Biorefineries pp 373-410 | Cite as

Biotechnological Production of Organic Acids from Renewable Resources

  • Daniel Pleissner
  • Donna Dietz
  • Jozef Bernhard Johann Henri van Duuren
  • Christoph Wittmann
  • Xiaofeng Yang
  • Carol Sze Ki Lin
  • Joachim VenusEmail author
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 166)


Biotechnological processes are promising alternatives to petrochemical routes for overcoming the challenges of resource depletion in the future in a sustainable way. The strategies of white biotechnology allow the utilization of inexpensive and renewable resources for the production of a broad range of bio-based compounds. Renewable resources, such as agricultural residues or residues from food production, are produced in large amounts have been shown to be promising carbon and/or nitrogen sources. This chapter focuses on the biotechnological production of lactic acid, acrylic acid, succinic acid, muconic acid, and lactobionic acid from renewable residues, these products being used as monomers for bio-based material and/or as food supplements. These five acids have high economic values and the potential to overcome the “valley of death” between laboratory/pilot scale and commercial/industrial scale. This chapter also provides an overview of the production strategies, including microbial strain development, used to convert renewable resources into value-added products.


Acrylic acid Cascade use of renewable resources Lactic acid Lactobionic acid Muconic acid Succinic acid 



The work presented by X. Yang and C.S.K. Lin on metabolic engineering of Y. lipolytica for the simultaneous production of succinic acid and polyhydroxyalkanoates is part of the research project supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU189713). Special thanks to Prof. Qingsheng Qi and Dr. Cuijuan Gao in the State Key Laboratory of Microbial Technology at Shandong University, China, as project collaborators for providing the Y. lipolytica mutant in succinic acid fermentation. C.S.K. Lin and J. Venus gratefully acknowledge the contribution of the COST Action TD1203-EUBis. J.B.J.H. van Duuren and C. Wittmann acknowledge the German Federal Ministry for Education and Research for financial support of the project “Bio-Nylon: Sustainable production of bio-based adipic acid as platform chemical” (FKZ 03v0757).


  1. 1.
    Koutinas AA, Vlysidis A, Pleissner D, Kopsahelis N, Lopez Garcia I, Kookos IK, Papanikolaou S, Kwan TH, Lin CSK (2014) Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem Soc Rev 43(8):2587–2627. doi: 10.1039/C3CS60293A CrossRefPubMedGoogle Scholar
  2. 2.
    Keegan D, Kretschmer B, Elbersen B, Panoutsou C (2013) Cascading use: a systematic approach to biomass beyond the energy sector. Biofuels Bioprod Biorefin 7(2):193–206. doi: 10.1002/bbb.1351 CrossRefGoogle Scholar
  3. 3.
    Bentsen NS, Felby C, Thorsen BJ (2014) Agricultural residue production and potentials for energy and materials services. Prog Energy Combust Sci 40:59–73. doi: 10.1016/j.pecs.2013.09.003 CrossRefGoogle Scholar
  4. 4.
    Agbor V, Zurzolo F, Blunt W, Dartiailh C, Cicek N, Sparling R, Levin DB (2014) Single-step fermentation of agricultural hemp residues for hydrogen and ethanol production. Biomass Bioenergy 64:62–69. doi: 10.1016/j.biombioe.2014.03.027 CrossRefGoogle Scholar
  5. 5.
    Pleissner D, Venus J (2014) Agricultural residues as feedstocks for lactic acid fermentation. In: Green Technologies for the Environment, vol 1186. ACS Symposium Series, vol 1186. American Chemical Society, pp. 247–263. doi: 10.1021/bk-2014-1186.ch013 Google Scholar
  6. 6.
    Aman P, Nordkvist E (1983) Chemical composition and in vitro degradability of botanical fractions of cereal straw. Swed J Agric Res 13:61–67Google Scholar
  7. 7.
    Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686. doi: 10.1016/j.biortech.2004.06.025 CrossRefPubMedGoogle Scholar
  8. 8.
    Prazeres AR, Carvalho F, Rivas J (2012) Cheese whey management: a review. J Environ Manag 110:48–68. doi: 10.1016/j.jenvman.2012.05.018 CrossRefGoogle Scholar
  9. 9.
    Siso MIG (1996) The biotechnological utilization of cheese whey: a review. Bioresour Technol 57(1):1–11. doi: 10.1016/0960-8524(96)00036-3 CrossRefGoogle Scholar
  10. 10.
    Kosikowski FV (1979) Whey utilization and whey products. J Dairy Sci 62(7):1149–1160. doi: 10.3168/jds.S0022-0302(79)83389-5 CrossRefGoogle Scholar
  11. 11.
    Castillo FJ (1990) Lactose metabolism by yeasts. In: Verachtert H, De Mot R (eds) Yeast biotechnology and biocatalysis. Marcel Dekker, New York, pp. 297–320Google Scholar
  12. 12.
    Werpy T, Petersen GR (2004) Top value added chemicals from biomass. Volume I: Results of screening for potential candidates from sugars and synthesis Gas. Oak Ridge: US Department of EnergyGoogle Scholar
  13. 13.
    Fukushima K, Sogo K, Miura S, Kimura Y (2004) Production of D-lactic acid by bacterial fermentation of rice starch. Macromol Biosci 4(11):1021–1027. doi: 10.1002/mabi.200400080 CrossRefPubMedGoogle Scholar
  14. 14.
    Li Z, Han L, Ji Y, Wang X, Tan T (2010) Fermentative production of L-lactic acid from hydrolysate of wheat bran by Lactobacillus rhamnosus. Biochem Eng J 49(1):138–142. doi: 10.1016/j.bej.2009.10.014 CrossRefGoogle Scholar
  15. 15.
    Energy ECD-G (2015) From the sugar platform to biofuels and biochemicalGoogle Scholar
  16. 16.
    Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem 12(4):539–554. doi: 10.1039/b922014c CrossRefGoogle Scholar
  17. 17.
    Wee Y-J, Kim H-O, Ryu H-W (2006) Pilot-scale lactic acid production via batch culturing of Lactobacillus sp. RKY2 using corn steep liquor as a nitrogen source. Food Technol Biotechnol 44(2):6Google Scholar
  18. 18.
    Castillo Martinez FA, Balciunas EM, Salgado JM, Domínguez González JM, Converti A, Oliveira RPDS (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Technol 30(1):70–83. doi: 10.1016/j.tifs.2012.11.007 CrossRefGoogle Scholar
  19. 19.
    Jamshidi K, Hyon SH, Ikada Y (1988) Thermal characterization of polylactides. Polymer 29(12):2229–2234. doi: 10.1016/0032-3861(88)90116-4 CrossRefGoogle Scholar
  20. 20.
    Madhavan Nampoothiri K, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501. doi: 10.1016/j.biortech.2010.05.092 CrossRefPubMedGoogle Scholar
  21. 21.
    Rogers P, Chen J-S, Zidwick M (2013) Organic acid and solvent production: Acetic, lactic, gluconic, succinic, and polyhydroxyalkanoic acids. In: Rosenberg E, DeLong E, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, pp. 3–75. doi: 10.1007/978-3-642-31331-8_23 CrossRefGoogle Scholar
  22. 22.
    Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31(6):877–902. doi: 10.1016/j.biotechadv.2013.04.002 CrossRefPubMedGoogle Scholar
  23. 23.
    Sanna T, Heikki O (2013) The current status and future expectations in industrial production of lactic acid by lactic acid bacteria. In: Kongo M (ed) Lactic Acid Bacteria–R & D for food, health and livestock purposes. InTech, Ridgway, p. 670Google Scholar
  24. 24.
    SpecialChem (2014) Global lactic acid market to grow at a CAGR of 15.5% from 2014–20: Grand View ResearchGoogle Scholar
  25. 25.
    Idler C, Venus J, Kamm B (2015) Microorganisms for the production of lactic acid and organic lactates. In: Kamm B (ed) Microorganisms in biorefineries, Series: Microbiology Monographs, vol 26, pp. 225–273. doi: 10.1007/978-3-662-45209-7_9 CrossRefGoogle Scholar
  26. 26.
    Hofvendahl K, Hahn-Hägerdal B (1997) L-lactic acid production from whole wheat flour hydrolysate using strains of Lactobacilli and Lactococci. Enzym Microb Technol 20(4):301–307. doi: 10.1016/S0141-0229(97)83489-8 CrossRefGoogle Scholar
  27. 27.
    Payot T, Chemaly Z, Fick M (1999) Lactic acid production by Bacillus coagulans—kinetic studies and optimization of culture medium for batch and continuous fermentations. Enzym Microb Technol 24(3–4):191–199. doi: 10.1016/S0141-0229(98)00098-2 CrossRefGoogle Scholar
  28. 28.
    Walczak P, Oltuszak-Walczak E, Otlewska A, Dybka K, Pietraszek P, Czyzowska A, Rygala A (2012) Xylose fermentation to optically pure l-lactate by isolates of Enterococcus faecium. New Biotechnol 29:1CrossRefGoogle Scholar
  29. 29.
    Ramchandran L, Sanciolo P, Vasiljevic T, Broome M, Powell I, Duke M (2012) Improving cell yield and lactic acid production of Lactococcus lactis ssp. cremoris by a novel submerged membrane fermentation process. J Membr Sci 403–404:179–187. doi: 10.1016/j.memsci.2012.02.042 CrossRefGoogle Scholar
  30. 30.
    Zhao K, Qiao Q, Chu D, Gu H, Dao TH, Zhang J, Bao J (2013) Simultaneous saccharification and high titer lactic acid fermentation of corn stover using a newly isolated lactic acid bacterium Pediococcus acidilactici DQ2. Bioresour Technol 135:481–489. doi: 10.1016/j.biortech.2012.09.063 CrossRefPubMedGoogle Scholar
  31. 31.
    Tang Y, Bu L, He J, Jiang J (2013) L(+)-Lactic acid production from furfural residues and corn kernels with treated yeast as nutrients. Eur Food Res Technol 236(2):365–371. doi: 10.1007/s00217-012-1865-x CrossRefGoogle Scholar
  32. 32.
    Bellasio M, Mattanovich D, Sauer M, Marx H (2015) Organic acids from lignocellulose: Candida lignohabitans as a new microbial cell factory. J Ind Microbiol Biotechnol 42(5):681–691. doi: 10.1007/s10295-015-1590-0 CrossRefPubMedGoogle Scholar
  33. 33.
    Marták J, Schlosser Š, Sabolová E, Krištofı L, Rosenberg M (2003) Fermentation of lactic acid with Rhizopus arrhizus in a stirred tank reactor with a periodical bleed and feed operation. Process Biochem 38(11):1573–1583. doi: 10.1016/S0032-9592(03)00059-1 CrossRefGoogle Scholar
  34. 34.
    Saito K, Hasa Y, Abe H (2012) Production of lactic acid from xylose and wheat straw by Rhizopus oryzae. J Biosci Bioeng 114(2):166–169. doi: 10.1016/j.jbiosc.2012.03.007 CrossRefPubMedGoogle Scholar
  35. 35.
    Nwokoro O (2014) Production of L-lactic acid from cassava peel wastes using single and mixed cultures of Rhizopus oligosporus and Lactobacillus plantarum. Chem Ind Chem Eng Q 20:457–461CrossRefGoogle Scholar
  36. 36.
    Cui F, Li Y, Wan C (2011) Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis. Bioresour Technol 102(2):1831–1836. doi: 10.1016/j.biortech.2010.09.063 CrossRefPubMedGoogle Scholar
  37. 37.
    Trontel A, Batusic A, Gusic I, Slavica A, Santek B, Novak S (2011) Production of D- and L-lactic acid by mono- and mixed cultures of Lactobacillus sp. Food Technol Biotechnol 49:75–81Google Scholar
  38. 38.
    Secchi N, Giunta D, Pretti L, García M, Roggio T, Mannazzu I, Catzeddu P (2012) Bioconversion of ovine scotta into lactic acid with pure and mixed cultures of lactic acid bacteria. J Ind Microbiol Biotechnol 39(1):175–181. doi: 10.1007/s10295-011-1013-9 CrossRefPubMedGoogle Scholar
  39. 39.
    Liang S, McDonald AG, Coats ER (2015) Lactic acid production from potato peel waste by anaerobic sequencing batch fermentation using undefined mixed culture. Waste Manag 45:51. doi: 10.1016/j.wasman.2015.02.004 CrossRefPubMedGoogle Scholar
  40. 40.
    Nagamori E, Shimizu K, Fujita H, Tokuhiro K, Ishida N, Takahashi H (2013) Metabolic flux analysis of genetically engineered Saccharomyces cerevisiae that produces lactate under micro-aerobic conditions. Bioprocess Biosyst Eng 36(9):1261–1265. doi: 10.1007/s00449-012-0870-6 CrossRefPubMedGoogle Scholar
  41. 41.
    Wu X, Altman R, Eiteman MA, Altman E (2013) Effect of overexpressing nhaA and nhaR on sodium tolerance and lactate production in Escherichia coli. J Biol Eng 7:3–3. doi: 10.1186/1754-1611-7-3 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Zhao J, Xu L, Wang Y, Zhao X, Wang J, Garza E, Manow R, Zhou S (2013) Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B. Microb Cell Factories. doi: 10.1186/1475-2859-12-57 CrossRefGoogle Scholar
  43. 43.
    Okano K, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biotechnol 85(3):413–423. doi: 10.1007/s00253-009-2280-5 CrossRefPubMedGoogle Scholar
  44. 44.
    Hofvendahl K, Hahn-Hägerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzym Microb Technol 26(2–4):87–107. doi: 10.1016/S0141-0229(99)00155-6 CrossRefGoogle Scholar
  45. 45.
    Eiteman MA, Ramalingam S (2015) Microbial production of lactic acid. Biotechnol Lett 37(5):955–972. doi: 10.1007/s10529-015-1769-5 CrossRefPubMedGoogle Scholar
  46. 46.
    Shamala TR, Sreekantiah KR (1987) Degradation of starchy substrates by a crude enzyme preparation and utilization of the hydrolysates for lactic fermentation. Enzym Microb Technol 9(12):726–729. doi: 10.1016/0141-0229(87)90032-9 CrossRefGoogle Scholar
  47. 47.
    Son M-S, Kwon Y-J (2013) Direct fermentation of starch to L(+)-lactic acid by fed-batch culture of Lactobacillus manihotivorans. Food Sci Biotechnol 22(1):289–293. doi: 10.1007/s10068-013-0040-x CrossRefGoogle Scholar
  48. 48.
    Juodeikiene G, Vidmantiene D, Basinskiene L, Cernauskas D, Bartkiene E, Cizeikiene D (2015) Green metrics for sustainability of biobased lactic acid from starchy biomass vs chemical synthesis. Catal Today 239:11–16. doi: 10.1016/j.cattod.2014.05.039 CrossRefGoogle Scholar
  49. 49.
    Chookietwattana K (2014) Lactic acid production from simultaneous saccharification and fermentation of cassava starch by Lactobacillus plantarum MSUL 903. APCBEE Proc 8:156–160. doi: 10.1016/j.apcbee.2014.03.019 CrossRefGoogle Scholar
  50. 50.
    Yuwono SD, Mulyono WS, Hadi S, Kokugan T (2014) Improvement of lactic acid production from cassava by Streptococcus bovis using two-stages membrane bioreactor. Asian J Chem 26:6249–6252CrossRefGoogle Scholar
  51. 51.
    Hetenyi K, Nemeth A, Sevella B (2010) First steps in the development of a wheat flour based lactic acid fermentation technology. Culture medium optimization. Chem Biochem Eng Q 24(2):195–201Google Scholar
  52. 52.
    Watanabe M, Makino M, Kaku N, Koyama M, Nakamura K, Sasano K (2013) Fermentative L-(+)-lactic acid production from non-sterilized rice washing drainage containing rice bran by a newly isolated lactic acid bacteria without any additions of nutrients. J Biosci Bioeng 115(4):449–452. doi: 10.1016/j.jbiosc.2012.11.001 CrossRefPubMedGoogle Scholar
  53. 53.
    Li L, Cai D, Wang C, Han J, Ren W, Zheng J, Wang Z, Tan T (2015) Continuous L-lactic acid production from defatted rice bran hydrolysate using corn stover bagasse immobilized carrier. RSC Adv 5(24):18511–18517. doi: 10.1039/C4RA04641B CrossRefGoogle Scholar
  54. 54.
    Pagana I, Morawicki R, Hager TJ (2014) Lactic acid production using waste generated from sweet potato processing. Int J Food Sci Technol 49(2):641–649. doi: 10.1111/ijfs.12347 CrossRefGoogle Scholar
  55. 55.
    Smerilli M, Neureiter M, Wurz S, Haas C, Frühauf S, Fuchs W (2015) Direct fermentation of potato starch and potato residues to lactic acid by Geobacillus stearothermophilus under non-sterile conditions. J Chem Technol Biotechnol 90(4):648–657. doi: 10.1002/jctb.4627 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Pessione A, Zapponi M, Mandili G, Fattori P, Mangiapane E, Mazzoli R, Pessione E (2014) Enantioselective lactic acid production by an Enterococcus faecium strain showing potential in agro-industrial waste bioconversion: physiological and proteomic studies. J Biotechnol 173:31–40. doi: 10.1016/j.jbiotec.2014.01.014 CrossRefPubMedGoogle Scholar
  57. 57.
    Dreschke G, Probst M, Walter A, Pümpel T, Walde J, Insam H (2015) Lactic acid and methane: improved exploitation of biowaste potential. Bioresour Technol 176:47–55. doi: 10.1016/j.biortech.2014.10.136 CrossRefPubMedGoogle Scholar
  58. 58.
    Li X, Chen Y, Zhao S, Chen H, Zheng X, Luo J, Liu Y (2015) Efficient production of optically pure L-lactic acid from food waste at ambient temperature by regulating key enzyme activity. Water Res 70:148–157. doi: 10.1016/j.watres.2014.11.049 CrossRefPubMedGoogle Scholar
  59. 59.
    Probst M, Walde J, Pümpel T, Wagner AO, Insam H (2015) A closed loop for municipal organic solid waste by lactic acid fermentation. Bioresour Technol 175:142–151. doi: 10.1016/j.biortech.2014.10.034 CrossRefPubMedGoogle Scholar
  60. 60.
    Thomsen M (2005) Complex media from processing of agricultural crops for microbial fermentation. Appl Microbiol Biotechnol 68(5):598–606. doi: 10.1007/s00253-005-0056-0 CrossRefPubMedGoogle Scholar
  61. 61.
    John RP, Anisha GS, Nampoothiri KM, Pandey A (2009) Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production. Biotechnol Adv 27(2):145–152. doi: 10.1016/j.biotechadv.2008.10.004 CrossRefPubMedGoogle Scholar
  62. 62.
    Li Z, Lu J, Yang Z, Han L, Tan T (2012) Utilization of white rice bran for production of L-lactic acid. Biomass Bioenergy 39:53–58. doi: 10.1016/j.biombioe.2011.12.039 CrossRefGoogle Scholar
  63. 63.
    Bakker RRC (2013) Availability of lignocellulosic feedstocks for lactic acid production—feedstock availability, lactic acid production potential and selection criteria. Report 1391. Wageningen UR Food & Biobased ResearchGoogle Scholar
  64. 64.
    Boguta AM, Bringel F, Martinussen J, Jensen PR (2014) Screening of lactic acid bacteria for their potential as microbial cell factories for bioconversion of lignocellulosic feedstocks. Microb Cell Factories 13:16. doi: 10.1186/s12934-014-0097-0 CrossRefGoogle Scholar
  65. 65.
    Wan Y, Zhang Y, Chen X, Qi B, Su Y (2014) Lactic acid production from lignocellulosic hydrolysates under non-sterilized conditions using Bacillus coagulans IPE22. New Biotechnol 31:S95–S96CrossRefGoogle Scholar
  66. 66.
    Moldes AB, Torrado A, Converti A, Domínguez JM (2006) Complete bioconversion of hemicellulosic sugars from agricultural residues into lactic acid by Lactobacillus pentosus. Appl Biochem Biotechnol 135(3):219–227. doi: 10.1385/ABAB:135:3:219 CrossRefPubMedGoogle Scholar
  67. 67.
    Abdel-Rahman MA, Tashiro Y, Sonomoto K (2011) Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156(4):286–301. doi: 10.1016/j.jbiotec.2011.06.017 CrossRefPubMedGoogle Scholar
  68. 68.
    Harmsen PFH, Lips SJJ, Bakker RRC (2013) Pretreatment of lignocellulose for biotechnological production of lactic acid—research review. Report 1384. Wageningen UR, Food and Biobased ResearchGoogle Scholar
  69. 69.
    Andersen M, Kiel P (2000) Integrated utilisation of green biomass in the green biorefinery. Ind Crop Prod 11(2–3):129–137. doi: 10.1016/S0926-6690(99)00055-2 CrossRefGoogle Scholar
  70. 70.
    Vodnar DC, Venus J, Schneider R, Socaciu C (2010) Lactic acid production by Lactobacillus paracasei 168 in discontinuous fermentation using lucerne green juice as nutrient substitute. Chem Eng Technol 33(3):468–474. doi: 10.1002/ceat.200900463 CrossRefGoogle Scholar
  71. 71.
    Papendiek F, Venus J (2014) Cultivation and fractionation of leguminous biomass for lactic acid production. Chem Biochem Eng Q 28(3):375–382. doi: 10.15255/CABEQ.2013.1854 CrossRefGoogle Scholar
  72. 72.
    Winter B, Höhling A, Venus J (2015) Tierische proteinhydrolysate als N-quelle für die milchsäurefermentation. BIOspektrum 21:228–229CrossRefGoogle Scholar
  73. 73.
    Hama S, Mizuno S, Kihara M, Tanaka T, Ogino C, Noda H, Kondo A (2015) Production of D-lactic acid from hardwood pulp by mechanical milling followed by simultaneous saccharification and fermentation using metabolically engineered Lactobacillus plantarum. Bioresour Technol 187:167–172. doi: 10.1016/j.biortech.2015.03.106 CrossRefPubMedGoogle Scholar
  74. 74.
    Shi S, Kang L, Lee YY (2015) Production of lactic acid from the mixture of softwood pre-hydrolysate and paper mill sludge by simultaneous saccharification and sermentation. Appl Biochem Biotechnol 175(5):2741–2754. doi: 10.1007/s12010-014-1451-8 CrossRefPubMedGoogle Scholar
  75. 75.
    Ghaffar T, Irshad M, Anwar Z, Aqil T, Zulifqar Z, Tariq A, Kamran M, Ehsan N, Mehmood S (2014) Recent trends in lactic acid biotechnology: a brief review on production to purification. J Radiat Res Appl Sci 7(2):222–229. doi: 10.1016/j.jrras.2014.03.002 CrossRefGoogle Scholar
  76. 76.
    Bustos G, Moldes AB, Cruz JM, Domínguez JM (2004) Formulation of low-cost fermentative media for lactic acid production with Lactobacillus rhamnosus using vinification lees as nutrients. J Agric Food Chem 52(4):801–808. doi: 10.1021/jf030429k CrossRefPubMedGoogle Scholar
  77. 77.
    Ouyang J, Ma R, Zheng Z, Cai C, Zhang M, Jiang T (2013) Open fermentative production of L-lactic acid by Bacillus sp. strain NL01 using lignocellulosic hydrolyzates as low-cost raw material. Bioresour Technol 135:475–480. doi: 10.1016/j.biortech.2012.09.096 CrossRefPubMedGoogle Scholar
  78. 78.
    Mazzoli R, Bosco F, Mizrahi I, Bayer EA, Pessione E (2014) Towards lactic acid bacteria-based biorefineries. Biotechnol Adv 32(7):1216–1236. doi: 10.1016/j.biotechadv.2014.07.005 CrossRefPubMedGoogle Scholar
  79. 79.
    Mimitsuka T, Sawai K, Kobayashi K, Tsukada T, Takeuchi N, Yamada K, Ogino H, Yonehara T (2015) Production of D-lactic acid in a continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: enhancement in D-lactic acid carbon yield. J Biosci Bioeng 119(1):65–71. doi: 10.1016/j.jbiosc.2014.06.002 CrossRefPubMedGoogle Scholar
  80. 80.
    Gonzalez K, Tebbani S, Dumur D, Gonzalez K, Lopes F, Pareau D, Givry S, Entzmann F (2014) Control strategy for continuous lactic acid production from wheat flour. In: Proceedings of 2nd International Conference on Control, Decision and Information Technologies (CoDIT’14). University of Lorraine, Nancy, pp 465–470Google Scholar
  81. 81.
    Venus J (2009) Continuous mode lactic acid fermentation based on renewables. Res J Biotechnol 4(2):15–22Google Scholar
  82. 82.
    Dey P, Pal P (2013) Modelling and simulation of continuous L(+) lactic acid production from sugarcane juice in membrane integrated hybrid-reactor system. Biochem Eng J 79:15–24. doi: 10.1016/j.bej.2013.06.014 CrossRefGoogle Scholar
  83. 83.
    Lee R-K, Ryu H-W, Oh H, Kim M, Wee Y-J (2014) Cell-recycle continuous fermentation of Enterococcus faecalis RKY1 for economical production of lactic acid by reduction of yeast extract supplementation. J Microbiol Biotechnol 24:661–666CrossRefPubMedGoogle Scholar
  84. 84.
    Venus J, Richter K (2007) Development of a pilot plant facility for the conversion of renewables in biotechnological processes. Eng Life Sci 7(4):395–402. doi: 10.1002/elsc.200720199 CrossRefGoogle Scholar
  85. 85.
    Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies—a review. J Chem Technol Biotechnol 81(7):1119–1129. doi: 10.1002/jctb.1486 CrossRefGoogle Scholar
  86. 86.
    Straathof AJ, Sie S, Franco T, van der Wielen LM (2005) Feasibility of acrylic acid production by fermentation. Appl Microbiol Biotechnol 67(6):727–734. doi: 10.1007/s00253-005-1942-1 CrossRefPubMedGoogle Scholar
  87. 87.
    Agency EP (1994) Chemical summary for acrylic acid. EPA 749-F-94-006aGoogle Scholar
  88. 88.
    Lunelli BH, Duarte ER, Vasco de Toledo EC, Wolf Maciel MR, Maciel Filho R (2007) A new process for acrylic acid synthesis by fermentative process. Appl Biochem Biotechnol 137-140(1–12):487–499. doi: 10.1007/s12010-007-9074-y CrossRefPubMedGoogle Scholar
  89. 89. (2015) Acrylic acid market by derivative types (ester/acrylates–methyl, ethyl, butyl, 2-EH; polymers–elastomers, SAP, water treatment polymers; other derivatives), applications & and region–global trends & forecast to 2019Google Scholar
  90. 90.
    Danner H, Braun R (1999) Biotechnology for the production of commodity chemicals from biomass. Chem Soc Rev 28(6):395–405. doi: 10.1039/A806968I CrossRefGoogle Scholar
  91. 91.
    Aida TM, Ikarashi A, Saito Y, Watanabe M, Smith Jr RL, Arai K (2009) Dehydration of lactic acid to acrylic acid in high temperature water at high pressures. J Supercrit Fluids 50(3):257–264. doi: 10.1016/j.supflu.2009.06.006 CrossRefGoogle Scholar
  92. 92.
    Bermudez Jaimes JH, Da Silva BT, Jaimes Figueroa JE, Lunelli BH, Maciel Filho R, Wolf Maciel MR, Morita AT, Coutinho PLA (2014) Hybrid route to produce acrylic acid from sugarcane molasses. Chem Eng Trans 37:427–432Google Scholar
  93. 93.
    Matsuura Y, Onda A, Ogo S, Yanagisawa K (2014) Acrylic acid synthesis from lactic acid over hydroxyapatite catalysts with various cations and anions. Catal Today 226:192–197CrossRefGoogle Scholar
  94. 94.
    Blanco E, Delichere P, Millet JMM, Loridant S (2014) Gas phase dehydration of lactic to acrylic acid over alkaline-earth phosphates catalysts. Catal Today 226:185–191CrossRefGoogle Scholar
  95. 95.
    Van der Maarel MJEC, van Bergeijk S, van Werkhoven AF, Lavermann AM, Meijer WG, Stam WT, Hansen TA (1996) Cleavage of dimethylsulfoniopropionate and reduction of acrylate by Desulfovibrio acrylicus sp. nov. Arch Microbiol 166:109–115CrossRefGoogle Scholar
  96. 96.
    Ansede JH, Pellechia PJ, Yoch DC (1999) Metabolism of acrylate to β-hydroxypropionate and its role in dimethylsulfoniopropionate lyase induction by a salt marsh sediment bacterium, Alcaligenes faecalis M3A. Appl Environ Microbiol 65(11):5075–5081PubMedPubMedCentralGoogle Scholar
  97. 97.
    Swick RW (1962) Propionic acid metabolism: mechanism of the methylmalonyl isomerase reaction and the reduction of acrylyl coenzyme A to propionyl coenzyme A in propionibacteria. Proc Natl Acad Sci U S A 48(2):288–293CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Akedo M (1983) Biological formation of acrylic acid by Clostridium propionicum. PhD thesis, Massachusetts Institute of TechnologyGoogle Scholar
  99. 99.
    Nagasawa T, Nakamura T, Yamada H (1990) Production of acrylic acid and methacrylic acid using Rhodococcus rhodochrous J1 nitrilase. Appl Microbiol Biotechnol 34(3):322–324. doi: 10.1007/BF00170051 CrossRefGoogle Scholar
  100. 100.
    Lin CSK, Luque R, Clark JH, Webb C, Du CY (2012) Wheat-based biorefining strategy for fermentative production and chemical transformations of succinic acid. Biofuels Bioprod Biorefin 6(1):88–104. doi: 10.1002/bbb.328 CrossRefGoogle Scholar
  101. 101.
    Succinic acid: a global strategic business report (2015) Global Industry Analysts, Inc.
  102. 102.
    Song H, Lee SY (2006) Production of succinic acid by bacterial fermentation. Enzym Microb Technol 39(3):352–361. doi: 10.1016/j.enzmictec.2005.11.043 CrossRefGoogle Scholar
  103. 103.
    Determination of market potential for selected platform chemicals (2012) Weastra.
  104. 104.
    Chen Y, Nielsen J (2013) Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks. Curr Opin Biotechnol 24(6):965–972. doi: 10.1016/j.copbio.2013.03.008 CrossRefPubMedGoogle Scholar
  105. 105.
    Sun J, Alper HS (2015) Metabolic engineering of strains: from industrial-scale to lab-scale chemical production. J Ind Microbiol Biotechnol 42(3):423–436. doi: 10.1007/s10295-014-1539-8 CrossRefPubMedGoogle Scholar
  106. 106.
    Borodina I, Nielsen J (2014) Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol J 9(5):609–620. doi: 10.1002/biot.201300445 CrossRefPubMedGoogle Scholar
  107. 107.
    Nicaud JM (2012) Yarrowia lipolytica. Yeast 29(10):409–418. doi: 10.1002/yea.2921 CrossRefPubMedGoogle Scholar
  108. 108.
    Li Q, Wang D, Wu Y, Li WL, Zhang YJ, Xing JM, Su ZG (2010) One step recovery of succinic acid from fermentation broths by crystallization. Sep Purif Technol 72(3):294–300. doi: 10.1016/j.seppur.2010.02.021 CrossRefGoogle Scholar
  109. 109.
    Raab AM, Gebhardt G, Bolotina N, Weuster-Botz D, Lang C (2010) Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metab Eng 12(6):518–525. doi: 10.1016/j.ymben.2010.08.005 CrossRefPubMedGoogle Scholar
  110. 110.
    Yan D, Wang C, Zhou J, Liu Y, Yang M, Xing J (2014) Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Bioresour Technol 156:232–239. doi: 10.1016/j.biortech.2014.01.053 CrossRefPubMedGoogle Scholar
  111. 111.
    Ito Y, Hirasawa T, Shimizu H (2014) Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling. Biosci Biotech Bioch 78(1):151–159. doi: 10.1080/09168451.2014.877816 CrossRefGoogle Scholar
  112. 112.
    Otero JM, Cimini D, Patil KR, Poulsen SG, Olsson L, Nielsen J (2013) Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLoS One 8(1):e54144. doi: 10.1371/journal.pone.0054144 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Agren R, Otero JM, Nielsen J (2013) Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production. J Ind Microbiol Biotechnol 40(7):735–747. doi: 10.1007/s10295-013-1269-3 CrossRefPubMedGoogle Scholar
  114. 114.
    Jansen MLA, Van De Graaf MJ, Verwaal R (2012) Dicarboxylic acid production processGoogle Scholar
  115. 115.
    Verwaal R, Wu L, Damveld RA, Sagt CMJ (2009) Process for the production of a dicarboxylic acid. WO/2009/101180Google Scholar
  116. 116.
    Yuzbashev TV, Yuzbasheva EY, Sobolevskaya TI, Laptev IA, Vybornaya TV, Larina AS, Matsui K, Fukui K, Sineoky SP (2010) Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica. Biotechnol Bioeng 107(4):673–682. doi: 10.1002/bit.22859 CrossRefPubMedGoogle Scholar
  117. 117.
    Jost B, Holz M, Aurich A, Barth G, Bley T, Muller RA (2015) The influence of oxygen limitation for the production of succinic acid with recombinant strains of Yarrowia lipolytica. Appl Microbiol Biotechnol 99(4):1675–1686. doi: 10.1007/s00253-014-6252-z CrossRefPubMedGoogle Scholar
  118. 118.
    Kamzolova SV, Yusupova AI, Vinokurova NG, Fedotcheva NI, Kondrashova MN, Finogenova TV, Morgunov IG (2009) Chemically assisted microbial production of succinic acid by the yeast Yarrowia lipolytica grown on ethanol. Appl Microbiol Biotechnol 83(6):1027–1034. doi: 10.1007/s00253-009-1948-1 CrossRefPubMedGoogle Scholar
  119. 119.
    Kamzolova SV, Vinokurova NG, Dedyukhina EG, Samoilenko VA, Lunina JN, Mironov AA, Allayarov RK, Morgunov IG (2014) The peculiarities of succinic acid production from rapeseed oil by Yarrowia lipolytica yeast. Appl Microbiol Biotechnol 98(9):4149–4157. doi: 10.1007/s00253-014-5585-y CrossRefPubMedGoogle Scholar
  120. 120.
    Kamzolova SV, Vinokurova NG, Shemshura ON, Bekmakhanova NE, Lunina JN, Samoilenko VA, Morgunov IG (2014) The production of succinic acid by yeast Yarrowia lipolytica through a two-step process. Appl Microbiol Biotechnol 98(18):7959–7969. doi: 10.1007/s00253-014-5887-0 CrossRefPubMedGoogle Scholar
  121. 121.
    Lin CSK, Koutinas AA, Stamatelatou K, Mubofu EB, Matharu AS, Kopsahelis N, Pfaltzgraff LA, Clark JH, Papanikolaou S, Kwan TH, Luque R (2014) Current and future trends in food waste valorization for the production of chemicals, materials and fuels: a global perspective. Biofuels Bioprod Biorefin 8(5):686–715. doi: 10.1002/bbb.1506 CrossRefGoogle Scholar
  122. 122.
    Gustavsson J, Cederberg C, Sonesson U, Otterdijk RV, Meybeck A (2011) Global food losses and food waste. Extent, causes and prevention. vol 38. Food and Agriculture Organization of the United Nations, Rome, ItalyGoogle Scholar
  123. 123.
    Zhang AYZ, Sun Z, Leung CCJ, Han W, Lau KY, Li MJ, Lin CSK (2013) Valorisation of bakery waste for succinic acid production. Green Chem 15(3):690–695. doi: 10.1039/c2gc36518a CrossRefGoogle Scholar
  124. 124.
    Sun Z, Li MJ, Qi QS, Gao CJ, Lin CSK (2014) Mixed food waste as renewable feedstock in succinic acid fermentation. Appl Biochem Biotechnol 174(5):1822–1833. doi: 10.1007/s12010-014-1169-7 CrossRefPubMedGoogle Scholar
  125. 125.
    Gao C, Yang X, Wang H, Rivero CP, Li C, Cui Z, Qi Q, Lin CSK (2016) Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica. Biotechnol Biofuels 9(1):179. doi: 10.1186/s13068-016-0597-8
  126. 126.
    Xiao H, Shao Z, Jiang Y, Dole S, Zhao H (2014) Exploiting Issatchenkia orientalis SD108 for succinic acid production. Microb Cell Factories 13:121. doi: 10.1186/s12934-014-0121-4 CrossRefGoogle Scholar
  127. 127.
    Lee KY, Park JM, Kim TY, Yun H, Lee SY (2010) The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies. Microb Cell Factories 9:94. doi: 10.1186/1475-2859-9-94 CrossRefGoogle Scholar
  128. 128.
    Transparency Market Research US (2015) Muconic acid market driven by spiraling demand for adipic acid.
  129. 129.
    Van Duuren JBJH, Wittmann C (2014) First and second generation production of bio-adipic acid. In: Bisaria VS, Kondo A (eds) Bioprocessing of renewable resources to commodity bioproducts. Wiley, Hoboken. doi: 10.1002/9781118845394.ch19 CrossRefGoogle Scholar
  130. 130.
    Xie N-Z, Liang H, Huang R-B, Xu P (2014) Biotechnological production of muconic acid: current status and future prospects. Biotechnol Adv 32(3):615–622. doi: 10.1016/j.biotechadv.2014.04.001 CrossRefPubMedGoogle Scholar
  131. 131.
    Niu W, Draths KM, Frost JW (2002) Benzene-free synthesis of adipic acid. Biotechnol Prog 18(2):201–211. doi: 10.1021/bp010179x CrossRefPubMedGoogle Scholar
  132. 132.
    Bui V, Lau MK, Macrae D (2011) Methods for producing isomers of muconic acid and muconate salts. WO2011085311A1Google Scholar
  133. 133.
    Draths KM, Frost JW (1994) Environmentally compatible synthesis of adipic acid from D-glucose. J Am Chem Soc 116(1):399–400. doi: 10.1021/ja00080a057 CrossRefGoogle Scholar
  134. 134.
    Curran KA, Leavitt JM, Karim AS, Alper HS (2013) Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab Eng 15:55–66. doi: 10.1016/j.ymben.2012.10.003 CrossRefPubMedGoogle Scholar
  135. 135.
    Yocum RR, Gong W, Dole S, Sillers R, Gandhi M, Pero JG (2013) Production of muconic acid from genetically engineered microorganismsGoogle Scholar
  136. 136.
    Wang Q, Wu Y, Chen W, Zhang Y, Peng Y, Yuan F, Ma Y (2014) Escherichia coli for producing adipic acid precursor namely cis,cis-muconic acid and application of Escherichia coli Google Scholar
  137. 137.
    Schmidt E, Knackmuss H-J (1984) Production of cis,cis-muconate from benzoate and 2-fluoro-cis,cis-muconate from 3-fluorobenzoate by 3-chlorobenzoate degrading bacteria. Appl Microbiol Biotechnol 20(5):351–355. doi: 10.1007/bf00270599 CrossRefGoogle Scholar
  138. 138.
    Chua JW, Hsieh J-H (1990) Oxidative bioconversion of toluene to 1,3-butadiene-1,4-dicarboxylic acid (cis,cis-muconic acid). World J Microbiol Biotechnol 6(2):127–143. doi: 10.1007/BF01200932 CrossRefPubMedGoogle Scholar
  139. 139.
    Mizuno S, Yoshikawa N, Seki M, Mikawa T, Imada Y (1988) Microbial production of cis,cis-muconic acid from benzoic acid. Appl Microbiol Biotechnol 28(1):20–25. doi: 10.1007/BF00250491 CrossRefGoogle Scholar
  140. 140.
    Harwood CS, Parales RE (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590. doi: 10.1146/annurev.micro.50.1.553 CrossRefPubMedGoogle Scholar
  141. 141.
    Bang S-G, Choi CY (1995) DO-stat fed-batch production of cis,cis-muconic acid from benzoic acid by Pseudomonas putida BM014. J Ferment Bioeng 79(4):381–383. doi: 10.1016/0922-338X(95)94001-8 CrossRefGoogle Scholar
  142. 142.
    Choi WJ, Lee EY, Cho MH, Choi CY (1997) Enhanced production of cis,cis-muconate in a cell-recycle bioreactor. J Ferment Bioeng 84(1):70–76. doi: 10.1016/S0922-338X(97)82789-4 CrossRefGoogle Scholar
  143. 143.
    van Duuren JBJH, Wijte D, Karge B, Martins dos Santos VAP, Yang Y, Mars AE, Eggink G (2012) pH-stat fed-batch process to enhance the production of cis,cis-muconate from benzoate by Pseudomonas putida KT2440-JD1. Biotechnol Prog 28(1):85–92. doi: 10.1002/btpr.709 CrossRefPubMedGoogle Scholar
  144. 144.
    Vardon DR, Rorrer NA, Salvachua D, Settle AE, Johnson CW, Menart MJ, Cleveland NS, Ciesielski PN, Steirer KX, Dorgan JR, Beckham GT (2016) cis,cis-muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization. Green Chem 18:3397. doi: 10.1039/C5GC02844B CrossRefGoogle Scholar
  145. 145.
    Kaneko A, Ishii Y, Kirimura K (2011) High-yield production of cis,cis-muconic acid from catechol in aqueous solution by biocatalyst. Chem Lett 40(4):381–383. doi: 10.1246/cl.2011.381 CrossRefGoogle Scholar
  146. 146.
    Indexmundi US (2015)
  147. 147.
    Draths KM, Frost JW (1991) Conversion of D-glucose into catechol: the not-so-common pathway of aromatic biosynthesis. J Am Chem Soc 113(24):9361–9363. doi: 10.1021/ja00024a048 CrossRefGoogle Scholar
  148. 148.
    Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds—from one strategy to four. Nat Rev Microbiol 9(11):803–816CrossRefPubMedGoogle Scholar
  149. 149.
    Vardon DR, Franden MA, Johnson CW, Karp EM, Guarnieri MT, Linger JG, Salm MJ, Strathmann TJ, Beckham GT (2015) Adipic acid production from lignin. Energy Environ Sci 8(2):617–628. doi: 10.1039/C4EE03230F CrossRefGoogle Scholar
  150. 150.
    van Duuren JBJH, Wijte D, Leprince A, Karge B, Puchałka J, Wery J, dos Santos VAPM, Eggink G, Mars AE (2011) Generation of a catR deficient mutant of P. putida KT2440 that produces cis,cis-muconate from benzoate at high rate and yield. J Biotechnol 156(3):163–172. doi: 10.1016/j.jbiotec.2011.08.030 CrossRefPubMedGoogle Scholar
  151. 151.
    Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344(6185):1246843–1246843. doi: 10.1126/science.1246843 CrossRefPubMedGoogle Scholar
  152. 152.
    NR-1015 NR (2015) NREL refines method to convert lignin to nylon precursor.
  153. 153.
    Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M (2012) Valorization of biomass: deriving more value from waste. Science 337(6095):695–699. doi: 10.1126/science.1218930 CrossRefPubMedGoogle Scholar
  154. 154.
    Pavone A (2012) Bio-adpic acid. Process Economics Program No. 284. IHSGoogle Scholar
  155. 155.
    Carothers WH (1938) Linear polyamides and their productionGoogle Scholar
  156. 156.
    Pinkos R, Bock M (2015) Method of producing adipic acid or at least a resultant product thereofGoogle Scholar
  157. 157.
    Zhang Y, Li X (2015) Chemical process to convert mucic acid to adipic acidGoogle Scholar
  158. 158.
    Müller C, Bock M, Da Silva M, Fischer RH, Blank B, Kindler A, Melder JP, Otto B, Schelwies M, Henninger A (2015) Method for producing polyamides based on adipic acidGoogle Scholar
  159. 159.
    Müller C, Bock M, Da Silva M, Fischer RH, Blank B, Kindler A, Melder JP, Otto B, Schelwies M, Henninger A (2015) Method for producing hexamethylenediamineGoogle Scholar
  160. 160.
    Müller C, Bock M, Da Silva M, Fischer RH, Blank B, Kindler A, Melder JP, Otto B, Schelwies M, Henninger A (2015) Process for producing nylon-6,6Google Scholar
  161. 161.
    Rennovia US (2015) Rennovia product pipeline.
  162. 162.
    Müller C, Bock M, Da Silva M, Fischer RH, Blank B, Kindler A, Melder JP, Otto B, Henninger A (2015) Method for preparing 1,6-hexanediolGoogle Scholar
  163. 163.
    Heinz-Gerard F, Stadelhofer JW (1988) Industrial aromatic chemistry. Springer-Verlag, New York. doi: 10.1007/978-3-642-73432-8 CrossRefGoogle Scholar
  164. 164.
    Davis D, Kemp DR (1991) Adipic acid. In: Kroshwitz JI, Howe-Grant M (eds) Kirk-Othmer encyclopedia of chemical technology. Wiley, New York, pp. 466–493Google Scholar
  165. 165.
    van Duuren JBJH, Brehmer B, Mars AE, Eggink G, dos Santos VAPM, Sanders JPM (2011) A limited LCA of bio-adipic acid: manufacturing the nylon-6,6 precursor adipic acid using the benzoic acid degradation pathway from different feedstocks. Biotechnol Bioeng 108(6):1298–1306. doi: 10.1002/bit.23074 CrossRefPubMedGoogle Scholar
  166. 166.
    Meinhardt H, Kruger D (2000) N2O emissions from adipic acid and nitric acid production. Good practice guidance and uncertainty management in national greenhouse gas inventories.
  167. 167.
    Boussie TR, Dias EL, Fresco ZM, Murphy VJ, Shoemaker J, Archer R, Jiang H (2010) Production of adipic acid and derivatives from carbohydrate-containing materialsGoogle Scholar
  168. 168.
    de Guzmann D (2010) Introducing Rennovia. Accessed March 25 2016
  169. 169.
    Dapsens PY, Mondelli C, Pérez-Ramírez J (2012) Biobased chemicals from conception toward industrial reality: lessons learned and to be learned. ACS Catal 2(7):1487–1499. doi: 10.1021/cs300124m CrossRefGoogle Scholar
  170. 170.
    Picataggio S, Rohrer T, Deanda K, Lanning D, Reynolds R, Mielenz J, Eirich LD (1992) Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Nat Biotechnol 10(8):894–898CrossRefGoogle Scholar
  171. 171.
    Picataggio S, Beardslee T (2011) Biological methods for preparing adipic acidGoogle Scholar
  172. 172.
    Dellk M (2014) JSB Market Research—caprolactam market by material type JSBGoogle Scholar
  173. 173.
    Merchant Research & Consulting Ltd UK (2015) Increasing demand for nylon 6 to drive growth of caprolactam market in the years to come.
  174. 174.
  175. 175.
  176. 176.
    Schlack P (1941) Preparation of polyamidesGoogle Scholar
  177. 177.
    Weissermel K, Arpe HJ (2003) Industrial organic chemistry, 4th edn. Wiley-VCH, Weinheim. doi: 10.1002/9783527619191 CrossRefGoogle Scholar
  178. 178.
    Shiju NR, AnilKumar M, Hoelderich WF, Brown DR (2009) Tungstated zirconia catalysts for liquid-phase Beckmann rearrangement of cyclohexanone oxime: structure-activity relationship. J Phys Chem C 113(18):7735–7742. doi: 10.1021/jp810542t CrossRefGoogle Scholar
  179. 179.
    Shiju NR, Williams HM, Brown DR (2009) Cs exchanged phosphotungstic acid as an efficient catalyst for liquid-phase Beckmann rearrangement of oximes. Appl Catal B Environ 90(3–4):451–457. doi: 10.1016/j.apcatb.2009.04.016 CrossRefGoogle Scholar
  180. 180.
    Hermann BG, Blok K, Patel MK (2007) Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change. Environ Sci Technol 41(22):7915–7921. doi: 10.1021/es062559q CrossRefPubMedGoogle Scholar
  181. 181.
    Coudray L, Bui V, Frost JW, Schweitzer D (2012) Process for preparing caprolactam and polyamides there from. WO2012141997Google Scholar
  182. 182.
    Beerthuis R, Rothenberg G, Shiju NR (2015) Catalytic routes towards acrylic acid, adipic acid and [varepsilon]-caprolactam starting from biorenewables. Green Chem 17(3):1341–1361. doi: 10.1039/C4GC02076F CrossRefGoogle Scholar
  183. 183.
    Global Business Intelligence UK (2013) China and India to lead global purified terephthalic acid demand growth by 2020.
  184. 184.
    Moraes MLL, Rubim JC, Realpozo RR, Tavares MFM (2004) Analysis of impurities in crude and highly-purified terephthalic acid by capillary electrophoresis. J Braz Chem Soc 15:400–406CrossRefGoogle Scholar
  185. 185.
    Dickson JT, Whinfield JR (1946) Improvements relating to the manufacture of highly polymeric substancesGoogle Scholar
  186. 186.
    Sheehan RJ (2000) Terephthalic acid, dimethyl terephthalate, and isophthalic acid. In: Ullmann F (ed) Ullmann’s encyclopedia of industrial chemistry. Wiley, Hoboken. doi: 10.1002/14356007.a26_193.pub2
  187. 187.
  188. 188.
    Stoody Industrial & Welding Supply I, United States (2015).
  189. 189.
    Burk MJ, Oosterhout RE, Sun J (2011) Semi-synthetic terephthalic acid via microorganisms that produce muconic acid. WO2011017560A1Google Scholar
  190. 190.
    Akanuma Y, Selke SEM, Auras R (2014) A preliminary LCA case study: comparison of different pathways to produce purified terephthalic acid suitable for synthesis of 100% bio-based PET. Int J Life Cycle Assess 19:1238–1246CrossRefGoogle Scholar
  191. 191.
    Frost JW, Miermont A, Schweitzer D, Bui V (2010) Preparation of trans,trans muconic acid and trans,trans muconates. WO2010148049A2Google Scholar
  192. 192.
    Ganzle MG, Haase G, Jelen P (2008) Lactose: crystallization, hydrolysis and value-added derivatives. Int Dairy J 18(7):685–694. doi: 10.1016/j.idairyj.2008.03.003 CrossRefGoogle Scholar
  193. 193.
    Stodola FH, Lockwood LB (1947) The oxidation of lactose and maltose to bionic acids by Pseudomonas. J Biol Chem 171(1):213–221Google Scholar
  194. 194.
    Tasic-Kostov M, Savic S, Lukic M, Tamburic S, Pavlovic M, Vuleta G (2010) Lactobionic acid in a natural alkylpolyglucoside-based vehicle: assessing safety and efficacy aspects in comparison to glycolic acid. J Cosmet Dermatol 9(1):3–10. doi: 10.1111/j.1473-2165.2010.00474.x CrossRefPubMedGoogle Scholar
  195. 195.
    Alonso S, Rendueles M, Diaz M (2013) Bio-production of lactobionic acid: current status, applications and future prospects. Biotechnol Adv 31(8):1275–1291. doi: 10.1016/j.biotechadv.2013.04.010 CrossRefPubMedGoogle Scholar
  196. 196.
    Gutierrez LF, Hamoudi S, Belkacemi K (2012) Lactobionic acid: a high value-added lactose derivative for food and pharmaceutical applications. Int Dairy J 26(2):103–111. doi: 10.1016/j.idairyj.2012.05.003 CrossRefGoogle Scholar
  197. 197.
    Fischer E, Meyer J (1889) Oxidation des Milchzuckers. Ber Deut Chem Ges 23:361–364CrossRefGoogle Scholar
  198. 198.
    Druliolle H, Kokoh KB, Hahn F, Lamy C, Beden B (1997) On some mechanistic aspects of the electrochemical oxidation of lactose at platinum and gold electrodes in alkaline medium. J Electroanal Chem 426(1–2):103–115. doi: 10.1016/S0022-0728(96)04981-9 CrossRefGoogle Scholar
  199. 199.
    Cort WM, Connors WM, Roberts HR, Bucek W (1956) Evidence for the formation and utilization of lactobionic acid by Penicillium chrysogenum. Arch Biochem Biophys 63(2):477–478. doi: 10.1016/0003-9861(56)90064-9 CrossRefPubMedGoogle Scholar
  200. 200.
    Bean RC, Hassid WZ (1956) Carbohydrate oxidase from a red alga, Iridophycus flaccidum. J Biol Chem 218(1):425–436PubMedGoogle Scholar
  201. 201.
    Kluyver AJ, De Ley J, Rijven A (1951) The formation and consumption of lactobionic and maltobionic acid by Pseudomonas species. Antonie Van Leeuwenhoek (J Microbiol Serol) 17(1):1–14. doi: 10.1007/bf02062244 CrossRefGoogle Scholar
  202. 202.
    Bentley R, Slechta L (1960) Oxidation of monosaccharides and disaccharides to aldonic acids by Pseudomonas species. J Bacteriol 79(3):346–355PubMedPubMedCentralGoogle Scholar
  203. 203.
    Alonso S, Rendueles M, Diaz M (2011) Efficient lactobionic acid production from whey by Pseudomonas taetrolens under pH-shift conditions. Bioresour Technol 102(20):9730–9736. doi: 10.1016/j.biortech.2011.07.089 CrossRefPubMedGoogle Scholar
  204. 204.
    Miyamoto Y, Ooi T, Kinoshita S (2000) Production of lactobionic acid from whey by Pseudomonas sp. LS13-1. Biotechnol Lett 22(5):427–430. doi: 10.1023/a:1005617903152 CrossRefGoogle Scholar
  205. 205.
    Murakami H, Seko A, Azumi M, Ueshima N, Yoshizumi H, Nakano H, Kitahata S (2003) Fermentative production of lactobionic acid by Burkholderia cepacia. J Appl Glycosci 50(2):117–120CrossRefGoogle Scholar
  206. 206.
    Kiryu T, Yamauchi K, Masuyama A, Ooe K, Kimura T, Kiso T, Nakano H, Murakami H (2012) Optimization of lactobionic acid production by Acetobacter orientalis isolated from Caucasian fermented milk, “Caspian Sea Yogurt”. Biosci Biotech Bioch 76(2):361–363. doi: 10.1271/bbb.110608 CrossRefGoogle Scholar
  207. 207.
    Tomlinson GA, Strohm MP, Hochstein LI (1978) Metabolism of carbohydrates by extremely halophilic bacteria–identification of lactobionic acid as a product of lactose metabolism by Halobacterium saccharovorum. Can J Microbiol 24(8):898–903CrossRefPubMedGoogle Scholar
  208. 208.
    Alonso S, Rendueles M, Diaz M (2013) Selection method of pH conditions to establish Pseudomonas taetrolens physiological states and lactobionic acid production. Appl Microbiol Biotechnol 97(9):3843–3854. doi: 10.1007/s00253-012-4607-x CrossRefPubMedGoogle Scholar
  209. 209.
    Alonso S, Rendueles M, Diaz M (2012) Role of dissolved oxygen availability on lactobionic acid production from whey by Pseudomonas taetrolens. Bioresour Technol 109:140–147. doi: 10.1016/j.biortech.2012.01.045 CrossRefPubMedGoogle Scholar
  210. 210.
    Alonso S, Rendueles M, Diaz M (2012) Physiological heterogeneity of Pseudomonas taetrolens during lactobionic acid production. Appl Microbiol Biotechnol 96(6):1465–1477. doi: 10.1007/s00253-012-4254-2 CrossRefPubMedGoogle Scholar
  211. 211.
    Alonso S, Rendueles M, Diaz M (2013) Feeding strategies for enhanced lactobionic acid production from whey by Pseudomonas taetrolens. Bioresour Technol 134:134–142. doi: 10.1016/j.biortech.2013.01.145 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Daniel Pleissner
    • 1
  • Donna Dietz
    • 1
  • Jozef Bernhard Johann Henri van Duuren
    • 2
  • Christoph Wittmann
    • 2
  • Xiaofeng Yang
    • 3
  • Carol Sze Ki Lin
    • 3
  • Joachim Venus
    • 1
    Email author
  1. 1.Department of BioengineeringLeibniz Institute for Agricultural Engineering and Bioeconomy Potsdam (ATB)PotsdamGermany
  2. 2.Institute of Systems BiotechnologySaarland UniversitySaarbrückenGermany
  3. 3.School of Energy and EnvironmentCity University of Hong KongKowloonHong Kong

Personalised recommendations