Skip to main content

Bioplastics

  • Chapter
  • First Online:
Biorefineries

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 166))

Abstract

The number of newly developed bioplastics has increased sharply in recent years and innovative polymer materials are increasingly present on the plastics market. Bioplastics are not, however, a completely new kind of material, but rather a rediscovered class of materials within the familiar group of materials known as plastics. Therefore, existing knowledge from the plastics sector can and should be transferred to bioplastics in order to further increase their performance, material diversity and market penetration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Braun D (2013) Kleine Geschichte der Kunststoffe. Carl Hanser Verlag, Munich, S. 1–15

    Google Scholar 

  2. Endres H-J, Siebert-Raths A (2011) Engineering biopolymers. Carl Hanser Verlag, Munich

    Book  Google Scholar 

  3. Chen P (2005) Molecular interfacial phenomena of polymers and biopolymers. Woodhead [u. a.], Cambridge

    Google Scholar 

  4. Ehrenstein GW, Pongratz S (2013) Resistance and stability of polymers. Carl Hanser Verlag, Munich

    Book  Google Scholar 

  5. Ramakrishna S, Huang Z-M, et al (2004) An introduction to biocomposites. Imperial College Press, London

    Book  Google Scholar 

  6. Endres H-J, Koplin T, Habermann C (2012) Technology and nature combined. Kunststoffe International 6/2012

    Google Scholar 

  7. Endres H-J, Jürgens F, Habermann C, Spierling S, Behnsen H, Schulz C (2012) Eine nachhaltige Alternative? Über Sinn und Unsinn des Einsatzes von Biokunststoffen; in: Kunststoffe 7/2015, S. 22–27

    Google Scholar 

  8. Deutsche Norm (German Standard), DIN EN 13432. 2000. Anforderungen an die Verwertung von Verpackungen durch Kompostierung und biologischen Abbau. [Norm]. Beuth Verlag, Berlin

    Google Scholar 

  9. Haldenwanger HHM, Göttner GH (1970) Biologiche Zerstörung der makromolekularen Werkstoffe. Chemie, Physik und Technologie der Kunststoffe in Einzeldarstellungen, Band 15. Berlin

    Google Scholar 

  10. Kawai F (1995) Proposed mechanism for microbial degradation of polyacrylate. J Macromol Sci, Pure Appl Chem 32(4):835–838

    Article  Google Scholar 

  11. Owen S, Kawamura R, Sakota N (1995) Biodegradation of poly-D,L-lactic acid polyurethanes. J Macromol Sci, Pure Appl Chem 32(4):843–850

    Article  Google Scholar 

  12. Hocking P et al (2003) Enzymatic degradability of poly(beta-hydroxybutyrate) as a function of tacticity. Macromol Raprid Commun 15(6):447–452

    Article  Google Scholar 

  13. Iman SH, Greene RV, Zaidi BR (1999). Biopolymers, utilizing nature’s advanced materials. In: Developed from a symposium at the Fifth Chemical Congress of North America, Cancun, Quintano Roo, Mexico, 1997 (ASC symposium series 723), Washington DC

    Google Scholar 

  14. Endres H-J (1994) Herstellung und Eigenschaften biologisch auf- und abbaubarer Werkstoffe auf Basis von Polysacchariden. Dissertation Ruhr-University Bochum, Department of Mechanical Engineering, Bochum

    Google Scholar 

  15. Godwin H (1962) Half-life of radiocarbon. Nature 195:984

    Article  CAS  Google Scholar 

  16. Finch CA (1992) Polyvinylalkohol Developments. Wiley, Chichester

    Google Scholar 

  17. Bastioli C (2005) Handbook of biodegradable polymers. Rapra Technology, Shrewsbury

    Google Scholar 

  18. Fritz H-G, Seidenstücker T, Endres H-J, et al (1994) Production of thermo-bioplastics and fibres based mainly on biological materials. European Commission, Directorate XII, Brussels

    Google Scholar 

  19. Jacobsen S (2000) Darstellung von Polylactiden mittels reaktiver Extrusion (Dis.). [Hrsg.] Institut für Kunststofftechnologie Universität Stuttgart, Stuttgart

    Google Scholar 

  20. Kaplan DL (1998) Biopolymers from renewable resources. Springer, Berlin

    Book  Google Scholar 

  21. Endres H-J, Siebert-Raths A, Behnsen H, Schulz C (2016) Biopolymers – facts and statistics. Hanover. ISSN 2363–8559

    Google Scholar 

  22. Endres H-J, Siebert-Raths A (2009) Technische Biopolymere. Carl Hanser Verlag, Munich

    Book  Google Scholar 

  23. Wolf O et al (2005) Techno-economic feasibility of largescale production of bio-based polymers in Europe. Technical Report EUR 22103 EN, Brussels

    Google Scholar 

  24. Schroeter J, Endres H-J (1992) Eigenschaften thermoplastisch verarbeiteter reiner Kartoffelstärke. Kunststoffe. Yr. 82, Is.11, pp 1.086–1.089

    Google Scholar 

  25. Westermann K (Hrsg.) (1994) Verpackung aus nachwachsenden Rohstoffen. Vogel Buchverlag, Würzburg

    Google Scholar 

  26. Endres H-J, Kammerstetter H, Hobelsberger M (1994) Plastification behaviour of different native starches. Stärke/Starch 46, S. 474–480

    Article  Google Scholar 

  27. Doi Y, Fukuda K (1994) Biodegradable plastics and polymers. In: Proceedings of the third international scientific workshop on biodegradable plastics and polymers, Osaka, Japan, November 9–11, Studies in polymer science, p 2

    Google Scholar 

  28. Seitz H (1979) Grundlegende Untersuchungen über den Einfluß einer chemischen Modifizierung auf bestimmte physikalische Eigenschaften von Zellglas als Verpackungsmittel unter besonderer Berücksichtigung polyfunktioneller Verbindungen. Dissertation University of Karlsruhe, Institute for Food Chemistry, Karlsruhe

    Google Scholar 

  29. Weigel P, Bohn A (1997) Struktur – Eigenschaftsbeziehungen von Celluloseblasfolien. Lenzinger Berichte. Is. 76, pp 119–125

    Google Scholar 

  30. Weigel P, Fink H-P (1997) Verfahren zur Herstellung von Celluloseblasfolien. Lenzinger Berichte. Is. 76, pp 115–118

    Google Scholar 

  31. Osswald TA, Baur E, Brinkmann S et al (2006) International plastics handbook. Carl Hanser Verlag, Munich

    Book  Google Scholar 

  32. Oberbach K (1996) Kunststoff Taschenbuch, 26th edn. Munich

    Google Scholar 

  33. N.N. 2000. Moderne Polymere – Kohlenhydrate und Pflanzenöle als innovative Rohstoffe. Gülzower Fachgespräche, Vol. 16. Kassel, p 168. Available online at: http://www.fnr-server.de/ftp/pdf/literatur/pdf_68gfg16_polymere.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Josef Endres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Endres, HJ. (2017). Bioplastics. In: Wagemann, K., Tippkötter, N. (eds) Biorefineries. Advances in Biochemical Engineering/Biotechnology, vol 166. Springer, Cham. https://doi.org/10.1007/10_2016_75

Download citation

Publish with us

Policies and ethics