Skip to main content

Lysine Fermentation: History and Genome Breeding

Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE,volume 159)

Abstract

Lysine fermentation by Corynebacterium glutamicum was developed in 1958 by Kyowa Hakko Kogyo Co. Ltd. (current Kyowa Hakko Bio Co. Ltd.) and is the second oldest amino acid fermentation process after glutamate fermentation. The fundamental mechanism of lysine production, discovered in the early stages of the process’s history, gave birth to the concept known as “metabolic regulatory fermentation,” which is now widely applied to metabolite production. After the development of rational metabolic engineering, research on lysine production first highlighted the need for engineering of the central metabolism from the viewpoints of precursor supply and NADPH regeneration. Furthermore, the existence of active export systems for amino acids was first demonstrated for lysine in C. glutamicum, and this discovery has resulted in the current recognition of such exporters as an important consideration in metabolite production. Lysine fermentation is also notable as the first process to which genomics was successfully applied to improve amino acid production. The first global “genome breeding” strategy was developed using a lysine producer as a model; this has since led to new lysine producers that are more efficient than classical industrial producers. These advances in strain development technology, combined with recent systems-level approaches, have almost achieved the optimization of entire cellular systems as cell factories for lysine production. In parallel, the continuous improvement of the process has resulted not only in fermentation processes with reduced load on downstream processing but also in commercialization of various product forms according to their intended uses. Nowadays lysine fermentation underpins a giant lysine demand of more than 2 million metric tons per year.

Keywords

  • Corynebacterium glutamicum
  • Downstream processing
  • Escherichia coli
  • Genome breeding
  • Lysine market
  • Lysine-producing strains
  • Lysine production technology
  • Product forms
  • Systems metabolic engineering

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/10_2016_27
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   349.00
Price excludes VAT (USA)
  • ISBN: 978-4-431-56520-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   449.99
Price excludes VAT (USA)
Hardcover Book
USD   449.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Hua K (2013) Investigating the appropriate mode of expressing lysine requirement of fish through non-linear mixed model analysis and multilevel analysis. Br J Nutr 109:1013–1021

    CAS  PubMed  CrossRef  Google Scholar 

  2. Ajinomoto (2013) Feed-use amino acids business. http://www.ajinomoto.com/jp/ir/pdf/fact/Feed-useAA-Oct2013.pdf

  3. Eggeling L, Bott M (2015) A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum. Appl Microbiol Biotechnol 99:3387–3394

    CAS  PubMed  CrossRef  Google Scholar 

  4. Nakayama K, Kitada S, Kinoshita S (1961) Studies on lysine fermentation. I. The control mechanism on lysine accumulation by homoserine and threonine. J Gen Appl Microbiol 7:145–154

    CAS  CrossRef  Google Scholar 

  5. Kitada S, Nakayama K, Kinoshita S (1961) Method for producing L-lysine by fermentation. US Patent 2979439

    Google Scholar 

  6. Kyowa Hakko Kogyo (1970) Process for producing L-lysine. UK Patent 1186988-A

    Google Scholar 

  7. Ikeda M (2003) Amino acid production processes. In: Faurie R, Thommel J (eds) Adv Biochem Eng Biotechnol, vol 79, Microbial production of L-amino acids. Springer, Berlin Heidelberg, pp 1–35

    Google Scholar 

  8. Leuchtenberger W (1996) Amino acids – technical production and use. In: Roehr M (ed) Biotechnology, vol 6, 2nd edn, Products of primary metabolism. VCH Verlagsgesellschaft mbH, Weinheim, pp 465–502

    CrossRef  Google Scholar 

  9. Kelle R, Hermann T, Bathe B (2005) L-Lysine production. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, pp 465–488

    Google Scholar 

  10. Pfefferle W, Möckel B, Bathe B, Marx A (2003) Biotechnological manufacture of lysine. In: Faurie R, Thommel J (eds) Adv Biochem Eng Biotechnol, vol 79, Microbial production of L-amino acids. Springer, Berlin Heidelberg, pp 59–112

    Google Scholar 

  11. Kjeldsen KR, Nielsen J (2009) In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnol Bioeng 102:583–597

    CAS  PubMed  CrossRef  Google Scholar 

  12. Krömer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186:1769–1784

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  13. Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W (2006) Emerging Corynebacterium glutamicum systems biology. J Biotechnol 124:74–92

    CAS  PubMed  CrossRef  Google Scholar 

  14. Wittmann C, Becker J (2007) The L-lysine story: from metabolic pathways to industrial production. In: Wendisch VF (ed) Microbiology monographs, amino acid biosynthesis – pathways, regulation and metabolic engineering. Springer, Berlin Heidelberg, pp 39–70

    CrossRef  Google Scholar 

  15. Ikeda M, Ohnishi J, Hayashi M, Mitsuhashi S (2006) A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient L-lysine production. J Ind Microbiol Biotechnol 33:610–615

    CAS  PubMed  CrossRef  Google Scholar 

  16. Kim HI, Nam JY, Cho JY, Lee CS, Park YJ (2013) Next-generation sequencing-based transcriptome analysis of L-lysine-producing Corynebacterium glutamicum ATCC 21300 strain. J Microbiol 51:877–880

    CAS  PubMed  CrossRef  Google Scholar 

  17. Lee CS, Nam JY, Son ES, Kwon OC, Han W, Cho JY, Park YJ (2012) Next-generation sequencing-based genome-wide mutation analysis of L-lysine-producing Corynebacterium glutamicum ATCC 21300 strain. J Microbiol 50:860–863

    CAS  PubMed  CrossRef  Google Scholar 

  18. He X, Chen K, Li Y, Wang Z, Zhang H, Qian J, Ouyang P (2015) Enhanced L-lysine production from pretreated beet molasses by engineered Escherichia coli in fed-batch fermentation. Bioprocess Biosyst Eng 38:1615–1622

    CAS  PubMed  CrossRef  Google Scholar 

  19. Nagai Y, Ito H, Yasueda H (2010) Amino acid production: L-lysine. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology, vol 7. Wiley, Hoboken, pp 1–10

    Google Scholar 

  20. Ying H, He X, Li Y, Chen K, Ouyang P (2014) Optimization of culture conditions for enhanced lysine production using engineered Escherichia coli. Appl Biochem Biotechnol 172:3835–3843

    CAS  PubMed  CrossRef  Google Scholar 

  21. Eggeling L, Sahm H (1999) L-Glutamate and L-lysine: traditional products with impetuous developments. Appl Microbiol Biotechnol 52:146–153

    CAS  CrossRef  Google Scholar 

  22. Hirao T, Nakano T, Azuma T, Sugimoto M, Nakanishi T (1989) L-lysine production in continuous culture of an L-lysine hyper-producing mutant of Corynebacterium glutamicum. Appl Microbiol Biotechnol 32:269–273

    CAS  CrossRef  Google Scholar 

  23. Kobayashi M, Itoyama T, Mitani Y, Usui N (2011) Method for producing basic amino acid. European Patent 1182261 B1

    Google Scholar 

  24. Kase H, Nakayama K (1974) Mechanism of L-threonine and L-lysine production by analog-resistant mutants of Corynebacterium glutamicum. Agric Biol Chem 38:993–1000

    CAS  Google Scholar 

  25. Sano K, Shiio I (1971) Microbial production of L-lysine. IV. Selection of lysine-producing mutants from Brevibacterium flavum by detecting threonine sensitivity or halo-forming method. J Gen Appl Microbiol 17:97–113

    CAS  CrossRef  Google Scholar 

  26. Shiio I, Miyajima R (1969) Concerted inhibition and its reversal by end products of aspartate kinase in Brevibacterium flavum. J Biochem 65:849–859

    CAS  PubMed  CrossRef  Google Scholar 

  27. Kinoshita S, Nakayama K (1978) Amino acids. In: Rose AH (ed) Primary products of metabolism. Academic Press, London, New York, and San Francisco, pp 209–261

    CrossRef  Google Scholar 

  28. Nakayama K, Araki K (1973) Process for producing L-lysine. US Patent 3708395 A

    Google Scholar 

  29. Patek M, Krumbach K, Eggeling L, Sahm H (1994) Leucine synthesis in Corynebacterium glutamicum: enzyme activities, structure of leuA, and effect of leuA inactivation on lysine synthesis. Appl Environ Microbiol 60:133–140

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Schrumpf B, Eggeling L, Sahm H (1992) Isolation and prominent characteristics of an L-lysine hyperproducing strain of Corynebacterium glutamicum. Appl Microbiol Biotechnol 37:566–571

    CAS  CrossRef  Google Scholar 

  31. Tosaka O, Hirakawa H, Takinami K, Hirose Y (1978) Regulation of lysine biosynthesis by leucine in Brevibacterium lactofermentum. Agric Biol Chem 42:1501–1506

    CAS  Google Scholar 

  32. Hayashi M, Mizoguchi H, Ohnishi J, Mitsuhashi S, Yonetani Y, Hashimoto S, Ikeda M (2006) A leuC mutation leading to increased L-lysine production and rel-independent global expression changes in Corynebacterium glutamicum. Appl Microbiol Biotechnol 72:783–789

    CAS  PubMed  CrossRef  Google Scholar 

  33. Enei H, Yokozeki K, Akashi K (1989) Recent progress in microbial production of amino acids. Gordon and Breach Science Publishers, New York, London, Paris, Montreux, Tokyo, and Melbourne

    Google Scholar 

  34. Ozaki H, Shiio I (1983) Production of lysine by pyruvate kinase mutants of Brevibacterium flavum. Agric Biol Chem 47:1569–1576

    CAS  Google Scholar 

  35. Shiio I, Nakamori S (1989) Coryneform bacteria. In: Neway JO (ed) Fermentation process development of industrial organisms. Dekker, New York and Basel, pp 133–168

    Google Scholar 

  36. Shiio I, Toride Y, Sugimoto S (1984) Production of lysine by pyruvate dehydrogenase mutants of Brevibacterium flavum. Agric Biol Chem 48:3091–3098

    CAS  Google Scholar 

  37. Petersen S, Mack C, de Graaf AA, Riedel C, Eikmanns BJ, Sahm H (2001) Metabolic consequences of altered phosphoenolpyruvate carboxykinase activity in Corynebacterium glutamicum reveal anaplerotic mechanisms in vivo. Metab Eng 3:344–361

    CAS  PubMed  CrossRef  Google Scholar 

  38. Riedel C, Rittmann D, Dangel P, Möckel B, Sahm H, Eikmanns BJ (2001) Characterization, expression, and inactivation of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. J Mol Microbiol Biotechnol 3:573–583

    CAS  PubMed  Google Scholar 

  39. Becker J, Klopprogge C, Schröder H, Wittmann C (2009) Metabolic engineering of the tricarboxylic acid cycle for improved lysine production by Corynebacterium glutamicum. Appl Environ Microbiol 75:7866–7869

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  40. Shiio I, Ozaki H, Ujigawa-Takeda K (1982) Production of aspartic acid and lysine by citrate synthase mutants of Brevibacterium flavum. Agric Biol Chem 46:101–107

    CAS  Google Scholar 

  41. Yokota A, Shiio I (1988) Effects of reduced citrate synthase activity and feedback-resistant phosphoenolpyruvate carboxylase on lysine productivities of Brevibacterium flavum mutants. Agric Biol Chem 52:455–463

    CAS  Google Scholar 

  42. Kojima H, Ogawa Y, Kawamura K, Sano K (1995) Process for producing L-lysine by fermentation. International Patent Application WO 1995/016042 A1

    Google Scholar 

  43. Ogawa-Miyata Y, Kojima H, Sano K (2001) Mutation analysis of the feedback inhibition site of aspartokinase III of Escherichia coli K-12 and its use in L-threonine production. Biosci Biotechnol Biochem 65:1149–1154

    CAS  PubMed  CrossRef  Google Scholar 

  44. Kikuchi Y, Kojima H, Tanaka T, Takatsuka Y, Kamio Y (1997) Characterization of a second lysine decarboxylase isolated from Escherichia coli. J Bacteriol 179:4486–4492

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  45. Pathania A, Sardesai AA (2015) Distinct paths for basic amino acid export in Escherichia coli: YbjE (LysO) mediates export of L-lysine. J Bacteriol 197:2036–2047

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  46. Ueda T, Nakai Y, Gunji Y, Takikawa R, Joe Y (2005) L-amino acid-producing microorganism and method for producing L-amino acid. International Patent WO 2005/073390 A2

    Google Scholar 

  47. Nakai Y, Nakanishi K, Kawahara Y, Ito H, Kurahashi O (2002) Method for producing substance utilizing microorganism. US Patent 2002/0160461 A1

    Google Scholar 

  48. Imaizumi A, Takikawa R, Koseki C, Usuda Y, Yasueda H, Kojima H, Matsui K, Sugimoto S (2005) Improved production of L-lysine by disruption of stationary phase-specific rmf gene in Escherichia coli. J Biotechnol 117:111–118

    CAS  PubMed  CrossRef  Google Scholar 

  49. Imaizumi A, Kojima H, Matsui K (2006) The effect of intracellular ppGpp levels on glutamate and lysine overproduction in Escherichia coli. J Biotechnol 125:328–337

    CAS  PubMed  CrossRef  Google Scholar 

  50. Fudou R, Jojima Y, Seto A, Yamada K, Kimura E, Nakamatsu T, Hiraishi A, Yamanaka S (2002) Corynebacterium efficiens sp. nov., a glutamic-acid-producing species from soil and vegetables. Int J Syst Evol Microbiol 52:1127–1131

    CAS  PubMed  Google Scholar 

  51. Murakami Y, Miwa H, Nakamori S (1993) Method for the production of L-lysine employing thermophilic Corynebacterium thermoaminogenes. US Patent 5250423

    Google Scholar 

  52. Nishio Y, Nakamura Y, Kawarabayasi Y, Usuda Y, Kimura E, Sugimoto S, Matsui K, Yamagishi A, Kikuchi H, Ikeo K, Gojobori T (2003) Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res 13:1572–1579

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  53. Lee GH, Hur W, Bremmon CE, Flickinger MC (1996) Lysine production from methanol at 50 degrees C using Bacillus methanolicus: modeling volume control, lysine concentration, and productivity using a three-phase continuous simulation. Biotechnol Bioeng 49:639–653

    CAS  PubMed  CrossRef  Google Scholar 

  54. Sano K, Shiio I (1970) Microbial production of L-lysine. III. Production by mutants resistant to S-(2-aminoethyl)-L-cysteine. J Gen Appl Microbiol 16:373–391

    CAS  CrossRef  Google Scholar 

  55. Nakano T, Azuma T, Kuratsu Y (1994) Process for producing L-lysine by iodothyronine resistant strains of Corynebacterium glutamicum. US Patent 5302521 A

    Google Scholar 

  56. Sassi AH, Deschamps AM, Lebeault JM (1996) Process analysis of L-lysine fermentation with Corynebacterium glutamicum under different oxygen and carbon dioxide supplies and redox potentials. Process Biochem 31:493–497

    CAS  CrossRef  Google Scholar 

  57. Eggeling L, Oberle S, Sahm H (1998) Improved L-lysine yield with Corynebacterium glutamicum: use of dapA resulting in increased flux combined with growth limitation. Appl Microbiol Biotechnol 49:24–30

    CAS  PubMed  CrossRef  Google Scholar 

  58. Yokomori M, Totsuka K, Kawahara Y, Miwa H, Ohsumi T (1994) Process for producing L-lysine by fermentation employing a microorganism resistant to acyl-lysine or methylated acyl-lysine. US Patent 5304476 A

    Google Scholar 

  59. Shiratsuchi M, Kuronuma H, Kawahara Y, Yoshihara Y, Miwa H, Nakamori S (1995) Simultaneous and high fermentative production of L-lysine and L-glutamic acid using a strain of Brevibacterium lactofermentum. Biosci Biotechnol Biochem 59:83–86

    CAS  CrossRef  Google Scholar 

  60. Sugimoto M, Otsuna S, Nagase K, Tsuchiya M, Matsui H, Yoshihara Y, Nakamatsu T (1996) Sucrase gene derived from coryneform bacteria. EU Patent 0724017 A2

    Google Scholar 

  61. Hayakawa A, Sugimoto M, Yoshihara Y, Nakamatsu T (1998) Method for producing L-lysine. US Patent 6221636 B1

    Google Scholar 

  62. Araki M, Sugimoto M, Yoshihara Y, Nakamatsu T (1999) Method for producing L-lysine. US Patent 6004773 A

    Google Scholar 

  63. Kojima H, Totsuka K (2002) Method for production of substances using microorganisms with an increased productivity for NADPH. CA Patent 2175042 C

    Google Scholar 

  64. Ikeda M, Takeno S (2013) Amino acid production by Corynebacterium glutamicum. In: Yukawa H, Inui M (eds) Corynebacterium glutamicum, vol 23, Microbiology monographs. Springer, Berlin Heidelberg, pp 107–147

    CrossRef  Google Scholar 

  65. Becker J, Zelder O, Häfner S, Schröder H, Wittmann C (2011) From zero to hero: design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng 13:159–168

    CAS  PubMed  CrossRef  Google Scholar 

  66. Xu J, Han M, Zhang J, Guo Y, Zhang W (2014) Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway. Amino Acids 46:2165–2175

    CAS  PubMed  CrossRef  Google Scholar 

  67. Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Möckel B, Sahm H, Eikmanns BJ (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3:295–300

    CAS  PubMed  Google Scholar 

  68. Chen Z, Bommareddy RR, Frank D, Rappert S, Zeng AP (2014) Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum. Appl Environ Microbiol 80:1388–1393

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  69. Blombach B, Schreiner ME, Moch M, Oldiges M, Eikmanns BJ (2007) Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum. Appl Microbiol Biotechnol 76:615–623

    CAS  PubMed  CrossRef  Google Scholar 

  70. Radmacher E, Eggeling L (2007) The three tricarboxylate synthase activities of Corynebacterium glutamicum and increase of L-lysine synthesis. Appl Microbiol Biotechnol 76:587–595

    CAS  PubMed  CrossRef  Google Scholar 

  71. van Ooyen J, Noack S, Bott M, Reth A, Eggeling L (2012) Improved L-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity. Biotechnol Bioeng 109:2070–2081

    PubMed  CrossRef  CAS  Google Scholar 

  72. Mitsuhashi S, Hayashi M, Ohnishi J, Ikeda M (2006) Disruption of malate:quinone oxidoreductase increases L-lysine production by Corynebacterium glutamicum. Biosci Biotechnol Biochem 70:2803–2806

    CAS  PubMed  CrossRef  Google Scholar 

  73. Marx A, Hans S, Mockel B, Bathe B, de Graaf AA (2003) Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. J Biotechnol 104:185–197

    CAS  PubMed  CrossRef  Google Scholar 

  74. Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C (2005) Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 71:8587–8596

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  75. Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C (2007) Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum – over expression and modification of G6P dehydrogenase. J Biotechnol 132:99–109

    CAS  PubMed  CrossRef  Google Scholar 

  76. Ohnishi J, Katahira R, Mitsuhashi S, Kakita S, Ikeda M (2005) A novel gnd mutation leading to increased L-lysine production in Corynebacterium glutamicum. FEMS Microbiol Lett 242:265–274

    CAS  PubMed  CrossRef  Google Scholar 

  77. Takeno S, Hori K, Ohtani S, Mimura A, Mitsuhashi S, Ikeda M (2016) L-Lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene. Metab Eng 37:1–10

    CAS  PubMed  CrossRef  Google Scholar 

  78. Takeno S, Murata R, Kobayashi R, Mitsuhashi S, Ikeda M (2010) Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production. Appl Environ Microbiol 76:7154–7160

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  79. Komati Reddy G, Lindner SN, Wendisch VF (2015) Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase. Appl Environ Microbiol 81:1996–2005

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  80. Bommareddy RR, Chen Z, Rappert S, Zeng AP (2014) A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab Eng 25:30–37

    CAS  PubMed  CrossRef  Google Scholar 

  81. Kabus A, Georgi T, Wendisch VF, Bott M (2007) Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation. Appl Microbiol Biotechnol 75:47–53

    CAS  PubMed  CrossRef  Google Scholar 

  82. Burkovski A, Krämer R (2002) Bacterial amino acid transport proteins: occurrence, functions, and significance for biotechnological applications. Appl Microbiol Biotechnol 58:265–274

    CAS  PubMed  CrossRef  Google Scholar 

  83. Vrljić M, Sahm H, Eggeling L (1996) A new type of transporter with a new type of cellular function: L-lysine export from Corynebacterium glutamicum. Mol Microbiol 22:815–826

    PubMed  CrossRef  Google Scholar 

  84. Gunji Y, Yasueda H (2006) Enhancement of L-lysine production in methylotroph Methylophilus methylotrophus by introducing a mutant LysE exporter. J Biotechnol 127:1–13

    CAS  PubMed  CrossRef  Google Scholar 

  85. Ikeda M (2012) Sugar transport systems in Corynebacterium glutamicum: features and applications to strain development. Appl Microbiol Biotechnol 96:1191–1200

    CAS  PubMed  CrossRef  Google Scholar 

  86. Ikeda M, Mizuno Y, Awane S, Hayashi M, Mitsuhashi S, Takeno S (2011) Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum. Appl Microbiol Biotechnol 90:1443–1451

    CAS  PubMed  CrossRef  Google Scholar 

  87. Ikeda M, Takeno S, Mizuno Y, Mitsuhashi S (2013) Process for producing useful substance. US Patent 8530203

    Google Scholar 

  88. Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF (2011) Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Appl Environ Microbiol 77:3571–3581

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  89. Lindner SN, Seibold GM, Krämer R, Wendisch VF (2011) Impact of a new glucose utilization pathway in amino acid-producing Corynebacterium glutamicum. Bioeng Bugs 2:291–295

    PubMed  CrossRef  Google Scholar 

  90. Krings E, Krumbach K, Bathe B, Kelle R, Wendisch VF, Sahm H, Eggeling L (2006) Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation. J Bacteriol 188:8054–8061

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  91. Ikeda M, Noguchi N, Ohshita M, Senoo A, Mitsuhashi S, Takeno S (2015) A third glucose uptake bypass in Corynebacterium glutamicum ATCC 31833. Appl Microbiol Biotechnol 99:2741–2750

    CAS  PubMed  CrossRef  Google Scholar 

  92. Bott M, Niebisch A (2003) The respiratory chain of Corynebacterium glutamicum. J Biotechnol 104:129–153

    CAS  PubMed  CrossRef  Google Scholar 

  93. Kabus A, Niebisch A, Bott M (2007) Role of cytochrome bd oxidase from Corynebacterium glutamicum in growth and lysine production. Appl Environ Microbiol 73:861–868

    CAS  PubMed  CrossRef  Google Scholar 

  94. Nishimura T, Vertès AA, Shinoda Y, Inui M, Yukawa H (2007) Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Microbiol Biotechnol 75:889–897

    CAS  PubMed  CrossRef  Google Scholar 

  95. Takeno S, Ohnishi J, Komatsu T, Masaki T, Sen K, Ikeda M (2007) Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum. Appl Microbiol Biotechnol 75:1173–1182

    CAS  PubMed  CrossRef  Google Scholar 

  96. Brockmann-Gretza O, Kalinowski J (2006) Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p)ppGpp synthase. BMC Genomics 7:230

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  97. Krömer JO, Bolten CJ, Heinzle E, Schröder H, Wittmann C (2008) Physiological response of Corynebacterium glutamicum to oxidative stress induced by deletion of the transcriptional repressor McbR. Microbiology 154:3917–3930

    PubMed  CrossRef  CAS  Google Scholar 

  98. Hayashi M, Ohnishi J, Mitsuhashi S, Yonetani Y, Hashimoto S, Ikeda M (2006) Transcriptome analysis reveals global expression changes in an industrial L-lysine producer of Corynebacterium glutamicum. Biosci Biotechnol Biochem 70:546–550

    CAS  PubMed  CrossRef  Google Scholar 

  99. Barrett E, Stanton C, Zelder O, Fitzgerald G, Ross RP (2004) Heterologous expression of lactose- and galactose-utilizing pathways from lactic acid bacteria in Corynebacterium glutamicum for production of lysine in whey. Appl Environ Microbiol 70:2861–2866

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  100. Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ (2006) Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production. J Biotechnol 124:381–391

    CAS  PubMed  CrossRef  Google Scholar 

  101. Tateno T, Fukuda H, Kondo A (2007) Production of L-lysine from starch by Corynebacterium glutamicum displaying α-amylase on its cell surface. Appl Microbiol Biotechnol 74:1213–1220

    CAS  PubMed  CrossRef  Google Scholar 

  102. Rittmann D, Lindner SN, Wendisch VF (2008) Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol 74:6216–6222

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  103. Kawaguchi H, Vertès AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72:3418–3428

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  104. Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H (2008) Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 77:1053–1062

    CAS  PubMed  CrossRef  Google Scholar 

  105. Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF (2013) Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol 6:131–140

    PubMed  CrossRef  CAS  Google Scholar 

  106. Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological process. Appl Microbiol Biotechnol 62:99–109

    CAS  PubMed  CrossRef  Google Scholar 

  107. Ikeda M, Ohnishi J, Mitsuhashi S (2005) Genome breeding of an amino acid-producing Corynebacterium glutamicum mutant. In: Barredo JLS (ed) Microbial processes and products. Humana Press, Totowa, pp 179–189

    CrossRef  Google Scholar 

  108. Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl Microbiol Biotechnol 58:217–223

    CAS  PubMed  CrossRef  Google Scholar 

  109. Wu Y, Li P, Zheng P, Zhou W, Chen N, Sun J (2015) Complete genome sequence of Corynebacterium glutamicum B253, a Chinese lysine-producing strain. J Biotechnol 207:10–11

    CAS  PubMed  CrossRef  Google Scholar 

  110. Ohnishi J, Mizoguchi H, Takeno S, Ikeda M (2008) Characterization of mutations induced by N-methyl-N′-nitro-N-nitrosoguanidine in an industrial Corynebacterium glutamicum strain. Mutat Res 649:239–244

    CAS  PubMed  CrossRef  Google Scholar 

  111. Hayashi M, Mizoguchi H, Shiraishi N, Obayashi M, Nakagawa S, Imai J, Watanabe S, Ota T, Ikeda M (2002) Transcriptome analysis of acetate metabolism in Corynebacterium glutamicum using a newly developed metabolic array. Biosci Biotechnol Biochem 66:1337–1344

    CAS  PubMed  CrossRef  Google Scholar 

  112. Liebl W, Ehrmann M, Ludwig W, Schleifer KH (1991) Transfer of Brevibacterium divaricatum DSM 20297T, “Brevibacterium flavum” DSM 20411, “Brevibacterium lactofermentum” DSM 20412 and DSM 1412, and Corynebacterium glutamicum and their distinction by rRNA gene restriction patterns. Int J Syst Bacteriol 41:225–260

    CrossRef  Google Scholar 

  113. Kinoshita S (1999) Taxonomic position of glutamic acid producing bacteria. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation. Wiley, New York, pp 1330–1336

    Google Scholar 

  114. Ohnishi J, Ikeda M (2006) Comparisons of potentials for L-lysine production among different Corynebacterium glutamicum strains. Biosci Biotechnol Biochem 70:1017–1020

    CAS  PubMed  CrossRef  Google Scholar 

  115. Ohnishi J, Hayashi M, Mitsuhashi S, Ikeda M (2003) Efficient 40°C fermentation of L-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding. Appl Microbiol Biotechnol 62:69–75

    CAS  PubMed  CrossRef  Google Scholar 

  116. Ikeda M, Mitsuhashi S, Tanaka K, Hayashi M (2009) Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer. Appl Environ Microbiol 75:1635–1641

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  117. Becker J, Wittmann C (2015) Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem Int Ed Engl 54:3328–3350

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Ikeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ikeda, M. (2016). Lysine Fermentation: History and Genome Breeding. In: Yokota, A., Ikeda, M. (eds) Amino Acid Fermentation. Advances in Biochemical Engineering/Biotechnology, vol 159. Springer, Tokyo. https://doi.org/10.1007/10_2016_27

Download citation