and defined mixed culture engineering. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2017_17

    Google Scholar 

  9. Roy S, Schievano A, Pant D (2016) Electro-stimulated microbial factory for value added product synthesis. Bioresour Technol 213:129–139. https://doi.org/10.1016/j.biortech.2016.03.052

    Article  CAS  PubMed  Google Scholar 

  10. Deeke A, Sleutels THJA, Donkers TFW, Hamelers HVM, Buisman CJN, Ter Heijne A (2015) Fluidized capacitive bioanode as a novel reactor concept for the microbial fuel cell. Environ Sci Technol 49(3):1929–1935. https://doi.org/10.1021/es503063n

    Article  CAS  PubMed  Google Scholar 

  11. Janicek A, Fan Y, Liu H (2014) Design of microbial fuel cells for practical application: a review and analysis of scale-up studies. Biofuels 502:79–92

    Article  Google Scholar 

  12. Verstraete W, Rabaey K, Logan BE et al (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192. http://www.ncbi.nlm.nih.gov/pubmed/16999087

    Article  Google Scholar 

  13. Moscoviz R, Toledo-Alarcón J, Trably E, Bernet N (2016) Electro-fermentation: how to drive fermentation using electrochemical systems. Trends Biotechnol 34(11):856–865. https://doi.org/10.1016/j.tibtech.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  14. Rosa LFM, Hunger S, Gimkiewicz C, Zehnsdorf A, Harnisch F (2016) Paving the way for bioelectrotechnology: integrating electrochemistry into bioreactors. Eng Life Sci 53(9):1689–1699. https://doi.org/10.1002/elsc.201600105

    Article  CAS  Google Scholar 

  15. Logan BE (2009) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85(6):1665–1671. https://doi.org/10.1007/s00253-009-2378-9

    Article  CAS  PubMed  Google Scholar 

  16. Kipf E, Koch J, Geiger B et al (2013) Systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1. Bioresour Technol 146:386–392. https://doi.org/10.1016/j.biortech.2013.07.076

    Article  CAS  PubMed  Google Scholar 

  17. Baudler A, Schmidt I, Langner M, Greiner A, Schröder U (2015) Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy Environ Sci 8(7):2048–2055. https://doi.org/10.1039/C5EE00866B

    Article  CAS  Google Scholar 

  18. Clauwaert P, Aelterman P, Pham TH et al (2008) Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biotechnol 79(6):901–913. https://doi.org/10.1007/s00253-008-1522-2

    Article  CAS  PubMed  Google Scholar 

  19. Zhou M, Chi M, Luo J, He H, Jin T (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196(10):4427–4435. https://doi.org/10.1016/j.jpowsour.2011.01.012

    Article  CAS  Google Scholar 

  20. Patil SA, Gildemyn S, Pant D, Zengler K, Logan BE, Rabaey K (2015) A logical data representation framework for electricity-driven bioproduction processes. Biotechnol Adv 33(6:736–744. https://doi.org/10.1016/j.biotechadv.2015.03.002

    Article  CAS  Google Scholar 

  21. Koch C, Harnisch F (2016) Is there a specific ecological niche for electroactive microorganisms? ChemElectroChem 3(9):1282–1295. https://doi.org/10.1002/celc.201600079

    Article  CAS  Google Scholar 

  22. Simonte F, Sturm G, Gescher J, Sturm-Richter K (2017) Extracellular electron transfer and biosensors. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2017_34

    Google Scholar 

  23. Vidakovic-Koch T (2017) Electron transfer between enzymes and electrodes. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2017_42

    Google Scholar 

  24. ter Heijne A, Geppert F, Sleutels THJA, Batlle-Vilanova P, Liu D, Puig S (2017) Mixed culture biocathodes for production of hydrogen, methane, and carboxylates. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2017_15

    Google Scholar 

  25. Sharma M, Bajracharya S, Gildemyn S et al (2014) A critical revisit of the key parameters used to describe microbial electrochemical systems. Electrochim Acta 140:191–208. https://doi.org/10.1016/j.electacta.2014.02.111

    Article  CAS  Google Scholar 

  26. Korth B, Harnisch F (2017) Modeling microbial electrosynthesis. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2017_35

    Google Scholar 

  27. Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26(8):450–459. https://doi.org/10.1016/j.tibtech.2008.04.008

    Article  CAS  PubMed  Google Scholar 

  28. Xie X, Yu G, Liu N, Bao Z, Criddle CS, Cui Y (2012) Graphene–sponges as high-performance low-cost anodes for microbial fuel cells. Energy Environ Sci 5(5):6862. https://doi.org/10.1039/c2ee03583a

    Article  CAS  Google Scholar 

  29. Luther AK, Desloover J, Fennell DE, Rabaey K (2015) Electrochemically driven extraction and recovery of ammonia from human urine. Water Res 87:367–377. https://doi.org/10.1016/j.watres.2015.09.041

    Article  CAS  PubMed  Google Scholar 

  30. Cheng S, Logan BE (2011) High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresour Technol 102(3):3571–3574. https://doi.org/10.1016/j.biortech.2010.10.025

    Article  CAS  PubMed  Google Scholar 

  31. Fan Y, Hu H, Liu H (2007) Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171(2):348–354. https://doi.org/10.1016/j.jpowsour.2007.06.220

    Article  CAS  Google Scholar 

  32. Harnisch F, Wirth S, Schröder U (2009) Electrochemistry communications effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: platinum vs. iron (II) phthalocyanine based electrodes. Electrochem Commun 11(11):2253–2256. https://doi.org/10.1016/j.elecom.2009.10.002

    Article  CAS  Google Scholar 

  33. Harnisch F, Schröder U (2009) Selectivity versus mobility: separation of anode and cathode in microbial bioelectrochemical systems. ChemSusChem 2(10):921–926. https://doi.org/10.1002/cssc.200900111

    Article  CAS  PubMed  Google Scholar 

  34. Cheng S, Liu H, Logan BE (2006) Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 40(7):2426–2432. https://doi.org/10.1021/es051652w

    Article  CAS  PubMed  Google Scholar 

  35. Madjarov J, Popat SC, Erben J, Götze A, Zengerle R, Kerzenmacher S (2017) Revisiting methods to characterize bioelectrochemical systems: the influence of uncompensated resistance (iRu-drop), double layer capacitance, and junction potential. J Power Sources 356:408–418. https://doi.org/10.1016/j.jpowsour.2017.03.033

    Article  CAS  Google Scholar 

  36. Popat SC, Ki D, Rittmann BE, Torres CI (2012) Importance of OH- transport from cathodes in microbial fuel cells. ChemSusChem 5(6):1071–1079. https://doi.org/10.1002/cssc.201100777

    Article  CAS  PubMed  Google Scholar 

  37. Oliot M, Galier S, Roux de Balmann H, Bergel A (2016) Ion transport in microbial fuel cells: key roles, theory and critical review. Appl Energy 183:1682–1704. https://doi.org/10.1016/j.apenergy.2016.09.043

    Article  CAS  Google Scholar 

  38. Sleutels THJA, Hamelers HVM, Buisman CJN (2011) Effect of mass and charge transport speed and direction in porous anodes on microbial electrolysis cell performance. Bioresour Technol 102(1):399–403. https://doi.org/10.1016/j.biortech.2010.06.018

    Article  CAS  PubMed  Google Scholar 

  39. Zhao L, Li J, Battaglia F, He Z (2016) Computational investigation of the flow field contribution to improve electricity generation in granular activated carbon-assisted microbial fuel cells. J Power Sources 333:83–87. https://doi.org/10.1016/j.jpowsour.2016.09.113

    Article  CAS  Google Scholar 

  40. Brown RK, Harnisch F, Wirth S et al (2014) Evaluating the effects of scaling up on the performance of bioelectrochemical systems using a technical scale microbial electrolysis cell. Bioresour Technol 163:206–213. https://doi.org/10.1016/j.biortech.2014.04.044

    Article  CAS  PubMed  Google Scholar 

  41. Sleutels THJA, Lodder R, Hamelers HVM, Buisman CJN (2009) Improved performance of porous bio-anodes in microbial electrolysis cells by enhancing mass and charge transport. Int J Hydrog Energy 34(24):9655–9661. https://doi.org/10.1016/j.ijhydene.2009.09.089

    Article  CAS  Google Scholar 

  42. Liu H, Cheng S, Huang L, Logan BE (2008) Scale-up of membrane-free single-chamber microbial fuel cells. J Power Sources 179(1):274–279. https://doi.org/10.1016/j.jpowsour.2007.12.120

    Article  CAS  Google Scholar 

  43. Cheng S, Logan BE (2011) Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresour Technol 102(6):4468–4473. https://doi.org/10.1016/j.biortech.2010.12.104

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Angelidaki I (2014) Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges. Water Res 56:11–25. https://doi.org/10.1016/j.watres.2014.02.031

    Article  CAS  PubMed  Google Scholar 

  45. Geppert F, Liu D, van Eerten-Jansen M, Weidner E, Buisman C, ter Heijne A (2016) Bioelectrochemical power-to-gas: state of the art and future perspectives. Trends Biotechnol 34(11). https://doi.org/10.1016/j.tibtech.2016.08.010

    Article  CAS  Google Scholar 

  46. Lovley DR (2011) Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ Microbiol Rep 3(1):27–35. https://doi.org/10.1111/j.1758-2229.2010.00211.x

    Article  CAS  PubMed  Google Scholar 

  47. Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39(2):658–662. http://www.ncbi.nlm.nih.gov/pubmed/15707069

    Article  CAS  Google Scholar 

  48. Logan BE, Call D, Cheng S et al (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42(23):8630–8640. https://doi.org/10.1021/es801553z

    Article  CAS  PubMed  Google Scholar 

  49. Van Eerten-Jansen MCAA, Heijne AT, Buisman CJN, Hamelers HVM (2012) Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives. Int J Energy Res 36(6):809–819. https://doi.org/10.1002/er.1954

    Article  CAS  Google Scholar 

  50. Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39(11):4317–4320. https://doi.org/10.1021/ES050244P

    Article  CAS  PubMed  Google Scholar 

  51. Xu H, Wang K, Holmes DE (2014) Bioelectrochemical removal of carbon dioxide (CO2): an innovative method for biogas upgrading. Bioresour Technol 173:392–398. https://doi.org/10.1016/j.biortech.2014.09.127

    Article  CAS  PubMed  Google Scholar 

  52. Nevin KP, Hensley SA, Franks AE et al (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77(9):2882–2886. https://doi.org/10.1128/AEM.02642-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Park DH, Laivenieks M, Guettler MV, Jain MK (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol 65(7):2912–2917

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Nevin KP, Woodard TL, Franks AE (2010) Microbial electrosynthesis: feeding microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic. MBio 1(2):e00103–e00110. https://doi.org/10.1128/mBio.00103-10. Editor

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jourdin L, Freguia S, Donose BC et al (2014) A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J Mater Chem A 2(32):13093. https://doi.org/10.1039/C4TA03101F

    Article  CAS  Google Scholar 

  56. Flynn JM, Ross DE, Hunt KA, Bond DR, Gralnick JA (2010) Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. MBio 1(5):1–8. https://doi.org/10.1128/mBio.00190-10.Editor

    Article  Google Scholar 

  57. Emde R, Schink B (1990) Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system. Appl Environ Microbiol 56(9):2771–2776

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Young Jeon B, Lae Jung I, Hyun Park D (2012) Conversion of carbon dioxide to metabolites by Clostridium acetobutylicum KCTC1037 cultivated with electrochemical reducing power. Adv Microbiol 2(3):332–339. https://doi.org/10.4236/aim.2012.23040

    Article  CAS  Google Scholar 

  59. Ditzig J, Liu H, Logan BE (2007) Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR). Int J Hydrog Energy 32(13):2296–2304. https://doi.org/10.1016/j.ijhydene.2007.02.035

    Article  CAS  Google Scholar 

  60. Gildemyn S, Verbeeck K, Slabbinck R, Andersen SJ, Prévoteau A, Rabaey K (2015) Integrated production, extraction, and concentration of acetic acid from CO2 through microbial electrosynthesis. Environ Sci Technol Lett 2(11):325–328. https://doi.org/10.1021/acs.estlett.5b00212

    Article  CAS  Google Scholar 

  61. Cheng S, Logan BE (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci U S A 104(47):18871–18873. https://doi.org/10.1073/pnas.0706379104

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrog Energy 31(12):1632–1640. https://doi.org/10.1016/j.ijhydene.2005.12.006

    Article  CAS  Google Scholar 

  63. Zhou M, Chen J, Freguia S, Rabaey K, Keller J (2013) Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol. Environ Sci Technol 47(19):11199–11205. https://doi.org/10.1021/es402132r

    Article  CAS  PubMed  Google Scholar 

  64. Sleutels THJA, Hamelers HVM, Rozendal RA, Buisman CJN (2009) Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes. Int J Hydrog Energy 34(9):3612–3620. https://doi.org/10.1016/j.ijhydene.2009.03.004

    Article  CAS  Google Scholar 

  65. Luo X, Zhang F, Liu J, Zhang X, Huang X, Logan BE (2014) Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions. Environ Sci Technol 48(15):8911–8918. https://doi.org/10.1021/es501979z

    Article  CAS  PubMed  Google Scholar 

  66. Hintermayer S, Yu S, Krömer JO, Weuster-Botz D (2016) Anodic respiration of Pseudomonas putida KT2440 in a stirred-tank bioreactor. Biochem Eng J 115:1–13. https://doi.org/10.1016/j.bej.2016.07.020

    Article  CAS  Google Scholar 

  67. Call D, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 42(9):3401–3406. https://doi.org/10.1021/es8001822

    Article  CAS  PubMed  Google Scholar 

  68. Wang A, Liu W, Cheng S, Xing D, Zhou J, Logan BE (2009) Source of methane and methods to control its formation in single chamber microbial electrolysis cells. Int J Hydrog Energy 34(9):3653–3658. https://doi.org/10.1016/j.ijhydene.2009.03.005

    Article  CAS  Google Scholar 

  69. Rader GK, Logan BE (2010) Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate. Int J Hydrog Energy 35(17):8848–8854. https://doi.org/10.1016/j.ijhydene.2010.06.033

    Article  CAS  Google Scholar 

  70. Cusick RD, Bryan B, Parker DS et al (2011) Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol 89(6):2053–2063. https://doi.org/10.1007/s00253-011-3130-9

    Article  CAS  PubMed  Google Scholar 

  71. Hu H, Fan Y, Liu H (2008) Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res 42(15):4172–4178. https://doi.org/10.1016/j.watres.2008.06.015

    Article  CAS  PubMed  Google Scholar 

  72. Guo Z, Thangavel S, Wang L et al (2017) Efficient methane production from beer wastewater in a membraneless microbial electrolysis cell with a stacked cathode: the effect of the cathode/anode ratio on bioenergy recovery. Energy Fuel 31(1):615–620. https://doi.org/10.1021/acs.energyfuels.6b02375

    Article  CAS  Google Scholar 

  73. Guo K, Tang X, Du Z, Li H (2010) Hydrogen production from acetate in a cathode-on-top single-chamber microbial electrolysis cell with a mipor cathode. Biochem Eng J 51(1):48–52. https://doi.org/10.1016/j.bej.2010.05.001

    Article  CAS  Google Scholar 

  74. Katuri KP, Werner CM, Jimenez-Sandoval RJ et al (2014) A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions. Environ Sci Technol 48(21):12833–12841. https://doi.org/10.1021/es504392n

    Article  CAS  PubMed  Google Scholar 

  75. Liu J, Zhang F, He W, Yang W, Feng Y, Logan BE (2014) A microbial fluidized electrode electrolysis Cell (MFEEC) for enhanced hydrogen production. J Power Sources 271:530–533. https://doi.org/10.1016/j.jpowsour.2014.08.042

    Article  CAS  Google Scholar 

  76. Cheng KY, Ho G, Cord-Ruwisch R (2011) Novel methanogenic rotatable bioelectrochemical system operated with polarity inversion. Environ Sci Technol 45(2):796–802. https://doi.org/10.1021/es102482j

    Article  CAS  PubMed  Google Scholar 

  77. Bo T, Zhu X, Zhang L et al (2014) A new upgraded biogas production process: coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor. Electrochem Commun 45:67–70. https://doi.org/10.1016/j.elecom.2014.05.026

    Article  CAS  Google Scholar 

  78. Clauwaert P, Verstraete W (2009) Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82(5):829–836. https://doi.org/10.1007/s00253-008-1796-4

    Article  CAS  PubMed  Google Scholar 

  79. Fu Q, Kuramochi Y, Fukushima N, Maeda H, Sato K, Kobayashi H (2015) Bioelectrochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis. Environ Sci Technol 49(2):1225–1232. https://doi.org/10.1021/es5052233

    Article  CAS  PubMed  Google Scholar 

  80. Xafenias N, Mapelli V (2014) Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production. Int J Hydrog Energy 39(36):21864–21875. https://doi.org/10.1016/j.ijhydene.2014.05.038

    Article  CAS  Google Scholar 

  81. Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43(10):3953–3958. https://doi.org/10.1021/es803531g

    Article  CAS  PubMed  Google Scholar 

  82. Yang W, Kim K-Y, Saikaly PE et al (2017) The impact of new cathode materials relative to baseline performance of microbial fuel cells all with the same architecture and solution chemistry. Energy Environ Sci 10(5):1025–1033. https://doi.org/10.1039/C7EE00910K

    Article  CAS  Google Scholar 

  83. Kobayashi H, Saito N, Fu Q et al (2013) Bio-electrochemical property and phylogenetic diversity of microbial communities associated with bioelectrodes of an electromethanogenic reactor. J Biosci Bioeng 116:114–117. https://doi.org/10.1016/j.jbiosc.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  84. Call DF, Logan BE (2011) A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells. Biosens Bioelectron 26(11):4526–4531. https://doi.org/10.1016/j.bios.2011.05.014

    Article  CAS  PubMed  Google Scholar 

  85. Hu H, Fan Y, Liu H (2009) Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts. Int J Hydrog Energy 34(20):8535–8542. https://doi.org/10.1016/j.ijhydene.2009.08.011

    Article  CAS  Google Scholar 

  86. Guo X, Liu J, Xiao B (2013) Bioelectrochemical enhancement of hydrogen and methane production from the anaerobic digestion of sewage sludge in single-chamber membrane-free microbial electrolysis cells. Int J Hydrog Energy 38(3):1342–1347. https://doi.org/10.1016/j.ijhydene.2012.11.087

    Article  CAS  Google Scholar 

  87. Li J, He Z (2016) Development of a dynamic mathematical model for membrane bioelectrochemical reactors with different configurations. Environ Sci Pollut Res 23(4):3897–3906. https://doi.org/10.1007/s11356-015-5611-3

    Article  CAS  Google Scholar 

  88. Giddings CGS, Nevin KP, Woodward T, Lovley DR, Butler CS (2015) Simplifying microbial electrosynthesis reactor design. Front Microbiol 6:1–6. https://doi.org/10.3389/fmicb.2015.00468

    Article  Google Scholar 

  89. Villano M, Monaco G, Aulenta F, Majone M (2011) Electrochemically assisted methane production in a biofilm reactor. J Power Sources 196(22):9467–9472. https://doi.org/10.1016/j.jpowsour.2011.07.016

    Article  CAS  Google Scholar 

  90. Marshall CW, Ross DE, Fichot EB, Norman RS, May HD (2012) Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl Environ Microbiol 78(23):8412–8420. https://doi.org/10.1128/AEM.02401-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liang P, Huang X, Fan M-Z, Cao X-X, Wang C (2007) Composition and distribution of internal resistance in three types of microbial fuel cells. Appl Microbiol Biotechnol 77(3):551–558. https://doi.org/10.1007/s00253-007-1193-4

    Article  CAS  PubMed  Google Scholar 

  92. Pozo G, Jourdin L, Lu Y, Ledezma P, Keller J, Freguia S (2015) Methanobacterium enables high rate electricity-driven autotrophic sulfate reduction. RSC Adv 5(109):89368–89374. https://doi.org/10.1039/C5RA18444D

    Article  CAS  Google Scholar 

  93. Sasaki D, Sasaki K, Watanabe A, Morita M, Igarashi Y, Ohmura N (2013) Efficient production of methane from artificial garbage waste by a cylindrical bioelectrochemical reactor containing carbon fiber textiles. AMB Express 3(1):17. https://doi.org/10.1186/2191-0855-3-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Carmona-Martínez AA, Trably E, Milferstedt K, Lacroix R, Etcheverry L, Bernet N (2015) Long-term continuous production of H2 in a microbial electrolysis cell (MEC) treating saline wastewater. Water Res 81:149–156. https://doi.org/10.1016/j.watres.2015.05.041

    Article  CAS  PubMed  Google Scholar 

  95. Rabaey Clauwaert P, Aelterman P, Verstraete WK (2005) Tubular microbial fuel cell for efficient electricity generation. Environ Sci Technol 39(20):8077–8082

    Article  Google Scholar 

  96. Danzer J, Kerzenmacher S (2016) Filtration-active. Fuel Cell

    Google Scholar 

  97. Rozendal RA, Jeremiasse AW, Hamelers HV, Buisman CJ (2007) Hydrogen production with a microbial biocathode. Environ Sci Technol 42(2):629–634

    Article  Google Scholar 

  98. Shin S-H, Choi Y, Na S-H, Jung S, Kim S (2006) Development of bipolor plate stack type microbial fuel cells. Bull Kor Chem Soc 27(2):281–285

    Article  CAS  Google Scholar 

  99. Min B, Logan B (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38(21):5809–5814. https://doi.org/10.1021/es0491026

    Article  CAS  PubMed  Google Scholar 

  100. Rabaey K, Bützer S, Brown S, Keller J, Rozendal RA (2010) High current generation coupled to caustic production using a lamellar bioelectrochemical system. Environ Sci Technol 44(11):4315–4321. https://doi.org/10.1021/es9037963

    Article  CAS  PubMed  Google Scholar 

  101. Kim BH, Chang IS, Jang JK, Geun CG (2003) Membraneless and mediatorless microbial fuel cell. 1(12):0–4. doi:https://doi.org/10.1016/j.(73)

  102. Gil-Carrera L, Escapa A, Moreno R, Morán A (2013) Reduced energy consumption during low strength domestic wastewater treatment in a semi-pilot tubular microbial electrolysis cell. J Environ Manag 122:1–7. https://doi.org/10.1016/j.jenvman.2013.03.001

    Article  CAS  Google Scholar 

  103. Siegert M, Yates MD, Call DF, Zhu X, Spormann A, Logan BE (2014) Comparison of nonprecious metal cathode materials for methane production by electromethanogenesis. ACS Sustain Chem Eng 2(4):910–917. https://doi.org/10.1021/sc400520x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang T, Nie H, Bain TS et al (2013) Improved cathode materials for microbial electrosynthesis. Energy Environ Sci 6(1):217. https://doi.org/10.1039/c2ee23350a

    Article  CAS  Google Scholar 

  105. Zhen G, Lu X, Kobayashi T, Kumar G, Xu K (2016) Promoted electromethanosynthesis in a two-chamber microbial electrolysis cells (MECs) containing a hybrid biocathode covered with graphite felt (GF). Chem Eng J 284:1146–1155. https://doi.org/10.1016/j.cej.2015.09.071

    Article  CAS  Google Scholar 

  106. Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25(18):1531–1535. https://doi.org/10.1023/A:1025484009367

    Article  CAS  PubMed  Google Scholar 

  107. Emde R, Swain A, Schink B (1989) Anaerobic oxidation of glycerol by Escherichia coli in an amperometric poised-potential culture system. Appl Microbiol Biotechnol 32(2):170–175. https://doi.org/10.1007/BF00165883

    Article  CAS  Google Scholar 

  108. Ki D, Popat SC, Torres CI (2016) Reduced overpotentials in microbial electrolysis cells through improved design, operation, and electrochemical characterization. Chem Eng J 287:181–188. https://doi.org/10.1016/j.cej.2015.11.022

    Article  CAS  Google Scholar 

  109. Chae KJ, Choi M, Ajayi FF, Park W, Chang IS, Kim IS (2008) Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy Fuel 22(1):169–176. https://doi.org/10.1021/ef700308u

    Article  CAS  Google Scholar 

  110. Babanova S, Carpenter K, Phadke S et al (2017) The effect of membrane type on the performance of microbial electrosynthesis cells for methane production. J Electrochem Soc 164(3):H3015–H3023. https://doi.org/10.1149/2.0051703jes

    Article  CAS  Google Scholar 

  111. Zeppilli M, Lai A, Villano M, Majone M (2016) Anion vs cation exchange membrane strongly affect mechanisms and yield of CO2 fixation in a microbial electrolysis cell. Chem Eng J 304:10–19. https://doi.org/10.1016/j.cej.2016.06.020

    Article  CAS  Google Scholar 

  112. Kracke F, Krömer JO (2014) Identifying target processes for microbial electrosynthesis by elementary mode analysis. BMC Bioinformatics 15:410. https://doi.org/10.1186/s12859-014-0410-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337(6095):686–690. http://science.sciencemag.org/content/337/6095/686. Accessed 12 Apr 2017

    Article  CAS  Google Scholar 

  114. Desloover J, Arends JBAA, Hennebel T, Rabay K, Rabaey K (2012) Operational and technical considerations for microbial electrosynthesis. Biochem Soc Trans 40(6):1233–1238. https://doi.org/10.1042/BST20120111

    Article  CAS  PubMed  Google Scholar 

  115. Pham TH, Rabaey K, Aelterman P et al (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 6(3):285–292. https://doi.org/10.1002/elsc.200620121

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Korneel Rabaey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krieg, T. et al. (2018). Reactors for Microbial Electrobiotechnology. In: Harnisch, F., Holtmann, D. (eds) Bioelectrosynthesis. Advances in Biochemical Engineering/Biotechnology, vol 167. Springer, Cham. https://doi.org/10.1007/10_2017_40

Download citation

Publish with us

Policies and ethics