Abstract
The number of newly developed bioplastics has increased sharply in recent years and innovative polymer materials are increasingly present on the plastics market. Bioplastics are not, however, a completely new kind of material, but rather a rediscovered class of materials within the familiar group of materials known as plastics. Therefore, existing knowledge from the plastics sector can and should be transferred to bioplastics in order to further increase their performance, material diversity and market penetration.
Similar content being viewed by others
References
Braun D (2013) Kleine Geschichte der Kunststoffe. Carl Hanser Verlag, Munich, S. 1–15
Endres H-J, Siebert-Raths A (2011) Engineering biopolymers. Carl Hanser Verlag, Munich
Chen P (2005) Molecular interfacial phenomena of polymers and biopolymers. Woodhead [u. a.], Cambridge
Ehrenstein GW, Pongratz S (2013) Resistance and stability of polymers. Carl Hanser Verlag, Munich
Ramakrishna S, Huang Z-M, et al (2004) An introduction to biocomposites. Imperial College Press, London
Endres H-J, Koplin T, Habermann C (2012) Technology and nature combined. Kunststoffe International 6/2012
Endres H-J, Jürgens F, Habermann C, Spierling S, Behnsen H, Schulz C (2012) Eine nachhaltige Alternative? Über Sinn und Unsinn des Einsatzes von Biokunststoffen; in: Kunststoffe 7/2015, S. 22–27
Deutsche Norm (German Standard), DIN EN 13432. 2000. Anforderungen an die Verwertung von Verpackungen durch Kompostierung und biologischen Abbau. [Norm]. Beuth Verlag, Berlin
Haldenwanger HHM, Göttner GH (1970) Biologiche Zerstörung der makromolekularen Werkstoffe. Chemie, Physik und Technologie der Kunststoffe in Einzeldarstellungen, Band 15. Berlin
Kawai F (1995) Proposed mechanism for microbial degradation of polyacrylate. J Macromol Sci, Pure Appl Chem 32(4):835–838
Owen S, Kawamura R, Sakota N (1995) Biodegradation of poly-D,L-lactic acid polyurethanes. J Macromol Sci, Pure Appl Chem 32(4):843–850
Hocking P et al (2003) Enzymatic degradability of poly(beta-hydroxybutyrate) as a function of tacticity. Macromol Raprid Commun 15(6):447–452
Iman SH, Greene RV, Zaidi BR (1999). Biopolymers, utilizing nature’s advanced materials. In: Developed from a symposium at the Fifth Chemical Congress of North America, Cancun, Quintano Roo, Mexico, 1997 (ASC symposium series 723), Washington DC
Endres H-J (1994) Herstellung und Eigenschaften biologisch auf- und abbaubarer Werkstoffe auf Basis von Polysacchariden. Dissertation Ruhr-University Bochum, Department of Mechanical Engineering, Bochum
Godwin H (1962) Half-life of radiocarbon. Nature 195:984
Finch CA (1992) Polyvinylalkohol Developments. Wiley, Chichester
Bastioli C (2005) Handbook of biodegradable polymers. Rapra Technology, Shrewsbury
Fritz H-G, Seidenstücker T, Endres H-J, et al (1994) Production of thermo-bioplastics and fibres based mainly on biological materials. European Commission, Directorate XII, Brussels
Jacobsen S (2000) Darstellung von Polylactiden mittels reaktiver Extrusion (Dis.). [Hrsg.] Institut für Kunststofftechnologie Universität Stuttgart, Stuttgart
Kaplan DL (1998) Biopolymers from renewable resources. Springer, Berlin
Endres H-J, Siebert-Raths A, Behnsen H, Schulz C (2016) Biopolymers – facts and statistics. Hanover. ISSN 2363–8559
Endres H-J, Siebert-Raths A (2009) Technische Biopolymere. Carl Hanser Verlag, Munich
Wolf O et al (2005) Techno-economic feasibility of largescale production of bio-based polymers in Europe. Technical Report EUR 22103 EN, Brussels
Schroeter J, Endres H-J (1992) Eigenschaften thermoplastisch verarbeiteter reiner Kartoffelstärke. Kunststoffe. Yr. 82, Is.11, pp 1.086–1.089
Westermann K (Hrsg.) (1994) Verpackung aus nachwachsenden Rohstoffen. Vogel Buchverlag, Würzburg
Endres H-J, Kammerstetter H, Hobelsberger M (1994) Plastification behaviour of different native starches. Stärke/Starch 46, S. 474–480
Doi Y, Fukuda K (1994) Biodegradable plastics and polymers. In: Proceedings of the third international scientific workshop on biodegradable plastics and polymers, Osaka, Japan, November 9–11, Studies in polymer science, p 2
Seitz H (1979) Grundlegende Untersuchungen über den Einfluß einer chemischen Modifizierung auf bestimmte physikalische Eigenschaften von Zellglas als Verpackungsmittel unter besonderer Berücksichtigung polyfunktioneller Verbindungen. Dissertation University of Karlsruhe, Institute for Food Chemistry, Karlsruhe
Weigel P, Bohn A (1997) Struktur – Eigenschaftsbeziehungen von Celluloseblasfolien. Lenzinger Berichte. Is. 76, pp 119–125
Weigel P, Fink H-P (1997) Verfahren zur Herstellung von Celluloseblasfolien. Lenzinger Berichte. Is. 76, pp 115–118
Osswald TA, Baur E, Brinkmann S et al (2006) International plastics handbook. Carl Hanser Verlag, Munich
Oberbach K (1996) Kunststoff Taschenbuch, 26th edn. Munich
N.N. 2000. Moderne Polymere – Kohlenhydrate und Pflanzenöle als innovative Rohstoffe. Gülzower Fachgespräche, Vol. 16. Kassel, p 168. Available online at: http://www.fnr-server.de/ftp/pdf/literatur/pdf_68gfg16_polymere.pdf
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Endres, HJ. (2017). Bioplastics. In: Wagemann, K., Tippkötter, N. (eds) Biorefineries. Advances in Biochemical Engineering/Biotechnology, vol 166. Springer, Cham. https://doi.org/10.1007/10_2016_75
Download citation
DOI: https://doi.org/10.1007/10_2016_75
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-97117-9
Online ISBN: 978-3-319-97119-3
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)