Skip to main content

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 158))

Abstract

This chapter presents the current state of research on bioelectrochemical systems that include phototrophic organisms. First, we describe what is known of how phototrophs transfer electrons from internal metabolism to external substrates. This includes efforts to understand both the source of electrons and transfer pathways within cells. Second, we consider technological progress toward producing bio-photovoltaic devices with phototrophs. Efforts to improve these devices by changing the species included, the electrode surfaces, and chemical mediators are described. Finally, we consider future directions for this research field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BES:

Bio-electrochemical system

BPV:

Bio-photovoltaic cell

CCCP:

Carbonyl cyanide m-chlorophenyl hydrazone

DBMIB:

2,5-Dibromo-3-methyl-6-isopropylbenzoquinone

DCMU:

3-(3,4-Dichlorophenyl)-1,1-dimethylurea

EET:

Extracellular electron transfer

ITO:

Indium tin oxide

KCN:

Potassium ferricyanide

MET:

Microbial electrochemical technologies

MFC:

Microbial fuel cell

PCP:

Pentachlorophenol

PMA:

Phenyl mercuric acetate

PMFC:

Photosynthetic microbial fuel cell

PSII:

Photosystem II

References

  1. Blankenship RE et al. (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809

    Article  CAS  Google Scholar 

  2. Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–690

    Article  CAS  Google Scholar 

  3. Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. Mbio 1

    Google Scholar 

  4. Rabaey K, Rozendal RA (2010) Microbial electrosynthesis – revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716

    Article  CAS  Google Scholar 

  5. Chandra R, Modestra JA, Mohan SV (2015) Biophotovoltaic cell to harness bioelectricity from acidogenic wastewater associated with microbial community profiling. Fuel 160:502–512

    Article  CAS  Google Scholar 

  6. Zou YJ, Pisciotta J, Billmyre RB, Baskakov IV (2009) Photosynthetic microbial fuel cells with positive light response. Biotechnol Bioeng 104:939–946

    Article  CAS  Google Scholar 

  7. Brutinel ED, Gralnick JA (2012) Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl Microbiol Biotechnol 93:41–48

    Article  Google Scholar 

  8. Okamoto A, Nakamura R, Nealson KH, Hashimoto K (2014) Bound flavin model suggests similar electron-transfer mechanisms in Shewanella and Geobacter. ChemElectroChem 1:1808–1812

    Article  CAS  Google Scholar 

  9. Edwards MJ et al. (2015) Redox linked flavin sites in extracellular decaheme proteins involved in microbe-mineral electron transfer. Sci Rep 5

    Google Scholar 

  10. Kotloski NJ, Gralnick JA (2013) Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. Mbio 4

    Google Scholar 

  11. Marsili E et al. (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 105:3968–3973

    Article  CAS  Google Scholar 

  12. Ochiai H, Shibata H, Sawa Y, Shoga M, Ohta S (1983) Properties of semiconductor electrodes coated with living films of cyanobacteria. Appl Biochem Biotechnol 8:289–303

    Article  CAS  Google Scholar 

  13. Yagishita T, Sawayama S, Tsukahara KI, Ogi T (1997) Effects of intensity of incident light and concentrations of Synechococcus sp. and 2-hydroxy-1,4-naphthoquinone on the current output of photosynthetic electrochemical cell. Solar Energy 61:347–353

    Article  CAS  Google Scholar 

  14. Bombelli P et al. (2011) Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energ Environ Sci 4:4690–4698

    Article  CAS  Google Scholar 

  15. Longatte G et al. (2015) Evaluation of photosynthetic electrons derivation by exogenous redox mediators. Biophys Chem 205:1–8

    Article  CAS  Google Scholar 

  16. Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20:264–271

    Article  CAS  Google Scholar 

  17. Rosenbaum M, Schroder U, Scholz F (2005) Utilizing the green alga Chlamydomonas reinhardtii for microbial electricity generation: a living solar cell. Appl Microbiol Biotechnol 68:753–756

    Article  CAS  Google Scholar 

  18. Berk RS, Canfield JH (1964) Bioelectrochemical energy conversion. Appl Microbiol 12:102

    Google Scholar 

  19. Rosenbaum M, Schroder U, Scholz F (2005) In situ electrooxidation of photobiological hydrogen in a photobioelectrochemical fuel cell based on Rhodobacter sphaeroides. Environ Sci Technol 39:6328–6333

    Article  CAS  Google Scholar 

  20. Cho YK et al. (2008) Development of a solar-powered microbial fuel cell. J Appl Microbiol 104:640–650

    Article  CAS  Google Scholar 

  21. Newman DK, Kolter R (2000) A role for excreted quinones in extracellular electron transfer. Nature 405:94–97

    Article  CAS  Google Scholar 

  22. Bradley RW, Bombelli P, Rowden SJL, Howe CJ (2012) Biological photovoltaics: intra- and extra-cellular electron transport by cyanobacteria. Biochem Soc Trans 40:1302–1307

    Article  CAS  Google Scholar 

  23. El-Naggar MY et al. (2010) Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci U S A 107:18127–18131

    Article  CAS  Google Scholar 

  24. Reguera G et al. (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  CAS  Google Scholar 

  25. Pirbadian S et al. (2014) Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci U S A 111:12883–12888

    Article  CAS  Google Scholar 

  26. Alves MN et al. (2015) Characterization of the periplasmic redox network that sustains the versatile anaerobic metabolism of Shewanella oneidensis MR-1. Front Microbiol 6

    Google Scholar 

  27. Fonseca BM et al. (2013) Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1. Biochem J 449:101–108

    Article  CAS  Google Scholar 

  28. Sturm G et al. (2015) A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime. ISME J 9:1802–1811

    Article  Google Scholar 

  29. Jensen HM et al. (2010) Engineering of a synthetic electron conduit in living cells. Proc Natl Acad Sci U S A 107:19213–19218

    Article  CAS  Google Scholar 

  30. Gorby YA et al. (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 103:11358–11363

    Article  CAS  Google Scholar 

  31. Pisciotta JM, Zou Y, Baskakov IV (2010) Light-dependent electrogenic activity of cyanobacteria. PLoS One 5

    Google Scholar 

  32. Cereda A et al. (2014) A bioelectrochemical approach to characterize extracellular electron transfer by Synechocystis sp. PCC 6803. PLoS One 9

    Google Scholar 

  33. Sekar N, Umasankar Y, Ramasamy RP (2014) Photocurrent generation by immobilized cyanobacteria via direct electron transport in photo-bioelectrochemical cells. Phys Chem Chem Phys 16:7862–7871

    Article  CAS  Google Scholar 

  34. Huang LF, Lin JY, Pan KY, Huang CK, Chu YK (2015) Overexpressing ferredoxins in Chlamydomonas reinhardtii increase starch and oil yields and enhance electric power production in a photo microbial fuel cell. Int J Mol Sci 16:19308–19325

    Article  Google Scholar 

  35. McCormick AJ et al. (2011) Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energ Environ Sci 4:4699–4709

    Article  CAS  Google Scholar 

  36. Mullineaux CW (2014) Co-existence of photosynthetic and respiratory activities in cyanobacterial thylakoid membranes. Biochim Biophys Acta 1837:503–511

    Article  CAS  Google Scholar 

  37. Pisciotta JM, Zou YJ, Baskakov IV (2011) Role of the photosynthetic electron transfer chain in electrogenic activity of cyanobacteria. Appl Microbiol Biotechnol 91:377–385

    Article  CAS  Google Scholar 

  38. Darus L, Ledezma P, Keller J, Freguia S (2016) Marine phototrophic consortia transfer electrons to electrodes in response to reductive stress. Photosynth Res 127:347–354

    Article  CAS  Google Scholar 

  39. Trubitsin BV et al. (2005) EPR study of electron transport in the cyanobacterium Synechocystis sp. PCC 6803: oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains. Biochim Biophys Acta 1708:238–249

    Article  CAS  Google Scholar 

  40. Pisareva T et al. (2011) Model for membrane organization and protein sorting in the cyanobacterium Synechocystis sp. PCC 6803 inferred from proteomics and multivariate sequence analyses. J Proteome Res 10:3617–3631

    Article  CAS  Google Scholar 

  41. Lea-Smith DJ, Bombelli P, Vasudevan R, Howe CJ (2016) Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochim Biophys Acta 1857:247–255

    Article  CAS  Google Scholar 

  42. Sekar N, Jain R, Yan Y, Ramasamy RP (2016) Enhanced photo-bioelectrochemical energy conversion by genetically engineered cyanobacteria. Biotechnol Bioeng 113:675–679

    Article  CAS  Google Scholar 

  43. Cao XX, Huang X, Boon N, Liang P, Fan MZ (2008) Electricity generation by an enriched phototrophic consortium in a microbial fuel cell. Electrochem Commun 10:1392–1395

    Article  CAS  Google Scholar 

  44. Darus L, Lu Y, Ledezma P, Keller J, Freguia S (2015) Fully reversible current driven by a dual marine photosynthetic microbial community. Bioresour Technol 195:248–253

    Article  CAS  Google Scholar 

  45. Badalamenti JP, Torres CI, Krajmalnik-Brown R (2013) Light-responsive current generation by phototrophically enriched anode biofilms dominated by green sulfur bacteria. Biotechnol Bioeng 110:1020–1027

    Article  CAS  Google Scholar 

  46. Nishio K, Hashimoto K, Watanabe K (2010) Light/electricity conversion by a self-organized photosynthetic biofilm in a single-chamber reactor. Appl Microbiol Biotechnol 86:957–964

    Article  CAS  Google Scholar 

  47. Fu CC, Hung TC, Wu WT, Wen TC, Su CH (2010) Current and voltage responses in instant photosynthetic microbial cells with Spirulina platensis. Biochem Eng J 52:175–180

    Article  CAS  Google Scholar 

  48. Luimstra VM et al. (2014) A cost-effective microbial fuel cell to detect and select for photosynthetic electrogenic activity in algae and cyanobacteria. J Appl Phycol 26:15–23

    Article  CAS  Google Scholar 

  49. Ng FL, Phang SM, Periasamy V, Yunus K, Fisher AC (2014) Evaluation of algal biofilms on indium tin oxide (ITO) for use in biophotovoltaic platforms based on photosynthetic performance. PLoS One 9:13

    Google Scholar 

  50. Schneider K, Thorne RJ, Cameron PJ (2016) An investigation of anode and cathode materials in photomicrobial fuel cells. Philos Trans R Soc A Math Phys Eng Sci 374

    Google Scholar 

  51. Bombelli P et al. (2012) Surface morphology and surface energy of anode materials influence power outputs in a multi-channel mediatorless bio-photovoltaic (BPV) system. Phys Chem Chem Phys 14:12221–12229

    Article  CAS  Google Scholar 

  52. Thorne R et al. (2011) Porous ceramic anode materials for photo-microbial fuel cells. J Mater Chem 21:18055–18060

    Article  CAS  Google Scholar 

  53. Zou YJ, Pisciotta J, Baskakov IV (2010) Nanostructured polypyrrole-coated anode for sun-powered microbial fuel cells. Bioelectrochemistry 79:50–56

    Article  CAS  Google Scholar 

  54. Hasan K et al. (2015) Photoelectrochemical wiring of Paulschulzia pseudovolvox (algae) to osmium polymer modified electrodes for harnessing solar energy. Adv Energy Mater 5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne K. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Laureanti, J.A., Jones, A.K. (2016). Photosynthetic Microbial Fuel Cells. In: Jeuken, L. (eds) Biophotoelectrochemistry: From Bioelectrochemistry to Biophotovoltaics. Advances in Biochemical Engineering/Biotechnology, vol 158. Springer, Cham. https://doi.org/10.1007/10_2016_48

Download citation

Publish with us

Policies and ethics