Skip to main content

Exporters for Production of Amino Acids and Other Small Molecules

  • Chapter
  • First Online:
Book cover Amino Acid Fermentation

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 159))

Abstract

Microbes are talented catalysts to synthesize valuable small molecules in their cytosol. However, to make full use of their skills – and that of metabolic engineers – the export of intracellularly synthesized molecules to the culture medium has to be considered. This step is as essential as is each step for the synthesis of the favorite molecule of the metabolic engineer, but is frequently not taken into account. To export small molecules via the microbial cell envelope, a range of different types of carrier proteins is recognized to be involved, which are primary active carriers, secondary active carriers, or proteins increasing diffusion. Relevant export may require just one carrier as is the case with l-lysine export by Corynebacterium glutamicum or involve up to four carriers as known for l-cysteine excretion by Escherichia coli. Meanwhile carriers for a number of small molecules of biotechnological interest are recognized, like for production of peptides, nucleosides, diamines, organic acids, or biofuels. In addition to carriers involved in amino acid excretion, such carriers and their impact on product formation are described, as well as the relatedness of export carriers which may serve as a hint to identify further carriers required to improve product formation by engineering export.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wagner S, Baars L, Ytterberg AJ, Klussmeier A, Wagner CS, Nord O, Nygren PA, van Wijk KJ, de Gier JW (2007) Consequences of membrane protein overexpression in Escherichia coli. Mol Cell Proteomics 6:1527–1550

    Article  CAS  PubMed  Google Scholar 

  2. Burkovski A, Krämer R (2002) Bacterial amino acid transport proteins: occurrence, functions, and significance for biotechnological applications. Appl Microbiol Biotechnol 58:265–274

    Article  CAS  PubMed  Google Scholar 

  3. Eggeling L (2009) Microbial metabolite export in biotechnology. Wiley, Hoboken

    Google Scholar 

  4. van Dyk TK (2008) Bacterial efflux transport in biotechnology. Adv Appl Microbiol 63:231–247

    Article  PubMed  CAS  Google Scholar 

  5. Marin K, Krämer R (2007) Amino acid transport systems in biotechnologically relevant bacteria. Microbiol Monogr 5:289–326

    Article  Google Scholar 

  6. Nishino K, Nikaido E, Yamaguchi A (2009) Regulation and physiological function of multidrug efflux pumps in Escherichia coli and Salmonella. Biochim Biophys Acta 1794:834–843

    Article  CAS  PubMed  Google Scholar 

  7. Winnen JF, Saier MH (2005) Genomic analyses of transporter proteins in Corynebacterium glutamicum and Corynebacterium efficiens. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. Taylor & Francis, Boca Raton, pp 149–186

    Chapter  Google Scholar 

  8. Du D, van Veen HW, Luisi BF (2015) Assembly and operation of bacterial tripartite multidrug efflux pumps. Trends Microbiol 23:311–9

    Article  CAS  PubMed  Google Scholar 

  9. Huhn S, Jolkver E, Krämer R, Marin K (2011) Identification of the membrane protein SucE and its role in succinate transport in Corynebacterium glutamicum. Appl Microbiol Biotechnol 89:327–335

    Article  CAS  PubMed  Google Scholar 

  10. Saier MH (2000) Families of transmembrane transporters selective for amino acids and their derivatives. Microbiol-SGM 146:1775–1795

    Article  CAS  Google Scholar 

  11. Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H (2008) Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci U S A 105:3963–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Forrest LR, Krämer R, Ziegler C (2011) The structural basis of secondary active transport mechanisms. Biochim Biophys Acta 1807:167–188

    Article  CAS  PubMed  Google Scholar 

  13. Vrljic M, Sahm H, Eggeling L (1996) A new type of transporter with a new type of cellular function: L-lysine export from Corynebacterium glutamicum. Mol Microbiol 22:815–826

    Article  CAS  PubMed  Google Scholar 

  14. Bellmann A, Vrljic M, Pátek M, Sahm H, Krämer R, Eggeling L (2001) Expression control and specificity of the basic amino acid exporter LysE of Corynebacterium glutamicum. Microbiology 147:1765–1774

    Article  CAS  PubMed  Google Scholar 

  15. Gunji Y, Ito H, Masaki H, Yasueda H (2006) Characterization of a unique mutant lysE gene, originating from Corynebacterium glutamicum, encoding a product that induces L-lysine production in Methylophilus methylotrophus. Biosci Biotechnol Biochem 70:2927–2934

    Article  CAS  PubMed  Google Scholar 

  16. Nandineni MR, Gowrishankar J (2004) Evidence for an arginine exporter encoded by yggA (argO) that is regulated by the LysR-type transcriptional regulator ArgP in Escherichia coli. J Bacteriol 186:3539–3546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cai T, Cai W, Zhang J, Zheng H, Tsou AM, Xiao L, Zhong Z, Zhu J (2009) Host legume-exuded antimetabolites optimize the symbiotic rhizosphere. Mol Microbiol 73:507–517

    Article  CAS  PubMed  Google Scholar 

  18. Livshits VA, Zakataeva NP, Aleshin VV, Vitushkina MV (2003) Identification and characterization of the new gene rhtA involved in threonine and homoserine efflux in Escherichia coli. Res Microbiol 154:123–135

    Article  CAS  PubMed  Google Scholar 

  19. Zakataeva NP, Kutukova EA, Gronskii SV, Troshin PV, Livshits VA, Aleshin VV (2006) Export of metabolites by the proteins of the DMT and RhtB families and its possible role in intercellular communication. Microbiology 75:509–520

    Article  CAS  PubMed  Google Scholar 

  20. Kang Z, Wang Y, Gu P, Wang Q, Qi Q (2011) Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose. Metab Eng 13:492–498

    Article  CAS  PubMed  Google Scholar 

  21. Zakataeva NP, Aleshin VV, Tokmakova IL, Troshin PV, Livshits VA (1999) The novel transmembrane Escherichia coli proteins involved in the amino acid efflux. FEBS Lett 452:228–232

    Article  CAS  PubMed  Google Scholar 

  22. Eggeling L, Sahm H (2003) New ubiquitous translocators: amino acid export by Corynebacterium glutamicum and Escherichia coli. Arch Microbiol 180:155–160

    Article  CAS  PubMed  Google Scholar 

  23. Kruse D, Krämer R, Eggeling L, Rieping M, Pfefferle W, Tchieu JH, Chung YJ, Saier MH Jr, Burkovski A (2002) Influence of threonine exporters on threonine production in Escherichia coli. Appl Microbiol Biotechnol 59:205–210

    Article  CAS  PubMed  Google Scholar 

  24. Kutukova EA, Livshits VA, Altman IP, Ptitsyn LR, Zyiatdinov MH, Tokmakova IL, Zakataeva NP (2005) The yeaS (leuE) gene of Escherichia coli encodes an exporter of leucine, and the Lrp protein regulates its expression. FEBS Lett 579:4629–4634

    Article  CAS  PubMed  Google Scholar 

  25. Simic P, Sahm H, Eggeling L (2001) L-threonine export: use of peptides to identify a new translocator from Corynebacterium glutamicum. J Bacteriol 183:5317–5324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yen MR, Tseng YH, Simic P, Sahm H, Eggeling L, Saier MH Jr (2002) The ubiquitous ThrE family of putative transmembrane amino acid efflux transporters. Res Microbiol 153:19–25

    Article  CAS  PubMed  Google Scholar 

  27. Doroshenko V, Airich L, Vitushkina M, Kolokolova A, Livshits V, Mashko S (2007) YddG from Escherichia coli promotes export of aromatic amino acids. FEMS Microbiol Lett 275:312–318

    Article  CAS  PubMed  Google Scholar 

  28. Dassler T, Maier T, Winterhalter C, Böck A (2000) Identification of a major facilitator protein from Escherichia coli involved in efflux of metabolites of the cysteine pathway. Mol Microbiol 36:1101–1112

    Article  CAS  PubMed  Google Scholar 

  29. Hayashi M, Tabata K, Yagasaki M, Yonetani Y (2010) Effect of multidrug-efflux transporter genes on dipeptide resistance and overproduction in Escherichia coli. FEMS Microbiol Lett 304:12–19

    Article  CAS  PubMed  Google Scholar 

  30. Yamada S, Awano N, Inubushi K, Maeda E, Nakamori S, Nishino K, Yamaguchi A, Takagi H (2006) Effect of drug transporter genes on cysteine export and overproduction in Escherichia coli. Appl Environ Microbiol 72:4735–4742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Franke I, Resch A, Dassler T, Maier T, Böck A (2003) YfiK from Escherichia coli promotes export of O-acetylserine and cysteine. J Bacteriol 185:1161–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pathania A, Sardesai AA (2015) Distinct paths for basic amino acid export in Escherichia coli: YbjE (LysO) mediates export of L-lysine. J Bacteriol 197:2036–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pittman MS, Corker H, Wu GH, Binet MB, Moir AJG, Poole RK (2002) Cysteine is exported from the Escherichia coli cytoplasm by CydDC, an ATP-binding cassette-type transporter required for cytochrome assembly. J Biol Chem 277:49841–49849

    Article  CAS  PubMed  Google Scholar 

  34. Yamamoto K, Nonaka G, Ozawa T, Takumi K, Ishihama A (2015) Induction of the Escherichia coli yijE gene expression by cystine. Biosci Biotechnol Biochem 79:218–222

    Article  CAS  PubMed  Google Scholar 

  35. Wiriyathanawudhiwong N, Ohtsu I, Li ZD, Mori H, Takagi H (2009) The outer membrane TolC is involved in cysteine tolerance and overproduction in Escherichia coli. Appl Microbiol Biotechnol 81:903–913

    Article  CAS  PubMed  Google Scholar 

  36. Kennerknecht N, Sahm H, Yen M-R, Pátek M, Saier MHS Jr, Eggeling L (2002) Export of L-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family. J Bacteriol 184:3947–3956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Trötschel C, Deutenberg D, Bathe B, Burkovski A, Krämer R (2005) Characterization of methionine export in Corynebacterium glutamicum. J Bacteriol 187:3786–3794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Park JH, Oh JE, Lee KH, Kim JY, Lee SY (2012) Rational design of Escherichia coli for L-isoleucine production. ACS Synth Biol 1:532–540

    Article  CAS  PubMed  Google Scholar 

  39. Akasaka N, Ishii Y, Hidese R, Sakoda H, Fujiwara S (2014) Enhanced production of branched-chain amino acids by Gluconacetobacter europaeus with a specific regional deletion in a leucine responsive regulator. J Biosci Bioeng 118:607–615

    Article  CAS  PubMed  Google Scholar 

  40. Hori H, Yoneyama H, Tobe R, Ando T, Isogai E, Katsumata R (2011) Inducible L-alanine exporter encoded by the novel gene ygaW (alaE) in Escherichia coli. Appl Environ Microbiol 77:4027–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakamura J, Hirano S, Ito H, Wachi M (2007) Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid production. Appl Environ Microbiol 73:4491–4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Becker M, Borngen K, Nomura T, Battle AR, Marin K, Martinac B, Krämer R (2013) Glutamate efflux mediated by Corynebacterium glutamicum MscCG, Escherichia coli MscS, and their derivatives. Biochim Biophys Acta 1828:1230–1240

    Article  CAS  PubMed  Google Scholar 

  43. Kind S, Kreye S, Wittmann C (2011) Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum. Metab Eng 13:617–627

    Article  CAS  PubMed  Google Scholar 

  44. Fukui K, Koseki C, Yamamoto Y, Nakamura J, Sasahara A, Yuji R, Hashiguchi K, Usuda Y, Matsui K, Kojima H, Abe K (2011) Identification of succinate exporter in Corynebacterium glutamicum and its physiological roles under anaerobic conditions. J Biotechnol 154:25–34

    Article  CAS  PubMed  Google Scholar 

  45. Sheremet AS, Gronskiy SV, Akhmadyshin RA, Novikova AE, Livshits VA, Shakulov RS, Zakataeva NP (2011) Enhancement of extracellular purine nucleoside accumulation by Bacillus strains through genetic modifications of genes involved in nucleoside export. J Ind Microbiol Biotechnol 38:65–70

    Article  CAS  PubMed  Google Scholar 

  46. Gronskly SV, Zakataeva NP, Vitushkina MV, Ptitsyn LR, Altman IB, Novikova AE, Livshits VA (2005) The yicM facilitator (nepI) gene of Escherichia coli encodes a major superfamily protein involved in efflux of purine ribonucleosides. FEMS Microbiol Lett 250:39–47

    Article  CAS  Google Scholar 

  47. Sim SY, Hong EJ, Kim Y, Lee HS (2014) Analysis of cepA encoding an efflux pump-like protein in Corynebacterium glutamicum. J Microbiol 52:278–283

    Article  CAS  PubMed  Google Scholar 

  48. Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, Hadi MZ, Mukhopadhyay A (2011) Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 7:487

    Article  PubMed  PubMed Central  Google Scholar 

  49. Manilla-Perez E, Reers C, Baumgart M, Hetzler S, Reichelt R, Malkus U, Kalscheuer R, Waltermann M, Steinbuchel A (2010) Analysis of lipid export in hydrocarbonoclastic bacteria of the genus Alcanivorax: identification of lipid export-negative mutants of Alcanivorax borkumensis SK2 and Alcanivorax jadensis T9. J Bacteriol 192:643–656

    Article  CAS  PubMed  Google Scholar 

  50. Sun Y, Vanderpool CK (2011) Regulation and function of Escherichia coli sugar efflux transporter A (SetA) during glucose-phosphate stress. J Bacteriol 193:143–153

    Article  CAS  PubMed  Google Scholar 

  51. Watanabe T, Shitan N, Suzuki S, Umezawa T, Shimada M, Yazaki K, Hattori T (2010) Oxalate efflux transporter from the brown rot fungus Fomitopsis palustris. Appl Environ Microbiol 76:7683–7690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hazelwood LA, Tai SL, Boer VM, de Winde JH, Pronk JT, Daran JM (2006) A new physiological role for Pdr12p in Saccharomyces cerevisiae: export of aromatic and branched-chain organic acids produced in amino acid catabolism. FEMS Yeast Res 6:937–945

    Article  CAS  PubMed  Google Scholar 

  53. Foo JL, Jensen HM, Dahl RH, George K, Keasling JD, Lee TS, Leong S, Mukhopadhyay A (2014) Improving microbial biogasoline production in Escherichia coli using tolerance engineering. mBio 5(6), e01932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Doshi R, Nguyen T, Chang G (2013) Transporter-mediated biofuel secretion. Proc Natl Acad Sci U S A 110:7642–7647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ling H, Chen BB, Kang A, Lee JM, Chang MW (2013) Transcriptome response to alkane biofuels in Saccharomyces cerevisiae: identification of efflux pumps involved in alkane tolerance. Biotechnol Biofuels 6(1):95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen BB, Ling H, Chang MW (2013) Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae. Biotechnol Biofuels 6(1):21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang KM, Woo JM, Lee SM, Park JB (2013) Improving ethanol tolerance of Saccharomyces cerevisiae by overexpressing an ATP-binding cassette efflux pump. Chem Eng Sci 103:74–78

    Article  CAS  Google Scholar 

  58. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vrljic M, Kronemeyer W, Sahm H, Eggeling L (1995) Unbalance of L-lysine flux in Corynebacterium glutamicum and its use for the isolation of excretion-defective mutants. J Bacteriol 177:4021–4027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hori H, Ando T, Isogai E, Yoneyama H, Katsumata R (2011) Identification of an L-alanine export system in Escherichia coli and isolation and characterization of export-deficient mutants. FEMS Microbiol Lett 316:83–89

    Article  CAS  PubMed  Google Scholar 

  61. Debabov VG (2003) The threonine story. Adv Biochem Eng Biotechnol 79:113–136

    CAS  PubMed  Google Scholar 

  62. Tsyrenzhapova IS, Doroshenko VG, Airich LG, Mironov AS, Mashko SV (2009) Gene yddG of Escherichia coli encoding the putative exporter of aromatic amino acids: constitutive transcription and dependence of the expression on the cell growth rate. Russ J Genet 45:525–532

    Article  CAS  Google Scholar 

  63. Eggeling L, Bott M (2015) A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum. Appl Microbiol Biotechnol 99:3387–94

    Article  CAS  PubMed  Google Scholar 

  64. Broer S, Krämer R (1991) Lysine excretion by Corynebacterium glutamicum. 2. Energetics and mechanism of the transport system. Eur J Biochem 202:137–143

    Article  CAS  PubMed  Google Scholar 

  65. Schrumpf B, Eggeling L, Sahm H (1992) Isolation and prominent characteristics of an L-lysine hyperproducing strain of Corynebacterium glutamicum. Appl Microbiol Biotechnol 37:566–571

    Article  CAS  Google Scholar 

  66. Ikeda M, Ohnishi J, Hayashi M, Mitsuhashi S (2006) A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient L-lysine production. J Ind Microbiol Biotechnol 33:610–615

    Article  CAS  PubMed  Google Scholar 

  67. Binder S, Schendzielorz G, Stäbler N, Krumbach K, Hoffmann K, Bott M, Eggeling L (2012) A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol 13:R40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stäbler N, Oikawa T, Bott M, Eggeling L (2011) Corynebacterium glutamicum as a host for synthesis and export of D-amino acids. J Bacteriol 193:1702–1709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Witthoff S, Schmitz K, Niedenfuhr S, Noh K, Noack S, Bott M, Marienhagen J (2015) Metabolic engineering of Corynebacterium glutamicum for methanol metabolism. Appl Environ Microbiol 81:2215–2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ishikawa K, Toda-Murakoshi Y, Ohnishi F, Kondo K, Osumi T, Asano K (2008) Medium composition suitable for L-lysine production by Methylophilus methylotrophus in fed-batch cultivation. J Biosci Bioeng 106:574–579

    Article  CAS  PubMed  Google Scholar 

  71. Tsujimoto N, Gunji Y, Ogawa-Miyata Y, Shimaoka M, Yasueda H (2006) L-lysine biosynthetic pathway of Methylophilus methylotrophus and construction of an L-lysine producer. J Biotechnol 124:327–337

    Article  CAS  PubMed  Google Scholar 

  72. Eggeling L (2005) Export of amino acids and other solutes. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. Taylor & Francis, Boca Raton, pp 187–214

    Chapter  Google Scholar 

  73. Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. Taylor & Francis, Boca Raton

    Book  Google Scholar 

  74. Vrljic M, Garg J, Bellmann A, Wachi S, Freudl R, Malecki MJ, Sahm H, Kozina VJ, Eggeling L, Saier MH (1999) The LysE superfamily: topology of the lysine exporter LysE of Corynebacterium glutamicum, a paradyme for a novel superfamily of transmembrane solute translocators. J Mol Microbiol Biotechnol 1:327–336

    CAS  PubMed  Google Scholar 

  75. Chaouni LB, Etienne J, Greenland T, Vandenesch F (1996) Nucleic acid sequence and affiliation of pLUG10, a novel cadmium resistance plasmid from Staphylococcus lugdunensis. Plasmid 36:1–8

    Article  CAS  PubMed  Google Scholar 

  76. Marbaniang CN, Gowrishankar J (2012) Transcriptional cross-regulation between Gram-negative and gram-positive bacteria, demonstrated using ArgP-argO of Escherichia coli and LysG-lysE of Corynebacterium glutamicum. J Bacteriol 194:5657–5666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maes T, Vereecke D, Ritsema T, Cornelis K, Thu HN, van Montagu M, Holsters M, Goethals K (2001) The att locus of Rhodococcus fascians strain D188 is essential for full virulence on tobacco through the production of an autoregulatory compound. Mol Microbiol 42:13–28

    Article  CAS  PubMed  Google Scholar 

  78. Yuzbashev TV, Vybornaya TV, Larina AS, Gvilava IT, Voyushina NE, Mokrova SS, Yuzbasheva EY, Manukhov IV, Sineoky SP, Debabov VG (2013) Directed modification of Escherichia coli metabolism for the design of threonine-producing strains. Appl Biochem Microbiol 49:723–742

    Article  CAS  Google Scholar 

  79. Lee KH, Park JH, Kim TY, Kim HU, Lee SY (2007) Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol 3:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ishida M, Kawashima H, Sato K, Hashiguchi K, Ito H, Enei H, Nakamori S (1994) Factors improving L-threonine production by a 3 L-threonine biosynthetic genes amplified recombinant strain of Brevibacterium lactofermentum. Biosci Biotechnol Biochem 58:768–770

    Article  CAS  PubMed  Google Scholar 

  81. Reinscheid DJ, Eikmanns BJ, Sahm H (1991) Analysis of a Corynebacterium glutamicum hom gene coding for a feedback-resistant homoserine dehydrogenase. J Bacteriol 173:3228–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Reinscheid DJ, Kronemeyer W, Eggeling L, Eikmanns BJ, Sahm H (1994) Stable expression of hom-1-thrB in Corynebacterium glutamicum and its effect on the carbon flux to threonine and related amino acids. Appl Environ Microbiol 60:126–132

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Simic P, Willuhn J, Sahm H, Eggeling L (2002) Identification of glyA (encoding serine hydroxymethyltransferase) and its use together with the exporter ThrE to increase L-threonine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68:3321–3327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Diesveld R, Tietze N, Fürst O, Reth A, Bathe B, Sahm H, Eggeling L (2009) Activity of exporters of Escherichia coli in Corynebacterium glutamicum, and their use to increase L-threonine production. J Mol Microbiol Biotechnol 16:198–207

    Article  CAS  PubMed  Google Scholar 

  85. Bhowmick R, Girotti AW (2010) Cytoprotective induction of nitric oxide synthase in a cellular model of 5-aminolevulinic acid-based photodynamic therapy. Free Radic Biol Med 48:1296–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rouanet C, Nasser W (2001) The PecM protein of the phytopathogenic bacterium Erwinia chrysanthemi, membrane topology and possible involvement in the efflux of the blue pigment indigoidine. J Mol Microbiol Biotechnol 3:309–318

    CAS  PubMed  Google Scholar 

  87. Smirnov SV, Sokolov PM, Kotlyarova VA, Samsonova NN, Kodera T, Sugiyama M, Torii T, Hibi M, Shimizu S, Yokozeki K, Ogawa J (2013) A novel L-isoleucine-4′-dioxygenase and L-isoleucine dihydroxylation cascade in Pantoea ananatis. Microbiologyopen 2:471–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Smirnov SV, Sokolov PM, Kodera T, Sugiyama M, Hibi M, Shimizu S, Yokozeki K, Ogawa J (2012) A novel family of bacterial dioxygenases that catalyse the hydroxylation of free L-amino acids. FEMS Microbiol Lett 331:97–104

    Article  CAS  PubMed  Google Scholar 

  89. Wang J, Cheng LK, Wang J, Liu Q, Shen T, Chen N (2013) Genetic engineering of Escherichia coli to enhance production of L-tryptophan. Appl Microbiol Biotechnol 97:7587–7596

    Article  CAS  PubMed  Google Scholar 

  90. Ikeda M (2006) Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Appl Microbiol Biotechnol 69:615–626

    Article  CAS  PubMed  Google Scholar 

  91. Ikeda M, Katsumata R (1995) Tryptophan production by transport mutants of Corynebacterium glutamicum. Biosci Biotechnol Biochem 59:1600–1602

    Article  CAS  Google Scholar 

  92. Gu PF, Yang F, Li FF, Liang QF, Qi QS (2013) Knocking out analysis of tryptophan permeases in Escherichia coli for improving L-tryptophan production. Appl Microbiol Biotechnol 97:6677–6683

    Article  CAS  PubMed  Google Scholar 

  93. Okamoto K, Kino K, Ikeda M (1997) Hyperproduction of L-threonine by an Escherichia coli mutant with impaired L-threonine uptake. Biosci Biotechnol Biochem 61:1877–1882

    Article  CAS  PubMed  Google Scholar 

  94. Maier TH (2003) Semisynthetic production of unnatural L-alpha-amino acids by metabolic engineering of the cysteine-biosynthetic pathway. Nat Biotechnol 21:422–427

    Article  CAS  PubMed  Google Scholar 

  95. Wilkens S (2015) Structure and mechanism of ABC transporters. F1000Prime Rep 7:14

    Google Scholar 

  96. Pittman MS, Robinson HC, Poole RK (2005) A bacterial glutathione transporter (Escherichia coli CydDC) exports reductant to the periplasm. J Biol Chem 280:32254–32261

    Article  CAS  PubMed  Google Scholar 

  97. Lennen RM, Politz MG, Kruziki MA, Pfleger BF (2013) Identification of transport proteins involved in free fatty acid efflux in Escherichia coli. J Bacteriol 195:135–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shah AA, Wang C, Chung YR, Kim JY, Choi ES, Kim SW (2013) Enhancement of geraniol resistance of Escherichia coli by MarA overexpression. J Biosci Bioeng 115:253–258

    Article  CAS  PubMed  Google Scholar 

  99. Beketskaia MS, Bay DC, Turner RJ (2014) Outer membrane protein ompW participates with small multidrug resistance protein member EmrE in quaternary cationic compound efflux. J Bacteriol 196:1908–1914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Marienhagen J, Bott M (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 163:166–178

    Article  CAS  PubMed  Google Scholar 

  101. Zhou J, Wang K, Xu S, Wu J, Liu P, Du G, Li J, Chen J (2015) Identification of membrane proteins associated with phenylpropanoid tolerance and transport in Escherichia coli BL21. J Proteomics 113:15–28

    Article  CAS  PubMed  Google Scholar 

  102. Lange C, Mustafi N, Frunzke J, Kennerknecht N, Wessel M, Bott M, Wendisch VF (2012) Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for L-methionine and branched-chain amino acids. J Biotechnol 158:231–241

    Article  CAS  PubMed  Google Scholar 

  103. Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, van Ooyen J, Bott M (2014) Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction. Metab Eng 22:40–52

    Article  CAS  PubMed  Google Scholar 

  104. Xie X, Xu L, Shi J, Xu Q, Chen N (2012) Effect of transport proteins on L-isoleucine production with the L-isoleucine-producing strain Corynebacterium glutamicum YILW. J Ind Microbiol Biotechnol 39:1549–1556

    Article  CAS  PubMed  Google Scholar 

  105. Yin L, Shi F, Hu X, Chen C, Wang X (2013) Increasing L-isoleucine production in Corynebacterium glutamicum by overexpressing global regulator Lrp and two-component export system BrnFE. J Appl Microbiol 114:1369–1377

    Article  CAS  PubMed  Google Scholar 

  106. Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 104:7797–7802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Raasch K, Bocola M, Labahn J, Leitner A, Eggeling L, Bott M (2014) Interaction of 2-oxoglutarate dehydrogenase OdhA with its inhibitor OdhI in Corynebacterium glutamicum: mutants and a model. J Biotechnol 191:99–105

    Article  CAS  PubMed  Google Scholar 

  108. Mimitsuka T, Sawai H, Hatsu M, Yamada K (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 71:2130–2135

    Article  CAS  PubMed  Google Scholar 

  109. Kind S, Neubauer S, Becker J, Yamamoto M, Volkert M, von Abendroth G, Zelder O, Wittmann C (2014) From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab Eng 25:113–123

    Article  CAS  PubMed  Google Scholar 

  110. Li M, Li DX, Huang YY, Liu M, Wang HX, Tang Q, Lu FP (2014) Improving the secretion of cadaverine in Corynebacterium glutamicum by cadaverine-lysine antiporter. J Ind Microbiol Biotechnol 41:701–709

    Article  CAS  PubMed  Google Scholar 

  111. Nguyen AQ, Schneider J, Wendisch VF (2014) Elimination of polyamine N-acetylation and regulatory engineering improved putrescine production by Corynebacterium glutamicum. J Biotechnol 201:75–85

    Article  PubMed  CAS  Google Scholar 

  112. Yagasaki M, Hashimoto S (2008) Synthesis and application of dipeptides; current status and perspectives. Appl Microbiol Biotechnol 81:13–22

    Article  CAS  PubMed  Google Scholar 

  113. Tabata K, Hashimoto S (2007) Fermentative production of L-alanyl-L-glutamine by a metabolically engineered Escherichia coli strain expressing L-amino acid alpha-ligase. Appl Environ Microbiol 73:6378–6385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. McAnulty MJ, Wood TK (2014) YeeO from Escherichia coli exports flavins. Bioengineered 5:386–392

    Article  PubMed  PubMed Central  Google Scholar 

  115. Vedantam G, Guay GG, Austria NE, Doktor SZ, Nichols BP (1998) Characterization of mutations contributing to sulfathiazole resistance in Escherichia coli. Antimicrob Agents Chemother 42:88–93

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Bentley J, Hyatt LS, Ainley K, Parish JH, Herbert RB, White GR (1993) Cloning and sequence analysis of an Escherichia coli gene conferring bicyclomycin resistance. Gene 127:117–120

    Article  CAS  PubMed  Google Scholar 

  117. Jansen MLA, van Gulik WM (2014) Towards large scale fermentative production of succinic acid. Curr Opin Biotechnol 30:190–197

    Article  CAS  PubMed  Google Scholar 

  118. Inui M, Murakami S, Okino S, Kawaguchi H, Vertes AA, Yukawa H (2004) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196

    Article  CAS  PubMed  Google Scholar 

  119. Litsanov B, Brocker M, Bott M (2012) Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Appl Environ Microbiol 78:3325–3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hashimoto S, Ozaki A (1999) Whole microbial cell processes for manufacturing amino acids, vitamins or ribonucleotides. Curr Opin Biotechnol 10:604–608

    Article  CAS  PubMed  Google Scholar 

  121. Zakataeva NP, Gronskiy SV, Sheremet AS, Kutukova EA, Novikova AE, Livshits VA (2007) A new function for the Bacillus PbuE purine base efflux pump: efflux of purine nucleosides. Res Microbiol 158:659–665

    Article  CAS  PubMed  Google Scholar 

  122. Peralta-Yahya PP, Zhang FZ, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320–328

    Article  CAS  PubMed  Google Scholar 

  123. Rojas A, Duque E, Mosqueda G, Golden G, Hurtado A, Ramos JL, Segura A (2001) Three efflux pumps are required to provide efficient tolerance to toluene in Pseudomonas putida DOT-T1E. J Bacteriol 183:3967–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Foo JL, Leong SSJ (2013) Directed evolution of an E. coli inner membrane transporter for improved efflux of biofuel molecules. Biotechnol Biofuels 6(1):81

    Google Scholar 

  125. Menges R, Muth G, Wohlleben W, Stegmann E (2007) The ABC transporter Tba of Amycolatopsis balhimycina is required for efficient export of the glycopeptide antibiotic balhimycin. Appl Microbiol Biotechnol 77:125–134

    Article  CAS  PubMed  Google Scholar 

  126. Ullan RV, Liu G, Casqueiro J, Gutierrez S, Banuelos O, Martin JF (2002) The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. Mol Genet Genomics 267:673–683

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Eggeling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eggeling, L. (2016). Exporters for Production of Amino Acids and Other Small Molecules. In: Yokota, A., Ikeda, M. (eds) Amino Acid Fermentation. Advances in Biochemical Engineering/Biotechnology, vol 159. Springer, Tokyo. https://doi.org/10.1007/10_2016_32

Download citation

Publish with us

Policies and ethics