New Mammalian Expression Systems

  • Jie Zhu
  • Diane HattonEmail author
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 165)


There are an increasing number of recombinant antibodies and proteins in preclinical and clinical development for therapeutic applications. Mammalian expression systems are key to enabling the production of these molecules, and Chinese hamster ovary (CHO) cell platforms continue to be central to delivery of the stable cell lines required for large-scale production. Increasing pressure on timelines and efficiency, further innovation of molecular formats and the shift to new production systems are driving developments of these CHO cell line platforms. The availability of genome and transcriptome data coupled with advancing gene editing tools are increasing the ability to design and engineer CHO cell lines to meet these challenges. This chapter aims to give an overview of the developments in CHO expression systems and some of the associated technologies over the past few years.


Cell engineering Cell line development Chinese hamster ovary cells Gene editing Therapeutic protein production 


  1. 1.
    Wang Y, Zhao S, Bai L, et al (2013) Expression systems and species used for transgenic animal bioreactors. Biomed Res Int 2013:580463. doi: 10.1155/2013/580463CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24(10):1241–1252. doi: 10.1038/nbt1252CrossRefPubMedGoogle Scholar
  3. 3.
    Butler M, Spearman M (2014) The choice of mammalian cell host and possibilities for glycosylation engineering. Curr Opin Biotechnol 30:107–112. doi: 10.1016/j.copbio.2014.06.010CrossRefPubMedGoogle Scholar
  4. 4.
    Ghaderi D, Taylor RE, Padler-Karavani V, et al (2010) Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat Biotechnol 28(8):863–867. doi: 10.1038/nbt.1651CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ghaderi D, Zhang M, Hurtado-Ziola N, et al (2012) Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol Genet Eng Rev 28:147–175CrossRefPubMedGoogle Scholar
  6. 6.
    Dumont J, Euwart D, Mei B, et al (2015) Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol:1–13. doi: 10.3109/07388551.2015.1084266CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Swiech K, Picanco-Castro V, Covas DT (2012) Human cells: new platform for recombinant therapeutic protein production. Protein Expression Purif 84(1):147–153. doi: 10.1016/j.pep.2012.04.023CrossRefGoogle Scholar
  8. 8.
    Havenga MJ, Holterman L, Melis I, et al (2008) Serum-free transient protein production system based on adenoviral vector and PER.C6 technology: high yield and preserved bioactivity. Biotechnol Bioeng 100(2):273–283. doi: 10.1002/bit.21757CrossRefPubMedGoogle Scholar
  9. 9.
    Schiedner G, Hertel S, Bialek C, et al (2008) Efficient and reproducible generation of high-expressing, stable human cell lines without need for antibiotic selection. BMC Biotechnol 8:13. doi: 10.1186/1472-6750-8-13CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Baumeister H, Goletz S (2010) A matter of cell line development. Eur Biopharm Rev 2010:54Google Scholar
  11. 11.
    Eisner F, Pichler M, Goletz S, et al (2015) A glyco-engineered anti-HER2 monoclonal antibody (TrasGEX) induces a long-lasting remission in a patient with HER2 overexpressing metastatic colorectal cancer after failure of all available treatment options. J Clin Pathol 68(12):1044–1046. doi: 10.1136/jclinpath-2015-202996CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Blanchard V, Liu X, Eigel D, Kaup M, Rieck S, Janciauskiene S, Sandig V, Marx U, Walden P, Tauber R, Berger M (2011) N-Glycosylation and biological activity of recombinant human alpha 1-antitrypsin expressed in a novel human neuronal cell line. Biotechnol Bioeng 108(9):2118–2128. doi: 10.1002/bit.23158CrossRefPubMedGoogle Scholar
  13. 13.
    Walsh G (2014) Biopharmaceutical benchmarks 2014. Nat Biotechnol 32(10):992–1000. doi: 10.1038/nbt.3040CrossRefPubMedGoogle Scholar
  14. 14.
    Berting A, Farcet MR, Kreil TR (2010) Virus susceptibility of Chinese hamster ovary (CHO) cells and detection of viral contaminations by adventitious agent testing. Biotechnol Bioeng 106(4):598–607. doi: 10.1002/bit.22723CrossRefPubMedGoogle Scholar
  15. 15.
    Kishishita S, Katayama S, Kodaira K, et al (2015) Optimization of chemically defined feed media for monoclonal antibody production in Chinese hamster ovary cells. J Biosci Bioeng 120(1):78–84. doi: 10.1016/j.jbiosc.2014.11.022CrossRefPubMedGoogle Scholar
  16. 16.
    Fischer S, Handrick R, Otte K (2015) The art of CHO cell engineering: a comprehensive retrospect and future perspectives. Biotechnol Adv 33(8):1878–1896. doi: 10.1016/j.biotechadv.2015.10.015CrossRefPubMedGoogle Scholar
  17. 17.
    Lewis NE, Liu X, Li Y, et al (2013) Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat Biotechnol 31(8):759–765. doi: 10.1038/nbt.2624CrossRefPubMedGoogle Scholar
  18. 18.
    Xu X, Nagarajan H, Lewis NE, et al (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 29(8):735–741. doi: 10.1038/nbt.1932CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Estes S, Melville M (2014) Mammalian cell line developments in speed and efficiency. Adv Biochem Eng Biotechnol 139:11–33. doi: 10.1007/10_2013_260CrossRefPubMedGoogle Scholar
  20. 20.
    Walther J, Godawat R, Hwang C, Abe Y, Sinclair A, Konstantinov K (2015) The business impact of an integrated continuous biomanufacturing platform for recombinant protein production. J Biotechnol 213:3–12. doi: 10.1016/j.jbiotec.2015.05.010CrossRefPubMedGoogle Scholar
  21. 21.
    Patil R, Walther J (2017) Continuous manufacturing of recombinant therapeutic proteins: upstream and downstream technologies. Adv Biochem Eng Biotechnol. doi: 10.1007/10_2016_58Google Scholar
  22. 22.
    Wurm FM (2013) CHO quasispecies – implications for manufacturing processes. Processes 1:296–311CrossRefGoogle Scholar
  23. 23.
    Tjio JH, Puck TT (1958) Genetics of somatic mammalian cells II. Chromosomal constitution of cells in tissue culture. J Exp Med 108(2):259–268CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hu Z, Guo D, Yip SS, et al (2013) Chinese hamster ovary K1 host cell enables stable cell line development for antibody molecules which are difficult to express in DUXB11-derived dihydrofolate reductase deficient host cell. Biotechnol Prog 29(4):980–985. doi: 10.1002/btpr.1730CrossRefPubMedGoogle Scholar
  25. 25.
    Kennard ML, Goosney DL, Monteith D, et al (2009) The generation of stable, high MAb expressing CHO cell lines based on the artificial chromosome expression (ACE) technology. Biotechnol Bioeng 104(3):540–553. doi: 10.1002/bit.22406CrossRefPubMedGoogle Scholar
  26. 26.
    Davies SL, Lovelady CS, Grainger RK, et al (2013) Functional heterogeneity and heritability in CHO cell populations. Biotechnol Bioeng 110(1):260–274. doi: 10.1002/bit.24621CrossRefPubMedGoogle Scholar
  27. 27.
    O’Callaghan PM, Berthelot ME, Young RJ, et al (2015) Diversity in host clone performance within a Chinese hamster ovary cell line. Biotechnol Prog 31(5):1187–1200. doi: 10.1002/btpr.2097CrossRefPubMedGoogle Scholar
  28. 28.
    Derouazi M, Martinet D, Besuchet Schmutz N, et al (2006) Genetic characterization of CHO production host DG44 and derivative recombinant cell lines. Biochem Biophys Res Commun 340(4):1069–1077CrossRefPubMedGoogle Scholar
  29. 29.
    Patnaik SK, Stanley P (2006) Lectin-resistant CHO glycosylation mutants. Methods Enzymol 416:159–182CrossRefPubMedGoogle Scholar
  30. 30.
    Bort JA, Stern B, Borth N (2010) CHO-K1 host cells adapted to growth in glutamine-free medium by FACS-assisted evolution. Biotechnol J 5(10):1090–1097. doi: 10.1002/biot.201000095CrossRefPubMedGoogle Scholar
  31. 31.
    Prentice HL, Ehrenfels BN, Sisk WP (2007) Improving performance of mammalian cells in fed-batch processes through “bioreactor evolution”. Biotechnol Prog 23(2):458–464. doi: 10.1021/bp060296yCrossRefPubMedGoogle Scholar
  32. 32.
    Jostock T, Knopf HP (2012) Mammalian stable expression of biotherapeutics. Methods Mol Biol 899:227–238. doi: 10.1007/978-1-61779-921-1_15CrossRefPubMedGoogle Scholar
  33. 33.
    Rita Costa A, Elisa Rodrigues M, Henriques M, et al (2010) Guidelines to cell engineering for monoclonal antibody production. Eur J Pharm Biopharm 74(2):127–138. doi: 10.1016/j.ejpb.2009.10.002CrossRefPubMedGoogle Scholar
  34. 34.
    Chusainow J, Yang YS, Yeo JH, Toh PC, Asvadi P, Wong NS, Yap MG (2009) A study of monoclonal antibody-producing CHO cell lines: what makes a stable high producer? Biotechnol Bioeng 102(4):1182–1196. doi: 10.1002/bit.22158CrossRefPubMedGoogle Scholar
  35. 35.
    Westwood AD, Rowe DA, Clarke HR (2010) Improved recombinant protein yield using a codon deoptimized DHFR selectable marker in a CHEF1 expression plasmid. Biotechnol Prog 26(6):1558–1566. doi: 10.1002/btpr.491CrossRefPubMedGoogle Scholar
  36. 36.
    Ng SK, Wang DI, Yap MG (2007) Application of destabilizing sequences on selection marker for improved recombinant protein productivity in CHO-DG44. Metab Eng 9(3):304–316CrossRefPubMedGoogle Scholar
  37. 37.
    Ng SK, Tan TR, Wang Y, et al (2012) Production of functional soluble Dectin-1 glycoprotein using an IRES-linked destabilized-dihydrofolate reductase expression vector. PLoS One 7(12):e52785. doi: 10.1371/journal.pone.0052785CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chin CL, Chin HK, Chin CS, et al (2015) Engineering selection stringency on expression vector for the production of recombinant human alpha1-antitrypsin using Chinese Hamster ovary cells. BMC Biotechnol 15:44. doi: 10.1186/s12896-015-0145-9CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Fan L, Kadura I, Krebs LE, et al (2012) Improving the efficiency of CHO cell line generation using glutamine synthetase gene knock-out cells. Biotechnol Bioeng 109(4):1007–1015. doi: 10.1002/bit.24365CrossRefPubMedGoogle Scholar
  40. 40.
    Roy G, Bowen MA (2015) Modulation of endogenous Glutamine Synthetase (GS) in CHO cells improves selection and characteristics of expression hosts. 12th Protein expression in animal cells conferenceGoogle Scholar
  41. 41.
    Curtin JA, Dane AP, Swanson A, et al (2008) Bidirectional promoter interference between two widely used internal heterologous promoters in a late-generation lentiviral construct. Gene Ther 15(5):384–390CrossRefPubMedGoogle Scholar
  42. 42.
    Le H, Vishwanathan N, Kantardjieff A, et al (2013) Dynamic gene expression for metabolic engineering of mammalian cells in culture. Metab Eng 20:212–220. doi: 10.1016/j.ymben.2013.09.004CrossRefPubMedGoogle Scholar
  43. 43.
    Brown AJ, Sweeney B, Mainwaring DO, et al (2014) Synthetic promoters for CHO cell engineering. Biotechnol Bioeng 111(8):1638–1647. doi: 10.1002/bit.25227CrossRefPubMedGoogle Scholar
  44. 44.
    Ho SC, Bardor M, Li B, et al (2013) Comparison of internal ribosome entry site (IRES) and Furin-2A (F2A) for monoclonal antibody expression level and quality in CHO cells. PLoS One 8(5):e63247. doi: 10.1371/journal.pone.0063247CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ho SC, Koh EY, van Beers M, et al (2013) Control of IgG LC:HC ratio in stably transfected CHO cells and study of the impact on expression, aggregation, glycosylation and conformational stability. J Biotechnol 165(3–4):157–166. doi: 10.1016/j.jbiotec.2013.03.019CrossRefPubMedGoogle Scholar
  46. 46.
    Ho SC, Mariati YJH, et al (2015) Impact of using different promoters and matrix attachment regions on recombinant protein expression level and stability in stably transfected CHO cells. Mol Biotechnol 57(2):138–144. doi: 10.1007/s12033-014-9809-2CrossRefPubMedGoogle Scholar
  47. 47.
    Ho SC, Wang T, Song Z, et al (2015) IgG aggregation mechanism for CHO cell lines expressing excess heavy chains. Mol Biotechnol 57(7):625–634. doi: 10.1007/s12033-015-9852-7CrossRefPubMedGoogle Scholar
  48. 48.
    Koh EYC, Ho SCL, Mariati et al. (2013) An Internal Ribosome Entry Site (IRES) mutant mlibrary for tuning expression level of multiple genes in mammalian cells. PLoS One 8(12):e82100. doi: 10.1371/journal.pone.0082100CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Chng J, Wang T, Nian R, et al (2015) Cleavage efficient 2A peptides for high level monoclonal antibody expression in CHO cells. mAbs 7(2):403–412. doi: 10.1080/19420862.2015.1008351CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Airenne KJ, Hu YC, Kost TA, et al (2013) Baculovirus: an insect-derived vector for diverse gene transfer applications. Mol Ther 21(4):739–749. doi: 10.1038/mt.2012.286CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Mufarrege EF, Antuna S, Etcheverrigaray M, et al (2014) Development of lentiviral vectors for transient and stable protein overexpression in mammalian cells. A new strategy for recombinant human FVIII (rhFVIII) production. Protein Expression Purif 95:50–56. doi: 10.1016/j.pep.2013.11.005CrossRefGoogle Scholar
  52. 52.
    Harraghy N, Regamey A, Girod PA, et al (2011) Identification of a potent MAR element from the mouse genome and assessment of its activity in stable and transient transfections. J Biotechnol 154(1):11–20. doi: 10.1016/j.jbiotec.2011.04.004CrossRefPubMedGoogle Scholar
  53. 53.
    Antoniou M, Harland L, Mustoe T, et al (2003) Transgenes encompassing dual-promoter CpG islands from the human TBP and HNRPA2B1 loci are resistant to heterochromatin-mediated silencing. Genomics 82(3):269–279. doi: 10.1016/s0888-7543(03)00107-1CrossRefPubMedGoogle Scholar
  54. 54.
    Betts Z, Croxford AS, Dickson AJ (2015) Evaluating the interaction between UCOE and DHFR-linked amplification and stability of recombinant protein expression. Biotechnol Prog 31(4):1014–1025. doi: 10.1002/btpr.2083CrossRefPubMedGoogle Scholar
  55. 55.
    Dharshanan S, Chong H, Cheah SH, et al (2014) Stable expression of H1C2 monoclonal antibody in NS0 and CHO cells using pFUSE and UCOE expression system. Cytotechnology 66(4):625–633. doi: 10.1007/s10616-013-9615-xCrossRefPubMedGoogle Scholar
  56. 56.
    Hou JJ, Hughes BS, Smede M, et al (2014) High-throughput ClonePix FL analysis of mAb-expressing clones using the UCOE expression system. New Biotechnol 31(3):214–220. doi: 10.1016/j.nbt.2014.02.002CrossRefGoogle Scholar
  57. 57.
    Liu H, Wang X, Shi S, Chen Y, Han W (2015) Efficient production of FAM19A4, a novel potential cytokine, in a stable optimized CHO-S cell system. Protein Expr Purif 113:1–7. doi: 10.1016/j.pcp.2015.05.004CrossRefPubMedGoogle Scholar
  58. 58.
    Saunders F, Sweeney B, Antoniou MN, et al (2015) Chromatin function modifying elements in an industrial antibody production platform–comparison of UCOE, MAR, STAR and cHS4 elements. PLoS One 10(4):e0120096. doi: 10.1371/journal.pone.0120096CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Ivics Z, Li MA, Mates L, et al (2009) Transposon-mediated genome manipulation in vertebrates. Nat Methods 6(6):415–422. doi: 10.1038/nmeth.1332CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Alattia JR, Matasci M, Dimitrov M, et al (2013) Highly efficient production of the Alzheimer’s ϒ-Secretase integral membrane protease complex by a multi-gene stable integration approach. Biotechnol Bioeng 110(7):1995–2005. doi: 10.1002/bit.24851CrossRefPubMedGoogle Scholar
  61. 61.
    Li MA, Turner DJ, Ning Z, et al (2011) Mobilization of giant piggyBac transposons in the mouse genome. Nucleic Acids Res 39(22):e148. doi: 10.1093/nar/gkr764CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Matasci M, Baldi L, Hacker DL, et al (2011) The PiggyBac transposon enhances the frequency of CHO stable cell line generation and yields recombinant lines with superior productivity and stability. Biotechnol Bioeng 108(9):2141–2150. doi: 10.1002/bit.23167CrossRefPubMedGoogle Scholar
  63. 63.
    Balasubramanian S, Matasci M, Kadlecova Z, et al (2015) Rapid recombinant protein production from piggyBac transposon-mediated stable CHO cell pools. J Biotechnol 200:61–69. doi: 10.1016/j.jbiotec.2015.03.001CrossRefPubMedGoogle Scholar
  64. 64.
    Ley D, Harraghy N, Le Fourn V, et al (2013) MAR elements and transposons for improved transgene integration and expression. PLoS One 8(4):e62784. doi: 10.1371/journal.pone.0062784CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Nehlsen K, Schucht R, da Gama-Norton L, et al (2009) Recombinant protein expression by targeting pre-selected chromosomal loci. BMC Biotechnol 9:100. doi: 10.1186/1472-6750-9-100CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Bode J, Schlake T, Iber M, et al (2000) The transgeneticist’s toolbox: novel methods for the targeted modification of eukaryotic genomes. Biol Chem 381(9–10):801–813. doi: 10.1515/BC.2000.103CrossRefPubMedGoogle Scholar
  67. 67.
    Turan S, Zehe C, Kuehle J, et al (2013) Recombinase-mediated cassette exchange (RMCE) – a rapidly-expanding toolbox for targeted genomic modifications. Gene 515(1):1–27. doi: 10.1016/j.gene.2012.11.016CrossRefPubMedGoogle Scholar
  68. 68.
    Kim MS, Lee GM (2008) Use of Flp-mediated cassette exchange in the development of a CHO cell line stably producing erythropoietin. J Microbiol Biotechnol 18(7):1342–1351PubMedGoogle Scholar
  69. 69.
    Kito M, Itami S, Fukano Y, et al (2002) Construction of engineered CHO strains for high-level production of recombinant proteins. Appl Microbiol Biotechnol 60(4):442–448. doi: 10.1007/s00253-002-1134-1CrossRefPubMedGoogle Scholar
  70. 70.
    Crawford Y, Zhou M, Hu Z, et al (2013) Fast identification of reliable hosts for targeted cell line development from a limited-genome screening using combined ϕC31 integrase and CRE-Lox technologies. Biotechnol Prog 29(5):1307–1315. doi: 10.1002/btpr.1783CrossRefPubMedGoogle Scholar
  71. 71.
    Zhang L, Inniss MC, Han S, et al (2015) Recombinase-mediated cassette exchange (RMCE) for monoclonal antibody expression in the commercially relevant CHOK1SV cell line. Biotechnol Prog 31(6):1645–1656. doi: 10.1002/btpr.2175CrossRefPubMedGoogle Scholar
  72. 72.
    Chandrasegaran S, Carroll D (2015) Origins of programmable nucleases for genome engineering. J Mol Biol 428:963. doi: 10.1016/j.jmb.2015.10.014CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Cristea S, Freyvert Y, Santiago Y, et al (2013) In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration. Biotechnol Bioeng 110(3):871–880. doi: 10.1002/bit.24733CrossRefPubMedGoogle Scholar
  74. 74.
    Sakuma T, Nakade S, Sakane Y, et al (2016) MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc 11(1):118–133. doi: 10.1038/nprot.2015.140CrossRefPubMedGoogle Scholar
  75. 75.
    Sakuma T, Takenaga M, Kawabe Y, et al (2015) Homologous recombination-independent large gene cassette knock-in in CHO cells using TALEN and MMEJ-directed donor plasmids. Int J Mol Sci 16(10):23849–23866. doi: 10.3390/ijms161023849CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Lee JS, Grav LM, Lewis NE, et al (2015) CRISPR/Cas9-mediated genome engineering of CHO cell factories: application and perspectives. Biotechnol J 10(7):979–994. doi: 10.1002/biot.201500082CrossRefPubMedGoogle Scholar
  77. 77.
    Lee JS, Kallehauge TB, Pedersen LE, et al (2015) Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Sci Rep 5:8572. doi: 10.1038/srep08572CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Bachu R, Bergareche I, Chasin LA (2015) CRISPR-Cas targeted plasmid integration into mammalian cells via non-homologous end joining. Biotechnol Bioeng 112(10):2154–2162. doi: 10.1002/bit.25629CrossRefPubMedGoogle Scholar
  79. 79.
    Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19(9):936–949. doi: 10.1093/glycob/cwp079CrossRefPubMedGoogle Scholar
  80. 80.
    Jiang XR, Song A, Bergelson S, Arroll T, Parekh B, May K, Chung S, Strouse R, Mire-Sluis A, Schenerman M (2011) Advances in the assessment and control of the effector functions of therapeutic antibodies. Nat Rev Drug Discovery 10(2):101–111. doi: 10.1038/nrd3365CrossRefPubMedGoogle Scholar
  81. 81.
    Dicker M, Strasser R (2015) Using glyco-engineering to produce therapeutic proteins. Expert Opin Biol Ther 15(10):1501–1516. doi: 10.1517/14712598.2015.1069271CrossRefPubMedGoogle Scholar
  82. 82.
    Meuris L, Santens F, Elson G, et al (2014) GlycoDelete engineering of mammalian cells simplifies N-glycosylation of recombinant proteins. Nat Biotechnol 32(5):485–489. doi: 10.1038/nbt.2885CrossRefPubMedGoogle Scholar
  83. 83.
    Monaco L, Marc A, Eon-Duval A, et al (1996) Genetic engineering of α2,6-sialyltransferase in recombinant CHO cells and its effects on the sialylation of recombinant interferon-γ. Cytotechnology 22(1–3):197–203. doi: 10.1007/BF00353939CrossRefPubMedGoogle Scholar
  84. 84.
    Weikert S, Papac D, Briggs J, et al (1999) Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat Biotechnol 17(11):1116–1121CrossRefPubMedGoogle Scholar
  85. 85.
    Lin N, Mascarenhas J, Sealover NR, et al (2015) Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression. Biotechnol Prog 31(2):334–346. doi: 10.1002/btpr.2038CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Yin B, Gao Y, Chung CY, Blake E, Stuczynski MC, Tang J, Kildegaard HF, Andersen MR, Zhang H, Betenbaugh MJ (2015) Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N-glycan branching and sialylation. Biotechnol Bioeng 112(11):2343–2351. doi: 10.1002/bit.25650CrossRefPubMedGoogle Scholar
  87. 87.
    Chung CY, Yin B, Wang Q, Chuang KY, Chu JH, Betenbaugh MJ (2015) Assessment of the coordinated role of ST3GAL3, ST3GAL4 and ST3GAL6 on the α2,3 sialylation linkage of mammalian glycoproteins. Biochem Biophys Res Common 463(3):211–215CrossRefGoogle Scholar
  88. 88.
    Goetze AM, Liu YD, Zhang Z, et al (2011) High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology 21(7):949–959. doi: 10.1093/glycob/cwr027CrossRefPubMedGoogle Scholar
  89. 89.
    Oganesyan V, Mazor Y, Yang C, et al (2015) Structural insights into the interaction of human IgG1 with FcgammaRI: no direct role of glycans in binding. Acta Crystallogr Sect D Biol Crystallogr 71(Pt 11):2354–2361. doi: 10.1107/S1399004715018015CrossRefGoogle Scholar
  90. 90.
    Wilke S, Groebe L, Maffenbeier V, et al (2011) Streamlining homogeneous glycoprotein production for biophysical and structural applications by targeted cell line development. PLoS One 6(12):e27829. doi: 10.1371/journal.pone.0027829CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Zhong X, Cooley C, Seth N, et al (2012) Engineering novel Lec1 glycosylation mutants in CHO-DUKX cells: molecular insights and effector modulation of N-acetylglucosaminyltransferase I. Biotechnol Bioeng 109(7):1723–1734. doi: 10.1002/bit.24448CrossRefPubMedGoogle Scholar
  92. 92.
    Sealover NR, Davis AM, Brooks JK, et al (2013) Engineering Chinese Hamster Ovary (CHO) cells for producing recombinant proteins with simple glycoforms by zinc-finger nuclease (ZFN) – mediated gene knock-out of mannosyl (alpha-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase (Mgat1). J Biotechnol 167(1):24–32. doi: 10.1016/j.jbiotec.2013.06.006CrossRefPubMedGoogle Scholar
  93. 93.
    Van Patten SM, Hughes H, Huff MR, et al (2007) Effect of mannose chain length on targeting of glucocerebrosidase for enzyme replacement therapy of Gaucher disease. Glycobiology 17(5):467–478. doi: 10.1093/glycob/cwm008CrossRefPubMedGoogle Scholar
  94. 94.
    Goh JS, Liu Y, Chan KF, et al (2014) Producing recombinant therapeutic glycoproteins with enhanced sialylation using CHO-gmt4 glycosylation mutant cells. Bioengineered 5(4):269–273. doi: 10.4161/bioe.29490CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Goh JS, Liu Y, Liu H, et al (2014) Highly sialylated recombinant human erythropoietin production in large-scale perfusion bioreactor utilizing CHO-gmt4 (JW152) with restored GnT I function. Biotechnol J 9(1):100–109. doi: 10.1002/biot.201300301CrossRefPubMedGoogle Scholar
  96. 96.
    Lin N, Davis D, Sealover NR et al (2013) Mgat4 may play a role in increased sialylation by overexpressing functional MGAT1 in Mgat1-disrupted Chinese Hamster Ovary (CHO) cells. In: Anonymous bioprocess international conference and exhibition 2013, Boston, MA, Sept 2013Google Scholar
  97. 97.
    Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, et al (2004) Establishment of FUT8 knock-out Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87(5):614–622. doi: 10.1002/bit.20151CrossRefPubMedGoogle Scholar
  98. 98.
    Malphettes L, Freyvert Y, Chang J, et al (2010) Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies. Biotechnol Bioeng 106(5):774–783. doi: 10.1002/bit.22751CrossRefPubMedGoogle Scholar
  99. 99.
    Grav LM, Lee JS, Gerling S, et al (2015) One-step generation of triple knock-out CHO cell lines using CRISPR/Cas9 and fluorescent enrichment. Biotechnol J 10(9):1446–1456. doi: 10.1002/biot.201500027CrossRefPubMedGoogle Scholar
  100. 100.
    Haryadi R, Zhang P, Chan KF, et al (2013) CHO-gmt5, a novel CHO glycosylation mutant for producing afucosylated and asialylated recombinant antibodies. Bioengineered 4(2):90–94. doi: 10.4161/bioe.22262CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    von Horsten HH, Ogorek C, Blanchard V, et al (2010) Production of non-fucosylated antibodies by co-expression of heterologous GDP-6-deoxy-D-lyxo-4-hexulose reductase. Glycobiology 20(12):1607–1618. doi: 10.1093/glycob/cwq109CrossRefGoogle Scholar
  102. 102.
    Yang Z, Halim A, Narimatsu Y, et al (2014) The GalNAc-type O-glycoproteome of CHO cells characterized by the SimpleCell strategy. Mol Cell Proteomics 13(12):3224–3235. doi: 10.1074/mcp.M114.041541CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Estes B, Hsu YR, Tam LT, et al (2015) Uncovering methods for the prevention of protein aggregation and improvement of product quality in a transient expression system. Biotechnol Prog 31(1):258–267. doi: 10.1002/btpr.2021CrossRefPubMedGoogle Scholar
  104. 104.
    Le Fourn V, Girod PA, Buceta M, et al (2014) CHO cell engineering to prevent polypeptide aggregation and improve therapeutic protein secretion. Metab Eng 21:91–102. doi: 10.1016/j.ymben.2012.12.003CrossRefPubMedGoogle Scholar
  105. 105.
    Pybus LP, Dean G, West NR, et al (2014) Model-directed engineering of “difficult-to-express” monoclonal antibody production by Chinese hamster ovary cells. Biotechnol Bioeng 111(2):372–385. doi: 10.1002/bit.25116CrossRefPubMedGoogle Scholar
  106. 106.
    Johari YB, Estes SD, Alves CS, et al (2015) Integrated cell and process engineering for improved transient production of a “difficult-to-express” fusion protein by CHO cells. Biotechnol Bioeng 112(12):2527–2542. doi: 10.1002/bit.25687CrossRefPubMedGoogle Scholar
  107. 107.
    Gulis G, Simi KC, de Toledo RR, Maranhao Q, Brigido MM (2014) Optimization of heterologous protein production in Chinese hamster ovary cues under overexpression of spliced form of human X-box binding protein. BMC Biotechnol 14:26. doi: 10.1186/1472-6750-14-26CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Misaghi S, Chang J, Snedecor B (2014) It’s time to regulate: coping with product-induced nongenetic clonal instability in CHO cell lines via regulated protein expression. Biotechnol Prog 30(6):1432–1440. doi: 10.1002/btpr.1970CrossRefPubMedGoogle Scholar
  109. 109.
    Romand S, Jostock T, Fornaro M, et al (2015) Improving expression of recombinant human IGF-1 using IGF-1R knock-out CHO cell lines. Biotechnol Bioeng 113:1094. doi: 10.1002/bit.25877CrossRefGoogle Scholar
  110. 110.
    Alves CS, Gilbert A, Dalvi S, et al (2015) Integration of cell line and process development to overcome the challenge of a difficult to express protein. Biotechnol Prog 31(5):1201–1211. doi: 10.1002/btpr.2091CrossRefPubMedGoogle Scholar
  111. 111.
    Chakrabarti A, Chen AW, Varner JD (2011) A review of the mammalian unfolded protein response. Biotechnol Bioeng 108(12):2777–2793. doi: 10.1002/bit.23282CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Du Z, Treiber D, McCoy RE, et al (2013) Non-invasive UPR monitoring system and its applications in CHO production cultures. Biotechnol Bioeng 110(8):2184–2194. doi: 10.1002/bit.24877CrossRefPubMedGoogle Scholar
  113. 113.
    Kober L, Zehe C, Bode J (2012) Development of a novel ER stress based selection system for the isolation of highly productive clones. Biotechnol Bioeng 109(10):2599–2611. doi: 10.1002/bit.24527CrossRefPubMedGoogle Scholar
  114. 114.
    Kober L, Zehe C, Bode J (2013) Optimized signal peptides for the development of high expressing CHO cell lines. Biotechnol Bioeng 110(4):1164–1173. doi: 10.1002/bit.24776CrossRefPubMedGoogle Scholar
  115. 115.
    Ishii Y, Murakami J, Sasaki K, et al (2014) Efficient folding/assembly in Chinese hamster ovary cells is critical for high quality (low aggregate content) of secreted trastuzumab as well as for high production: stepwise multivariate regression analyses. J Biosci Bioeng 118(2):223–230. doi: 10.1016/j.jbiosc.2014.01.013CrossRefPubMedGoogle Scholar
  116. 116.
    Onitsuka M, Kawaguchi A, Asano R, et al (2014) Glycosylation analysis of an aggregated antibody produced by Chinese hamster ovary cells in bioreactor culture. J Biosci Bioeng 117(5):639–644. doi: 10.1016/j.jbiosc.2013.11.001CrossRefPubMedGoogle Scholar
  117. 117.
    Gomez N, Subramanian J, Ouyang J, et al (2012) Culture temperature modulates aggregation of recombinant antibody in cho cells. Biotechnol Bioeng 109(1):125–136. doi: 10.1002/bit.23288CrossRefPubMedGoogle Scholar
  118. 118.
    Han YK, Koo TY, Lee GM (2009) Enhanced interferon-beta production by CHO cells through elevated osmolality and reduced culture temperature. Biotechnol Prog 25(5):1440–1447. doi: 10.1002/btpr.234CrossRefPubMedGoogle Scholar
  119. 119.
    Hansen HG, Nilsson CN, Lund AM, Kol S, Grav LM, Lundqvist M, Roclberg J, Lee GM, Andersen MR, Kildegaard HF (2015) Versatile microscale screening platform for improving recombinant protein productivity in Chinese hamster ovary cells. Sci Rep 5:18016. doi: 10.1038/srep18016CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Geisse S, Voedisch B (2012) Transient expression technologies: past, present, and future. Methods Mol Biol 899:203–219. doi: 10.1007/978-1-61779-921-1_13CrossRefPubMedGoogle Scholar
  121. 121.
    Bohm E, Seyfried BK, Dockal M, et al (2015) Differences in N-glycosylation of recombinant human coagulation factor VII derived from BHK, CHO, and HEK293 cells. BMC Biotechnol 15:87. doi: 10.1186/s12896-015-0205-1CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Croset A, Delafosse L, Gaudry JP, et al (2012) Differences in the glycosylation of recombinant proteins expressed in HEK and CHO cells. J Biotechnol 161(3):336–348. doi: 10.1016/j.jbiotec.2012.06.038CrossRefPubMedGoogle Scholar
  123. 123.
    Rajendra Y, Balasubramanian S, Kiseljak D, Baldi L, Wurm FM, Hacker DL (2015) Enhanced plasmid DNA utilization in transiently transfected CHO-DG44 cells in the presence of polar solvents. Biotechnol Prog 31(6):1571–1578. doi: 10.1002/btpr.2152CrossRefPubMedGoogle Scholar
  124. 124.
    Rajendra Y, Hougland MD, Alam R, et al (2015) A high cell density transient transfection system for therapeutic protein expression based on a CHO GS-knock-out cell line: process development and product quality assessment. Biotechnol Bioeng 112(5):977–986. doi: 10.1002/bit.25514CrossRefPubMedGoogle Scholar
  125. 125.
    Jager V, Bussow K, Schirrmann T (2015) Transient recombinant protein expression in mammalian cells. In: Al-Rubeai M (ed) Animal cell culture, Cell engineering, vol 9. Springer, Cham. doi: 10.1007/978-3-319-10320-4_2CrossRefGoogle Scholar
  126. 126.
    Codamo J, Munro TP, Hughes BS, Song M, Gray PP (2011) Enhanced CHO cell-based transient gene expression with the epi-CHO expression system. Mol Biotechnol 48(2):109–115. doi: 10.1007/s12033-010-9351-9CrossRefPubMedGoogle Scholar
  127. 127.
    Kunaparaju R, Liao M, Sunstrom NA (2005) Epi-CHO, an episomal expression system for recombinant protein production in CHO cells. Biotechnol Bioeng 91(6):670–67677CrossRefPubMedGoogle Scholar
  128. 128.
    Daramola O, Stevenson J, Dean G, et al (2014) A high-yielding CHO transient system: coexpression of genes encoding EBNA-1 and GS enhances transient protein expression. Biotechnol Prog 30(1):132–141. doi: 10.1002/btpr.1809CrossRefPubMedGoogle Scholar
  129. 129.
    Cain K, Peters S, Hailu H, Sweeney B, Stephens P, Heads J, Sarkar K, Ventom A, Page C, Dickson A (2013) A CHO cell line engineered to express XBP1 and ERO-Lα has increased levels of transient protein expression. Biotechnol Prog 29(3):697–706. doi: 10.1002/btpr.1693CrossRefPubMedGoogle Scholar
  130. 130.
    Rajendra Y, Kiseljak D, Baldi L, Hacker DL, Wurm FM (2011) A simple high-yielding process for transient gene expression in CHO cells. J Biotechnol 153(1–2):22–26. doi: 10.1016/j.jbiotec.2011.03.001CrossRefPubMedGoogle Scholar
  131. 131.
    Rajendra Y, Kiseljak D, Baldi L, Hacker DL, Wurm FM (2012) Reduced glutamine concentration improves protein production in growth-arrested CHO-DG44 and HEK-293E cells. Biotechnol Lett 34(4):619–626. doi: 10.1007/s10529-011-0809-zCrossRefPubMedGoogle Scholar
  132. 132.
    International Committee for Harmonization Topic Q5D (ICH Q5D) (1997) Derivation and characterisation of cell substrates used for production of biotechnological/biological products (CPMP/ICH/294/95). International conference on harmonisation of technical requirements for registration of pharmaceuticals for human useGoogle Scholar
  133. 133.
    Nakamura T, Omasa T (2015) Optimization of cell line development in the GS-CHO expression system using a high-throughput, single cell-based clone selection system. J Biosci Bioeng 120(3):323–329. doi: 10.1016/j.jbiosc.2015.01.002CrossRefPubMedGoogle Scholar
  134. 134.
    Evans K, Albanetti T, Venkat R, et al (2015) Assurance of monoclonality in one round of cloning through cell sorting for single cell deposition coupled with high resolution cell imaging. Biotechnol Prog 31(5):1172–1178. doi: 10.1002/btpr.2145CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Mazutis L, Gilbert J, Ung WL, et al (2013) Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc 8(5):870–891. doi: 10.1038/nprot.2013.046CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Joensson HN, Zhang C, Uhlen M, et al (2012) A homogeneous assay for protein analysis in droplets by fluorescence polarization. Electrophoresis 33(3):436–439. doi: 10.1002/elps.201100350CrossRefPubMedGoogle Scholar
  137. 137.
    Gross A, Schondube J, Niekrawitz S, et al (2013) Single-cell printer: automated, on demand, and label free. J Lab Autom 18(6):504–518. doi: 10.1177/2211068213497204CrossRefPubMedGoogle Scholar
  138. 138.
    Stumpf F, Schoendube J, Gross A, et al (2015) Single-cell PCR of genomic DNA enabled by automated single-cell printing for cell isolation. Biosens Bioelectron 69:301–306. doi: 10.1016/j.bios.2015.03.008CrossRefPubMedGoogle Scholar
  139. 139.
    Silk NJ, Denby S, Lewis G, et al (2010) Fed-batch operation of an industrial cell culture process in shaken microwells. Biotechnol Lett 32(1):73–78. doi: 10.1007/s10529-009-0124-0CrossRefPubMedGoogle Scholar
  140. 140.
    Hsu WT, Aulakh RP, Traul DL, et al (2012) Advanced microscale bioreactor system: a representative scale-down model for bench-top bioreactors. Cytotechnology 64(6):667–678. doi: 10.1007/s10616-012-9446-1CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Rameez S, Mostafa SS, Miller C, et al (2014) High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control. Biotechnol Prog 30(3):718–727. doi: 10.1002/btpr.1874CrossRefPubMedGoogle Scholar
  142. 142.
    Paul AJ, Schwab K, Hesse F (2014) Direct analysis of mAb aggregates in mammalian cell culture supernatant. BMC Biotechnol 14:99. doi: 10.1186/s12896-014-0099-3CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Reusch D, Haberger M, Selman MH, et al (2013) High-throughput work flow for IgG Fc-glycosylation analysis of biotechnological samples. Anal Biochem 432(2):82–89. doi: 10.1016/j.ab.2012.09.032CrossRefPubMedGoogle Scholar
  144. 144.
    Yang Y, Strahan A, Li C, et al (2010) Detecting low level sequence variants in recombinant monoclonal antibodies. mAbs 2(3):285–298. doi: 10.4161/mabs.2.3.11718CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Ambrogelly A, Liu YH, Li H, et al (2012) Characterization of antibody variants during process development: the tale of incomplete processing of N-terminal secretion peptide. mAbs 4(6):701–709. doi: 10.4161/mabs.21614CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Harris RP, Kilby PM (2014) Amino acid misincorporation in recombinant biopharmaceutical products. Curr Opin Biotechnol 30:45–50. doi: 10.1016/j.copbio.2014.05.003CrossRefPubMedGoogle Scholar
  147. 147.
    Khetan A, Huang YM, Dolnikova J, et al (2010) Control of misincorporation of serine for asparagine during antibody production using CHO cells. Biotechnol Bioeng 107(1):116–123. doi: 10.1002/bit.22771CrossRefPubMedGoogle Scholar
  148. 148.
    Kaas CS, Kristensen C, Betenbaugh MJ, et al (2015) Sequencing the CHO DXB11 genome reveals regional variations in genomic stability and haploidy. BMC Genomics 16:160. doi: 10.1186/s12864-015-1391-xCrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Wright C, Groot J, Swahn S, McLaughlin H, Liu M, Xu C, Sun C, Zheng E, Estes S (2016) Genetic mutation analysis at early stages of cell line development using next generation sequencing. Biotechnol Prog 32(3):813–817. doi: 10.1002/btpr.2263CrossRefPubMedGoogle Scholar
  150. 150.
    Zhang S, Bartkowiak L, Nabiswa B, Mishra P, Fann J, Ouelette D, Correia I, Da R, Liu J (2015) Identifying low-level sequence variants via next generation sequencing to aid stable CHO cell line screening. Biotechnol Prog 31(4):1077–1085CrossRefPubMedGoogle Scholar
  151. 151.
    Kremkow BG, Lee KH (2015) Sequencing technologies for animal cell culture research. Biotechnol Lett 37(1):55–65. doi: 10.1007/s10529-014-1660-9CrossRefPubMedGoogle Scholar
  152. 152.
    de Vree PJ, de Wit E, Yilmaz M, et al (2014) Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nat Biotechnol 32(10):1019–1025. doi: 10.1038/nbt.2959CrossRefPubMedGoogle Scholar
  153. 153.
    Cabannes E, Hebert C, Eloit M (2014) Whole genome: next-generation sequencing as a virus safety test for biotechnological products. PDA J Pharm Sci Technol 68(6):631–638. doi: 10.5731/pdajpst.2014.01015CrossRefPubMedGoogle Scholar
  154. 154.
    Khan AS, Vacante DA (2014) Advanced technologies for virus detection in the evaluation of biologicals- applications and challenges. PDA Journal Pharm Sci and Technol 68:546–547. doi: 10.5731/pdajpst.2014.01028CrossRefGoogle Scholar
  155. 155.
    Mee ET, Preston MD, Minor PD, Schepelmann S (2016) Development of a candidate reference material for adventitious virus detection in vaccine and biologicals manufacturing by deep sequencing. Vaccine 12(34):2035. doi: 10.1016/j.vaccine.2015.12.020CrossRefGoogle Scholar
  156. 156.
    Laux H, Romand S, Ritter A, Oertli M, Fornaro M, Jostock T, Wilms B (2013) Generation of genetically engineered CHO cell lines to support the production of a difficult to express therapeutic protein. BMC Proc 7:P1CrossRefPubMedCentralGoogle Scholar
  157. 157.
    Kildegaard HF, Baycin-Hizal D, Lewis NE, et al (2013) The emerging CHO systems biology era: harnessing the ‘omics revolution for biotechnology. Curr Opin Biotechnol 24(6):1102–1107. doi: 10.1016/j.copbio.2013.02.007CrossRefPubMedGoogle Scholar
  158. 158.
    Gutierrez JM, Lewis NE (2015) Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling. Biotechnol J 10(7):939–949. doi: 10.1002/biot.201400647CrossRefPubMedGoogle Scholar
  159. 159.
    Jadhav V, Hackl M, Druz A, et al (2013) CHO microRNA engineering is growing up: recent successes and future challenges. Biotechnol Adv 31(8):1501–1513. doi: 10.1016/j.biotechadv.2013.07.007CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Fischer S, Buck T, Wagner A, et al (2014) A functional high-content miRNA screen identifies miR-30 family to boost recombinant protein production in CHO cells. Biotechnol J 9(10):1279–1292. doi: 10.1002/biot.201400306CrossRefPubMedGoogle Scholar
  161. 161.
    Jadhav V, Hackl M, Klanert G, et al (2014) Stable overexpression of miR-17 enhances recombinant protein production of CHO cells. J Biotechnol 175:38–44. doi: 10.1016/j.jbiotec.2014.01.032CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Lienert F, Lohmueller JJ, Abhishek G, Silver PA (2014) Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nat Rev Mol Cell Biol 15:95–107. doi: 10.1038/nrm3738CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Xie M, Fussenegger M (2015) Mammalian designer cells: engineering principles and biomedical applications. Biotechnol J 10(7):1005–1018. doi: 10.1002/biot.201400642CrossRefPubMedGoogle Scholar
  164. 164.
    Brown AJ, James DC (2016) Precision control of recombinant gene transcription for CHO cell synthetic biology. Biotechnol Adv 34(5):492–503. doi: 10.1016/jbiotechadv.2015.12.012CrossRefPubMedGoogle Scholar
  165. 165.
    Lund AM, Kildegaard HF, Petersen MB, et al (2014) A versatile system for USER cloning-based assembly of expression vectors for mammalian cell engineering. PLoS One 9(5):e96693. doi: 10.1371/journal.pone.0096693CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Nielsen L, Borth N (2015) Editorial: on the cusp of rational CHO cell engineering. Biotechnol J 10(7):929–930. doi: 10.1002/biot.201500375CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.MedImmuneGaithersburgUSA
  2. 2.MedImmuneCambridgeUK

Personalised recommendations