Skip to main content

Biomass Resources: Agriculture

Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE,volume 166)

Abstract

Bioenergy is the single largest source of renewable energy in the European Union (EU-28); of this, 14% was produced from agricultural feedstocks in 2012. This chapter provides an overview of the current use (for bioenergy) and future potential of agricultural feedstocks for (amongst others) biorefinery purposes in the European Union. The main application of these feedstocks is currently the production of biofuels for road transport. Biodiesel makes up 80% of the European biofuel production, mainly from rapeseed oil, and the remaining part is bioethanol from wheat and sugar beet. Dedicated woody and grassy crops (mainly miscanthus and switchgrass) are currently only used in very small quantities for heat and electricity generation. There is great potential for primary agricultural residues (mainly straw) but currently only part of this is for heat and electricity generation. Agricultural land currently in use for energy crop cultivation in the EU-28 is 4.4 Mio ha, although the land area technically available in 2030 is estimated to be 16–43 Mio ha, or 15–40% of the current arable land in the EU-28. There is, however, great uncertainty on the location and quality of that land. It is expected that woody and grassy crops together with primary agricultural residues should become more important as agricultural feedstocks.

Keywords

  • Agricultural feedstock
  • Energy crops
  • Energy potential
  • Primary agricultural residues
  • Straw

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    As scientific literature mainly focuses specifically on the potential for energy crops, we also use this terminology throughout this chapter, although energy crops can also be used as feedstock for material/biorefinery purposes.

References

  1. EUROSTAT (2015) Supply, transformation and consumption of renewable energies - annual data [nrg_107a]. http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_107a&lang=en. Accessed 22 Sep 2015

  2. Scarlat N, Dallemand J-F, Monforti-Ferrario F, et al. (2015) Renewable energy policy framework and bioenergy contribution in the European Union – an overview from National Renewable Energy Action Plans and Progress Reports. Renew Sust Energ Rev 51:969–985. doi:10.1016/j.rser.2015.06.062

    CrossRef  Google Scholar 

  3. European Commission (2015) Agriculture and bioenergy. http://ec.europa.eu/agriculture/bioenergy/index_en.htm. Accessed 24 Sep 2015

  4. Long SP, Karp A, Buckeridge MS, et al. (2015) Chapter 10: feedstocks for biofuels and bioenergy. In: Souza GM, Victoria R, Joly C, Verdade L (eds) Bioenergy & sustainabilty: bridging the gaps, vol 72. SCOPE, Paris, pp. 302–346

    Google Scholar 

  5. Elbersen B, Startisky I, Hengeveld G et al (2012) Atlas of EU biomass potentials. Deliverable 3.3 of Biomass Futures project. Wageningen, The Netherlands

    Google Scholar 

  6. European Biomass Association (AEBIOM) (2014) European Bioenergy Outlook 2014. Brussels, Belgium

    Google Scholar 

  7. EUROSTAT (2015) Primary production - all products - annual data [nrg_109a]. http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_109a&lang=en. Accessed 25 Sep 2015

  8. Hamelinck C, Koper M, Janeiro L et al (2014) Renewable energy progress and biofuels sustainability. Ecofys, Utrecht

    Google Scholar 

  9. Scarlat N, Martinov M, Dallemand J-F (2010) Assessment of the availability of agricultural crop residues in the European Union: potential and limitations for bioenergy use. Waste Manag 30:1889–1897. doi:10.1016/j.wasman.2010.04.016

    CrossRef  Google Scholar 

  10. Kretschmer B, Allen B, Hart K (2012) Mobilising cereal straw in the EU to feed advanced biofuel production. IEEP, London

    Google Scholar 

  11. Spöttle M, Alberici S, Toop G et al (2013) Low ILUC potential of wastes and residues for biofuels: straw, forestry residues, UCO, corn cobs. Ecofys, Utrecht

    Google Scholar 

  12. Böttcher H, Dees M, Fritz SM et al (2010) Biomass Energy Europe - Illustration Case for Europe. Deliverable 6.1- Annex 1 of Biomass Energy Europe. IIASA, Laxenburg

    Google Scholar 

  13. Daioglou V, Stehfest E, Wicke B et al (2015) Projections of the availability and cost of residues from agriculture and forestry. GCB Bioenergy. doi: 10.1111/gcbb.12285

    CrossRef  Google Scholar 

  14. Fischer G, Prieler S, van Velthuizen H, et al. (2010) Biofuel production potentials in Europe: sustainable use of cultivated land and pastures, Part II: land use scenarios. Biomass Bioenergy 34:173–187. doi:10.1016/j.biombioe.2009.07.009

    CrossRef  Google Scholar 

  15. Monforti F, Bódis K, Scarlat N, Dallemand J-F (2013) The possible contribution of agricultural crop residues to renewable energy targets in Europe: a spatially explicit study. Renew Sust Energ Rev 19:666–677. doi:10.1016/j.rser.2012.11.060

    CrossRef  Google Scholar 

  16. Pudelko R, Borzecka-Walker M, Faber A (2013) The feedstock potential assessment for EU-27 + Switzerland in NUTS-3. Pulawy, Poland

    Google Scholar 

  17. Bentsen NS, Felby C, Thorsen BJ (2014) Agricultural residue production and potentials for energy and materials services. Prog Energy Combust Sci 40:59–73. doi:10.1016/j.pecs.2013.09.003

    CrossRef  Google Scholar 

  18. Giuntoli J, Boulamanti AK, Corrado S, et al. (2013) Environmental impacts of future bioenergy pathways: the case of electricity from wheat straw bales and pellets. GCB Bioenergy 5:497–512. doi:10.1111/gcbb.12012

    CrossRef  Google Scholar 

  19. Bacovsky D, Ludwiczek N, Ognissanto M, Manfred W (2013) Status of advanced biofuels demonstration facilities in 2012. A report to IEA bioenergy task 39, Paris, France

    Google Scholar 

  20. Kühner S (2013) Feedstock costs. Deliverable D1.1 of biomass based energy intermediates boosting biofuel production (BioBoost). Ganderkesee, Germany

    Google Scholar 

  21. EUROSTAT (2015) Purchase prices of the means of agricultural production (absolute prices) - annual price (from 2000 onwards) [apri_ap_ina]. http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=apri_ap_ina&lang=en(2012). Accessed 2 Nov 2015

  22. Chum H, Faaij A, Moreira J, et al. (2011) Chapter 2: bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, et al. (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, pp. 203–332

    Google Scholar 

  23. Batidzirai B, Smeets EMW, Faaij APC (2012) Harmonising bioenergy resource potentials - methodological lessons from review of state of the art bioenergy potential assessments. Renew Sust Energ Rev 16:6598–6630. doi:10.1016/j.rser.2012.09.002

    CrossRef  Google Scholar 

  24. De Wit M, Faaij A (2010) European biomass resource potential and costs. Biomass Bioenergy 34:188–202. doi:10.1016/j.biombioe.2009.07.011

    CrossRef  Google Scholar 

  25. Krasuska E, Cadórniga C, Tenorio JL, et al. (2010) Potential land availability for energy crops production in Europe. Biofuels Bioprod Biorefin 4:658–673. doi:10.1002/bbb.259

    CAS  CrossRef  Google Scholar 

  26. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. FAO Agricultural Development Economics Division, Rome

    Google Scholar 

  27. European Commission (2014) Prospects for EU agriculture markets and income 2014–2024. European Commission, DG Agriculture and Rural Development

    Google Scholar 

  28. Overmars K, Stehfest E, Ros J, Prins A (2011) Indirect land use change emissions related to EU biofuel consumption: an analysis based on historical data. Environ Sci Pol 14:248–257. doi:10.1016/j.envsci.2010.12.012

    CAS  CrossRef  Google Scholar 

  29. Woods J, Lynd LR, Laser M, et al. (2015) Chapter 9: land and bioenergy. In: Souza GM, Victoria R, Joly C, Verdade L (eds) Bioenergy & sustainability: bridging the gaps, vol 72. SCOPE, Paris, pp. 258–300

    Google Scholar 

  30. FAO (2012) Biofuel co-products as livestock feed - opportunities and challenges. Rome, Italy

    Google Scholar 

  31. EEA (2013) EU bioenergy potential from a resource-efficiency perspective. Copenhagen, Denmark

    Google Scholar 

  32. Elbersen B, Fritsche U, Petersen J-E, et al. (2013) Assessing the effect of stricter sustainability criteria on EU biomass crop potential. Biofuels Bioprod Biorefin 7:173–192. doi:10.1002/bbb.1396

    CAS  CrossRef  Google Scholar 

  33. Allen B, Kretschmer B, Baldock D et al (2014) Space for energy crops – assessing the potential contribution to Europe’s energy future. IEEP, London

    Google Scholar 

  34. Wicke B, Verweij P, van Meijl H, et al. (2012) Indirect land use change: review of existing models and strategies for mitigation. Biofuels 3:87–100. doi:10.4155/bfs.11.154

    CAS  CrossRef  Google Scholar 

  35. European Commission (2009) Directive 2009/28/EC of the European Parliament and of the Council on the promotion of the use of energy from renewable sources and amending and subsequently repealing repealing Directives 2001/77/EC and 2003/30/EC. Off J Eur Union 160:16–62

    Google Scholar 

  36. Stichnothe H (2017) Sustainability evaluation. In: Wagemann K, Tippkötter N (eds) Advances in biochemical engineering/biotechnology. Springer, Berlin/Heidelberg, pp. 1–21

    Google Scholar 

  37. FAO (2015) FAOSTAT. http://faostat3.fao.org/home/E. Accessed 23 Sep 2015

  38. Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6:317–327. doi:10.1046/j.1365-2486.2000.00308.x

    CrossRef  Google Scholar 

  39. de Wit M, Lesschen JP, Londo M, Faaij APC (2014) Greenhouse gas mitigation effects of integrating biomass production into European agriculture. Biofuels Bioprod Biorefin 8:374–390. doi:10.1002/bbb.1470

    CAS  CrossRef  Google Scholar 

  40. Potapov PV, Turubanova SA, Tyukavina A, et al. (2014) Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive. Remote Sens Environ 159:28–43. doi:10.1016/j.rse. 2014.11.027

    CrossRef  Google Scholar 

  41. Schierhorn F, Müller D, Beringer T, et al. (2013) Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus. Glob Biogeochem Cycles 27:1175–1185. doi:10.1002/2013GB004654

    CAS  CrossRef  Google Scholar 

  42. Pelkmans L, Elbersen B, Fritsche U et al (2014) Guidelines and indicators for the evaluation of sustainable resource efficient biomass value chains. Deliverable 2.6 of the Biomass Policies project

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marnix L. J. Brinkman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kluts, I.N., Brinkman, M.L.J., de Jong, S.A., Junginger, H.M. (2017). Biomass Resources: Agriculture. In: Wagemann, K., Tippkötter, N. (eds) Biorefineries. Advances in Biochemical Engineering/Biotechnology, vol 166. Springer, Cham. https://doi.org/10.1007/10_2016_66

Download citation