Skip to main content

New Functions and Potential Applications of Amino Acids

Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE,volume 159)

Abstract

Currently, several types of amino acids are being produced and used worldwide. Nevertheless, several new functions of amino acids have been recently discovered that could result in other applications. For example, oral stimulation by glutamate triggers the cephalic phase response to prepare for food digestion. Further, the stomach and intestines have specific glutamate-recognizing systems in their epithelial mucosa. Regarding clinical applications, addition of monosodium glutamate to the medicinal diet has been shown to markedly enhance gastric secretion in a vagus-dependent manner. Branched-chain amino acids (BCAAs) are the major components of muscles, and ingestion of BCAAs has been found to be effective for decreasing muscle pain. BCAAs are expected to be a solution for the serious issue of aging. Further, ingestion of specific amino acids could be beneficial. Glycine can be ingested for good night’s sleep: glycine ingestion before bedtime significantly improved subjective sleep quality. Ingestion of alanine and glutamine effectively accelerates alcohol metabolism, and ingestion of cystine and theanine effectively prevents colds. Finally, amino acids could be used in a novel clinical diagnostic method: the balance of amino acids in the blood could be an indicator of the risk of diseases such as cancer. These newly discovered functions of amino acids are expected to contribute to the resolution of various issues.

Keywords

  • Alcohol metabolism
  • Branched-chain amino acids (BCAAs)
  • Diagnostic indication
  • Good night’s sleep
  • Prevent cold
  • Protein digestion
  • Sarcopenia

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/10_2016_35
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   349.00
Price excludes VAT (USA)
  • ISBN: 978-4-431-56520-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   449.99
Price excludes VAT (USA)
Hardcover Book
USD   449.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ramirez I, De Santiago S, Tovar AR, Torres N (2001) Amino acid intake during lactation and amino acids of plasma and human milk. Adv Exp Med Biol 501:415–421

    CAS  CrossRef  PubMed  Google Scholar 

  2. San Gabriel A, Uneyama H (2013) Amino acid sensing in the gastrointestinal tract. Amino Acids 45:451–461

    CAS  CrossRef  PubMed  Google Scholar 

  3. Torii K, Uneyama H, Nakamura E (2013) Physiological roles of dietary glutamate signaling via gut-brain axis due to efficient digestion and absorption. J Gastroenterol 48:442–451

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Torii K, Mimura T, Yugari Y (1987) A basic taste: biochemical mechanism of umami taste perception: in effect of dietary protein on taste preference for amino acids and sodium chloride in rats. In: Kawamura Y, Kare MR (eds) Umami: a basic taste. Dekker, New York, pp 513–563

    Google Scholar 

  5. Rose WC, Oesterling MJ, Womack M (1948) Comparative growth on diets containing ten and nineteen amino acids, with further observations upon the role of glutamic and aspartic acids. J Biol Chem 176:753–762

    CAS  PubMed  Google Scholar 

  6. Reeds PJ, Burrin DG, Jahoor F, Wykes L, Henry J, Frazer EM (1996) Enteral glutamate is almost completely metabolized in first pass by the gastrointestinal tract of infant pigs. Am J Physiol 270:E413–E418

    CAS  PubMed  Google Scholar 

  7. Lin CM, Abcouwer SF, Souba WW (1999) Effect of dietary glutamate on chemotherapy-induced immunosuppression. Nutrition 15:687–696

    CAS  CrossRef  PubMed  Google Scholar 

  8. Hasebe M, Suzuki H, Mori E, Furukawa J, Kobayashi K, Ueda Y (1999) Glutamate in enteral nutrition: can glutamate replace glutamine in supplementation to enteral nutrition in burned rats? J Parenter Enteral Nutr 23:S78–S82

    CAS  CrossRef  Google Scholar 

  9. Brosnan JT, Brosnan ME (2013) Glutamate: a truly functional amino acid. Amino Acids 45:413–418

    CAS  CrossRef  PubMed  Google Scholar 

  10. Reeds PJ, Burrin DG, Stoll B, Jahoor F (2000) Intestinal glutamate metabolism. J Nutr 130(4S Suppl):978S–982S

    CAS  PubMed  Google Scholar 

  11. Chandrashekar J, Hoon MA, Ryba NJP, Zucker CS (2006) The receptors and cells for mammalian taste. Nature 444:289–294

    CrossRef  Google Scholar 

  12. Giduck SA, Threatte RM, Kare MR (1987) Cephalic reflexes: their role in digestion and possible roles in absorption and metabolism. J Nutr 117:1191–1196

    CAS  PubMed  Google Scholar 

  13. Uneyama H, Kawai M, Sekine-Hayakawa Y, Torii K (2009) Contribution of umami taste substances in human salivation during meal. J Med Invest 56(Suppl):197–204

    CrossRef  PubMed  Google Scholar 

  14. Niijima A (2000) Reflex effects of oral, gastrointestinal and hepatoportal glutamate sensors on vagal nerve activity. J Nutr 130:971S–973S

    CAS  PubMed  Google Scholar 

  15. Ohara I, Otsuka S, Yugari Y (1988) Cephalic phase response of pancreatic exocrine secretion in conscious dogs. Am J Physiol 254:G424–G428

    CAS  PubMed  Google Scholar 

  16. Janssen S, Depoortere I (2013) Nutrient sensing in the gut: new roads to therapeutics? Trends Endocrinol Metab 24:92–100

    CAS  CrossRef  PubMed  Google Scholar 

  17. Iwatsuki K, Uneyama H (2012) Sense of taste in the gastrointestinal tract. J Pharmacol Sci 118:123–128

    CAS  CrossRef  PubMed  Google Scholar 

  18. Kitamura A, Tsurugizawa T, Uematsu A, Uneyama H (2014) The sense of taste in the upper gastrointestinal tract. Curr Pharm Des 20:2713–2724

    CAS  CrossRef  PubMed  Google Scholar 

  19. Uneyama H, Niijima A, San Gabriel A, Torii K (2006) Luminal amino acid sensing in the rat gastric mucosa. Am J Physiol 291:G1163–G1170

    CAS  Google Scholar 

  20. Nakamura E, Hasumura M, Uneyama H, Torii K (2011) Luminal amino acid-sensing cells in gastric mucosa. Digestion 83(Suppl 1):13–18

    CAS  CrossRef  PubMed  Google Scholar 

  21. Zolotarev VA (2014) Dietary free amino acids and the gastric phase of digestion. Curr Pharm Des 20:2731–2737

    CAS  CrossRef  PubMed  Google Scholar 

  22. Toyomasu Y, Mochiki E, Yanai M, Ogata K, Tabe Y, Ando H, Ohno T, Aihara R, Zai H, Kuwano H (2010) Intragastric monosodium L-glutamate stimulates motility of upper gut via vagus nerve in conscious dogs. Am J Physiol Regul Integr Comp Physiol 298:R1125–R1135

    CAS  CrossRef  PubMed  Google Scholar 

  23. Khropycheva R, Uneyama H, Torii K, Zolotarev V (2009) Dietary monosodium glutamate enhances gastric secretion. J Med Invest 56(Suppl):218–223

    CrossRef  PubMed  Google Scholar 

  24. Akiba Y, Kaunitz JD (2014) Duodenal luminal chemosensing; acid, ATP, and nutrients. Curr Pharm Des 20:2760–2765

    CrossRef  PubMed  Google Scholar 

  25. Sasano T, Satoh-Kuriwada S, Shoji N (2015) The important role of umami taste in oral and overall health. Flavour 4:10

    CrossRef  Google Scholar 

  26. Schiffman SS, Miletic ID (1999) Effect of taste and smell on secretion rate of salivary IgA in elderly and young persons. J Nutr Health Aging 3:158–164

    CAS  PubMed  Google Scholar 

  27. Yamamoto S, Tomoe M, Toyama K, Kawai M, Uneyama H (2009) Can dietary supplementation of monosodium glutamate improve the health of the elderly? Am J Clin Nutr 90:844S–849S

    CAS  CrossRef  PubMed  Google Scholar 

  28. Ohura N, Masuda M, Tanba M, Takeuchi H, Matsuda T, Komeda T, Ishida H, Saito H, Yamamoto S, Harii K (2007) Efficacy of half solidified enteral product; MEDIF PUSHCARE via nasogastric feeding. J Paren Ent Nutr 22:345–352 (Japanese)

    Google Scholar 

  29. Julio-Pieper M, Flor PJ, Dinan TG, Cryan JF (2011) Exciting times beyond the brain: metabotropic glutamate receptors in peripheral and non-neural tissues. Pharmacol Rev 63:35–58

    CAS  CrossRef  PubMed  Google Scholar 

  30. Tremolizzo L, Sala G, Zoia CP, Ferrarese C (2012) Assessing glutamatergic function and dysfunction in peripheral tissues. Curr Med Chem 19:1310–1315

    CAS  CrossRef  PubMed  Google Scholar 

  31. Marmiroli P, Cavaletti G (2012) The glutamatergic neurotransmission in the central nervous system. Curr Med Chem 19:1269–1276

    CAS  CrossRef  PubMed  Google Scholar 

  32. Kusano M, Hosaka H, Kawada A, Kuribayashi S, Shimoyama Y, Zai H, Kawamura O, Yamada M (2014) Gastrointestinal motility and functional gastrointestinal diseases. Curr Pharm Des 20:2775–2782

    CAS  CrossRef  PubMed  Google Scholar 

  33. Vidlund M, Håkanson E, Friberg O, Juhl-Andersen S, Holm J, Vanky F, Sunnermalm L, Borg JO, Sharma R, Svedjeholm R (2012) GLUTAMICS – a randomized clinical trial on glutamate infusion in 861 patients undergoing surgery for acute coronary syndrome. J Thorac Cardiovasc Surg 144:922–930

    CAS  CrossRef  PubMed  Google Scholar 

  34. Shimomura Y, Inaguma A, Watanabe S, Yamamoto Y, Muramatsu Y, Bajotto G, Sato J, Shinomura N, Kobayashi H, Mawatari K (2010) Branched-chain amino acid supplementation before squat exercise and delayed-onset muscle soreness. Int J Sport Nutr Exerc Metab 20:236–244

    CAS  CrossRef  PubMed  Google Scholar 

  35. Brosnan JT, Brosnan ME (2006) Branched-chain amino acids: enzyme and substrate regulation. J Nutr 136:207S–211S

    CAS  PubMed  Google Scholar 

  36. Hagiwara A, Nishiyama M, Ishizaki S (2012) Branched-chain amino acids prevent insulin-induced hepatic tumor cell proliferation by inducing apoptosis through mTORC1 and mTORC2-dependent mechanisms. J Cell Physiol 227:2097–2105

    CAS  CrossRef  PubMed  Google Scholar 

  37. Kim HK, Suzuki T, Saito K, Yoshida H, Kobayashi H, Kato H, Katayama M (2012) Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: a randomized controlled trial. J Am Geriatr Soc 60:16–23

    CrossRef  PubMed  Google Scholar 

  38. Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR (2006) A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab 291:E381–E387

    CAS  CrossRef  PubMed  Google Scholar 

  39. File SE, Fluck E, Fernabdes C (1999) Beneficial effects of glycine (Bioglycine®) on memory and attention in young and middle-aged adults. J Clin Psychopharmacol 19:506–512

    CAS  CrossRef  PubMed  Google Scholar 

  40. Inagawa K, Hiraoka T, Kohda T, Yamadera W, Takahashi M (2006) Subjective effects of glycine ingestion before bedtime on sleep quality. Sleep Biol Rhythm 4:75–77

    CrossRef  Google Scholar 

  41. Yamadera W, Inagawa K, Chiba S, Bannai M, Takahashi M, Nakayama K (2007) Glycine ingestion improves subjective sleep quality in human volunteers, correlating with polysomnographic changes. Sleep Biol Rhythm 5:126–131

    CrossRef  Google Scholar 

  42. Bannai M, Kawai N (2012) New therapeutic strategy for amino acid medicine: glycine improves the quality of sleep. J Pharmacol Sci 118:145–148

    CAS  CrossRef  PubMed  Google Scholar 

  43. Ohayon MM (2002) Epidemiology of insomnia: what we know and what we still need to learn. Sleep Med Rev 6:97–111

    CrossRef  PubMed  Google Scholar 

  44. Torii K, Mawatari K, Kawada T, Mori M, Masaki H, Yugari Y (1987) Effect of alanine and glutamine intubation on ethanol metabolism and spontaneous motor activity in ethanol loaded rats. Pharma Med 5:81–87

    CAS  Google Scholar 

  45. Ohta F, Katayama M, Kobayashi H, Fujieda T (2009) Effect of alanine and glutamine supplementation on human ethanol metabolism. Amino Acid Res 3:57–58

    Google Scholar 

  46. Ramaniol AC, Mialocq P, Clayette P, Dormont D, Gras G (2001) Role of glutamate transporters in the regulation of glutathione level in human macrophages. Am J Physiol Cell Physiol 281:C1964–C1970

    Google Scholar 

  47. Kurihara S, Shibahara S, Arisaka H, Akiyama Y (2007) Enhancement of antigen-specific immunoglobulin G production in mice by co-administration of L-cystine and L-theanine. J Vet Med Sci 69:1263–1270

    CAS  CrossRef  PubMed  Google Scholar 

  48. Takagi Y, Kurihara S, Higashi N, Morikawa S, Kase T, Maeda A, Arisaka H, Shibahara S, Akiyama Y (2010) Combined administration of L-cystine and L-theanine enhances immune functions and protects against influenza virus infection in aged mice. J Vet Med Sci 72:157–165

    CAS  CrossRef  PubMed  Google Scholar 

  49. Kurihara S, Hiraoka T, Akutsu M, Sukegawa E, Bannai M, Shibahara S (2010) Effects of L-cystine and L-theanine supplementation on the cold: a randomized, double-blind, and placebo-controlled trial. J Amino Acids 2010:307475

    CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Tonouchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Uneyama, H., Kobayashi, H., Tonouchi, N. (2016). New Functions and Potential Applications of Amino Acids. In: Yokota, A., Ikeda, M. (eds) Amino Acid Fermentation. Advances in Biochemical Engineering/Biotechnology, vol 159. Springer, Tokyo. https://doi.org/10.1007/10_2016_35

Download citation