Skip to main content

Gene Expression Analysis Through Network Biology: Bioinformatics Approaches

  • Chapter
  • First Online:
Network Biology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 160))

Abstract

Following the availability of high-throughput technologies, vast amounts of biological data have been generated. Gene expression is one example of the popular data that has been utilized for studying cellular systems in the transcriptional level. Several bioinformatics approaches have been developed to analyze such data. A typical expression analysis identifies a ranked list of individual significant differentially expressed genes between two conditions of interest. However, it has been accepted that biomolecules in a living organism are working together and interacting with each other. Study through network analysis could be complementary to typical expression analysis and provides more contexts to understanding the biological systems. Conversely, expression data could provide clues to functional links between biomolecules in biological networks. In this chapter, bioinformatics approaches to analyze expression data in network levels including basic concepts of network biology are described. Different concepts to integrate expression data with interactome data and example studies are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  Google Scholar 

  2. Subramanian A et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550

    Article  CAS  Google Scholar 

  3. Mitra K et al (2013) Integrative approaches for finding modular structure in biological networks. Nat Rev Genet 14(10):719–732

    Article  CAS  Google Scholar 

  4. Markowetz F (2010) How to understand the cell by breaking it: network analysis of gene perturbation screens. PLoS Comput Biol 6(2):e1000655

    Article  Google Scholar 

  5. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113

    Article  CAS  Google Scholar 

  6. Vidal M, Cusick ME, Barabasi AL (2011) Interactome networks and human disease. Cell 144(6):986–998

    Article  CAS  Google Scholar 

  7. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340(6230):245–246

    Article  CAS  Google Scholar 

  8. Rolland T et al (2014) A proteome-scale map of the human interactome network. Cell 159(5):1212–1226

    Article  CAS  Google Scholar 

  9. Ito T et al (2000) Toward a protein-protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad Sci U S A 97(3):1143–1147

    Article  CAS  Google Scholar 

  10. Giot L et al (2003) A protein interaction map of Drosophila melanogaster. Science 302(5651):1727–1736

    Article  CAS  Google Scholar 

  11. Li S et al (2004) A map of the interactome network of the metazoan C. elegans. Science 303(5657):540–543

    Article  CAS  Google Scholar 

  12. Walhout AJ, Vidal M (2001) Protein interaction maps for model organisms. Nat Rev Mol Cell Biol 2(1):55–62

    Article  CAS  Google Scholar 

  13. Rigaut G et al (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17(10):1030–1032

    Article  CAS  Google Scholar 

  14. Collins SR et al (2007) Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol Cell Proteomics 6(3):439–450

    Article  CAS  Google Scholar 

  15. Kuhner S et al (2009) Proteome organization in a genome-reduced bacterium. Science 326(5957):1235–1240

    Article  Google Scholar 

  16. Seebacher J, Gavin AC (2011) SnapShot: protein-protein interaction networks. Cell 144(6):1000, 1000 e1

    Google Scholar 

  17. Bader GD, Betel D, Hogue CW (2003) BIND: the biomolecular interaction network database. Nucleic Acids Res 31(1):248–250

    Article  CAS  Google Scholar 

  18. Chatr-Aryamontri A et al (2015) The BioGRID interaction database: 2015 update. Nucleic Acids Res 43(Database issue):D470–D478

    Article  Google Scholar 

  19. Han K et al (2004) HPID: the human protein interaction database. Bioinformatics 20(15):2466–2470

    Article  CAS  Google Scholar 

  20. Keshava Prasad TS et al (2009) Human protein reference database—2009 update. Nucleic Acids Res 37(Database issue):D767–D772

    Article  CAS  Google Scholar 

  21. Licata L et al (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 40(Database issue):D857–D861

    Article  CAS  Google Scholar 

  22. Murali T et al (2011) DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for Drosophila. Nucleic Acids Res 39(Database issue):D736–D743

    Article  CAS  Google Scholar 

  23. Orchard S et al (2014) The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 42(Database issue):D358–D363

    Article  CAS  Google Scholar 

  24. Salwinski L et al (2004) The database of interacting proteins: 2004 update. Nucleic Acids Res 32(Database issue):D449–D451

    Article  CAS  Google Scholar 

  25. Pagel P et al (2005) The MIPS mammalian protein-protein interaction database. Bioinformatics 21(6):832–834

    Article  CAS  Google Scholar 

  26. Szklarczyk D et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–D452

    Article  Google Scholar 

  27. Ouwerkerk PB, Meijer AH (2001) Yeast one-hybrid screening for DNA-protein interactions. Curr Protoc Mol Biol Chap 12:Unit 12. 12

    Google Scholar 

  28. Nelson JD, Denisenko O, Bomsztyk K (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 1(1):179–185

    Article  CAS  Google Scholar 

  29. Newman RH et al (2013) Construction of human activity-based phosphorylation networks. Mol Syst Biol 9:655

    Article  Google Scholar 

  30. Hu J et al (2014) PhosphoNetworks: a database for human phosphorylation networks. Bioinformatics 30(1):141–142

    Article  CAS  Google Scholar 

  31. Hornbeck PV et al (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43(Database issue):D512–D520

    Article  Google Scholar 

  32. Sethupathy P, Corda B, Hatzigeorgiou AG (2006) TarBase: a comprehensive database of experimentally supported animal microRNA targets. RNA 12(2):192–197

    Article  CAS  Google Scholar 

  33. Lapointe CP et al (2015) Protein-RNA networks revealed through covalent RNA marks. Nat Methods 12(12):1163–1170

    Article  CAS  Google Scholar 

  34. Hume MA et al (2015) UniPROBE, update 2015: new tools and content for the online database of protein-binding microarray data on protein-DNA interactions. Nucleic Acids Res 43(Database issue):D117–D122

    Article  Google Scholar 

  35. Mathelier A et al (2016) JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 44(D1):D110–D115

    Article  Google Scholar 

  36. Matys V et al (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31(1):374–378

    Article  CAS  Google Scholar 

  37. Dinkel H et al (2011) Phospho.ELM: a database of phosphorylation sites—update 2011. Nucleic Acids Res 39(Database issue):D261–D267

    Google Scholar 

  38. Gnad F, Gunawardena J, Mann M (2011) PHOSIDA 2011: the posttranslational modification database. Nucleic Acids Res 39(Database issue):D253–D260

    Article  CAS  Google Scholar 

  39. Miller ML et al (2008) Linear motif atlas for phosphorylation-dependent signaling. Sci Signal 1(35):ra2

    Google Scholar 

  40. Papadopoulos GL et al (2009) The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Res 37(Database issue):D155–D158

    Article  CAS  Google Scholar 

  41. Xiao F et al (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37(Database issue):D105–D110

    Article  CAS  Google Scholar 

  42. Garcia DM et al (2011) Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 18(10):1139–1146

    Article  CAS  Google Scholar 

  43. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73

    Article  CAS  Google Scholar 

  44. Wong N, Wang X (2015) miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 43(Database issue):D146–D152

    Article  Google Scholar 

  45. Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18(3):326–332

    Article  CAS  Google Scholar 

  46. Jeong H et al (2000) The large-scale organization of metabolic networks. Nature 407(6804):651–654

    Article  CAS  Google Scholar 

  47. Oberhardt MA, Palsson BO, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5:320

    Article  Google Scholar 

  48. Caspi R et al (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 44(D1):D471–D480

    Article  Google Scholar 

  49. Kanehisa M et al (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44(D1):D457–D462

    Article  Google Scholar 

  50. Schellenberger J et al (2010) BiGG: a biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11:213

    Article  Google Scholar 

  51. Whitaker JW et al (2009) metaTIGER: a metabolic evolution resource. Nucleic Acids Res 37(Database issue):D531–D538

    Article  CAS  Google Scholar 

  52. Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:Article17

    Google Scholar 

  53. Klammer M et al (2010) Identifying differentially regulated subnetworks from phosphoproteomic data. BMC Bioinformatics 11:351

    Article  Google Scholar 

  54. Cho DY, Kim YA, Przytycka TM (2012) Chapter 5: network biology approach to complex diseases. PLoS Comput Biol 8(12), e1002820

    Article  CAS  Google Scholar 

  55. Hartwell LH et al (1999) From molecular to modular cell biology. Nature 402(6761 Suppl):C47–C52

    Article  CAS  Google Scholar 

  56. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  CAS  Google Scholar 

  57. Jeong H et al (2001) Lethality and centrality in protein networks. Nature 411(6833):41–42

    Article  CAS  Google Scholar 

  58. Fraser HB et al (2002) Evolutionary rate in the protein interaction network. Science 296(5568):750–752

    Article  CAS  Google Scholar 

  59. Yu H et al (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322(5898):104–110

    Article  CAS  Google Scholar 

  60. Han JD et al (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430(6995):88–93

    Article  CAS  Google Scholar 

  61. Kostka D, Spang R (2004) Finding disease specific alterations in the co-expression of genes. Bioinformatics 20(Suppl 1):i194–i199

    Article  CAS  Google Scholar 

  62. Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12(1):56–68

    Article  CAS  Google Scholar 

  63. Chuang HY et al (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3:140

    Article  Google Scholar 

  64. Nacu S et al (2007) Gene expression network analysis and applications to immunology. Bioinformatics 23(7):850–858

    Article  CAS  Google Scholar 

  65. Ideker T et al (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(Suppl 1):S233–S240

    Article  Google Scholar 

  66. Backes C et al (2012) An integer linear programming approach for finding deregulated subgraphs in regulatory networks. Nucleic Acids Res 40(6), e43

    Article  CAS  Google Scholar 

  67. Dittrich MT et al (2008) Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 24(13):i223–i231

    Article  CAS  Google Scholar 

  68. Klebanov L et al (2007) Statistical methods and microarray data. Nat Biotechnol 25(1):25–26, author reply 26–7

    Article  CAS  Google Scholar 

  69. Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  Google Scholar 

  70. Ulitsky I et al (2010) DEGAS: de novo discovery of dysregulated pathways in human diseases. PLoS One 5(10), e13367

    Article  Google Scholar 

  71. Chowdhury SA, Koyuturk M (2010) Identification of coordinately dysregulated subnetworks in complex phenotypes. Pac Symp Biocomput 133–144. doi:10.1142/9789814295291_0016

    Google Scholar 

  72. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  Google Scholar 

  73. de la Fuente A (2010) From ‘differential expression’ to ‘differential networking’—identification of dysfunctional regulatory networks in diseases. Trends Genet 26:326–333

    Article  Google Scholar 

  74. Hudson NJ, Reverter A, Dalrymple BP (2009) A differential wiring analysis of expression data correctly identifies the gene containing the causal mutation. PLoS Comput Biol 5(5):e1000382

    Article  Google Scholar 

  75. Carter SL et al (2004) Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 20(14):2242–2250

    Article  CAS  Google Scholar 

  76. Mani KM et al (2008) A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas. Mol Syst Biol 4:169

    Article  Google Scholar 

  77. Ideker T, Krogan NJ (2012) Differential network biology. Mol Syst Biol 8:565

    Article  Google Scholar 

  78. Van Landeghem S et al (2016) Diffany: an ontology-driven framework to infer, visualise and analyse differential molecular networks. BMC Bioinformatics 17:18

    Article  Google Scholar 

  79. Ruan D, Young A, Montana G (2015) Differential analysis of biological networks. BMC Bioinformatics 16:327

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanthida Kusonmano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kusonmano, K. (2016). Gene Expression Analysis Through Network Biology: Bioinformatics Approaches. In: Nookaew, I. (eds) Network Biology. Advances in Biochemical Engineering/Biotechnology, vol 160. Springer, Cham. https://doi.org/10.1007/10_2016_44

Download citation

Publish with us

Policies and ethics