Hua K (2013) Investigating the appropriate mode of expressing lysine requirement of fish through non-linear mixed model analysis and multilevel analysis. Br J Nutr 109:1013–1021
CAS
PubMed
CrossRef
Google Scholar
Ajinomoto (2013) Feed-use amino acids business. http://www.ajinomoto.com/jp/ir/pdf/fact/Feed-useAA-Oct2013.pdf
Eggeling L, Bott M (2015) A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum. Appl Microbiol Biotechnol 99:3387–3394
CAS
PubMed
CrossRef
Google Scholar
Nakayama K, Kitada S, Kinoshita S (1961) Studies on lysine fermentation. I. The control mechanism on lysine accumulation by homoserine and threonine. J Gen Appl Microbiol 7:145–154
CAS
CrossRef
Google Scholar
Kitada S, Nakayama K, Kinoshita S (1961) Method for producing L-lysine by fermentation. US Patent 2979439
Google Scholar
Kyowa Hakko Kogyo (1970) Process for producing L-lysine. UK Patent 1186988-A
Google Scholar
Ikeda M (2003) Amino acid production processes. In: Faurie R, Thommel J (eds) Adv Biochem Eng Biotechnol, vol 79, Microbial production of L-amino acids. Springer, Berlin Heidelberg, pp 1–35
Google Scholar
Leuchtenberger W (1996) Amino acids – technical production and use. In: Roehr M (ed) Biotechnology, vol 6, 2nd edn, Products of primary metabolism. VCH Verlagsgesellschaft mbH, Weinheim, pp 465–502
CrossRef
Google Scholar
Kelle R, Hermann T, Bathe B (2005) L-Lysine production. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, pp 465–488
Google Scholar
Pfefferle W, Möckel B, Bathe B, Marx A (2003) Biotechnological manufacture of lysine. In: Faurie R, Thommel J (eds) Adv Biochem Eng Biotechnol, vol 79, Microbial production of L-amino acids. Springer, Berlin Heidelberg, pp 59–112
Google Scholar
Kjeldsen KR, Nielsen J (2009) In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnol Bioeng 102:583–597
CAS
PubMed
CrossRef
Google Scholar
Krömer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186:1769–1784
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W (2006) Emerging Corynebacterium glutamicum systems biology. J Biotechnol 124:74–92
CAS
PubMed
CrossRef
Google Scholar
Wittmann C, Becker J (2007) The L-lysine story: from metabolic pathways to industrial production. In: Wendisch VF (ed) Microbiology monographs, amino acid biosynthesis – pathways, regulation and metabolic engineering. Springer, Berlin Heidelberg, pp 39–70
CrossRef
Google Scholar
Ikeda M, Ohnishi J, Hayashi M, Mitsuhashi S (2006) A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient L-lysine production. J Ind Microbiol Biotechnol 33:610–615
CAS
PubMed
CrossRef
Google Scholar
Kim HI, Nam JY, Cho JY, Lee CS, Park YJ (2013) Next-generation sequencing-based transcriptome analysis of L-lysine-producing Corynebacterium glutamicum ATCC 21300 strain. J Microbiol 51:877–880
CAS
PubMed
CrossRef
Google Scholar
Lee CS, Nam JY, Son ES, Kwon OC, Han W, Cho JY, Park YJ (2012) Next-generation sequencing-based genome-wide mutation analysis of L-lysine-producing Corynebacterium glutamicum ATCC 21300 strain. J Microbiol 50:860–863
CAS
PubMed
CrossRef
Google Scholar
He X, Chen K, Li Y, Wang Z, Zhang H, Qian J, Ouyang P (2015) Enhanced L-lysine production from pretreated beet molasses by engineered Escherichia coli in fed-batch fermentation. Bioprocess Biosyst Eng 38:1615–1622
CAS
PubMed
CrossRef
Google Scholar
Nagai Y, Ito H, Yasueda H (2010) Amino acid production: L-lysine. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology, vol 7. Wiley, Hoboken, pp 1–10
Google Scholar
Ying H, He X, Li Y, Chen K, Ouyang P (2014) Optimization of culture conditions for enhanced lysine production using engineered Escherichia coli. Appl Biochem Biotechnol 172:3835–3843
CAS
PubMed
CrossRef
Google Scholar
Eggeling L, Sahm H (1999) L-Glutamate and L-lysine: traditional products with impetuous developments. Appl Microbiol Biotechnol 52:146–153
CAS
CrossRef
Google Scholar
Hirao T, Nakano T, Azuma T, Sugimoto M, Nakanishi T (1989) L-lysine production in continuous culture of an L-lysine hyper-producing mutant of Corynebacterium glutamicum. Appl Microbiol Biotechnol 32:269–273
CAS
CrossRef
Google Scholar
Kobayashi M, Itoyama T, Mitani Y, Usui N (2011) Method for producing basic amino acid. European Patent 1182261 B1
Google Scholar
Kase H, Nakayama K (1974) Mechanism of L-threonine and L-lysine production by analog-resistant mutants of Corynebacterium glutamicum. Agric Biol Chem 38:993–1000
CAS
Google Scholar
Sano K, Shiio I (1971) Microbial production of L-lysine. IV. Selection of lysine-producing mutants from Brevibacterium flavum by detecting threonine sensitivity or halo-forming method. J Gen Appl Microbiol 17:97–113
CAS
CrossRef
Google Scholar
Shiio I, Miyajima R (1969) Concerted inhibition and its reversal by end products of aspartate kinase in Brevibacterium flavum. J Biochem 65:849–859
CAS
PubMed
CrossRef
Google Scholar
Kinoshita S, Nakayama K (1978) Amino acids. In: Rose AH (ed) Primary products of metabolism. Academic Press, London, New York, and San Francisco, pp 209–261
CrossRef
Google Scholar
Nakayama K, Araki K (1973) Process for producing L-lysine. US Patent 3708395 A
Google Scholar
Patek M, Krumbach K, Eggeling L, Sahm H (1994) Leucine synthesis in Corynebacterium glutamicum: enzyme activities, structure of leuA, and effect of leuA inactivation on lysine synthesis. Appl Environ Microbiol 60:133–140
CAS
PubMed
PubMed Central
Google Scholar
Schrumpf B, Eggeling L, Sahm H (1992) Isolation and prominent characteristics of an L-lysine hyperproducing strain of Corynebacterium glutamicum. Appl Microbiol Biotechnol 37:566–571
CAS
CrossRef
Google Scholar
Tosaka O, Hirakawa H, Takinami K, Hirose Y (1978) Regulation of lysine biosynthesis by leucine in Brevibacterium lactofermentum. Agric Biol Chem 42:1501–1506
CAS
Google Scholar
Hayashi M, Mizoguchi H, Ohnishi J, Mitsuhashi S, Yonetani Y, Hashimoto S, Ikeda M (2006) A leuC mutation leading to increased L-lysine production and rel-independent global expression changes in Corynebacterium glutamicum. Appl Microbiol Biotechnol 72:783–789
CAS
PubMed
CrossRef
Google Scholar
Enei H, Yokozeki K, Akashi K (1989) Recent progress in microbial production of amino acids. Gordon and Breach Science Publishers, New York, London, Paris, Montreux, Tokyo, and Melbourne
Google Scholar
Ozaki H, Shiio I (1983) Production of lysine by pyruvate kinase mutants of Brevibacterium flavum. Agric Biol Chem 47:1569–1576
CAS
Google Scholar
Shiio I, Nakamori S (1989) Coryneform bacteria. In: Neway JO (ed) Fermentation process development of industrial organisms. Dekker, New York and Basel, pp 133–168
Google Scholar
Shiio I, Toride Y, Sugimoto S (1984) Production of lysine by pyruvate dehydrogenase mutants of Brevibacterium flavum. Agric Biol Chem 48:3091–3098
CAS
Google Scholar
Petersen S, Mack C, de Graaf AA, Riedel C, Eikmanns BJ, Sahm H (2001) Metabolic consequences of altered phosphoenolpyruvate carboxykinase activity in Corynebacterium glutamicum reveal anaplerotic mechanisms in vivo. Metab Eng 3:344–361
CAS
PubMed
CrossRef
Google Scholar
Riedel C, Rittmann D, Dangel P, Möckel B, Sahm H, Eikmanns BJ (2001) Characterization, expression, and inactivation of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. J Mol Microbiol Biotechnol 3:573–583
CAS
PubMed
Google Scholar
Becker J, Klopprogge C, Schröder H, Wittmann C (2009) Metabolic engineering of the tricarboxylic acid cycle for improved lysine production by Corynebacterium glutamicum. Appl Environ Microbiol 75:7866–7869
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Shiio I, Ozaki H, Ujigawa-Takeda K (1982) Production of aspartic acid and lysine by citrate synthase mutants of Brevibacterium flavum. Agric Biol Chem 46:101–107
CAS
Google Scholar
Yokota A, Shiio I (1988) Effects of reduced citrate synthase activity and feedback-resistant phosphoenolpyruvate carboxylase on lysine productivities of Brevibacterium flavum mutants. Agric Biol Chem 52:455–463
CAS
Google Scholar
Kojima H, Ogawa Y, Kawamura K, Sano K (1995) Process for producing L-lysine by fermentation. International Patent Application WO 1995/016042 A1
Google Scholar
Ogawa-Miyata Y, Kojima H, Sano K (2001) Mutation analysis of the feedback inhibition site of aspartokinase III of Escherichia coli K-12 and its use in L-threonine production. Biosci Biotechnol Biochem 65:1149–1154
CAS
PubMed
CrossRef
Google Scholar
Kikuchi Y, Kojima H, Tanaka T, Takatsuka Y, Kamio Y (1997) Characterization of a second lysine decarboxylase isolated from Escherichia coli. J Bacteriol 179:4486–4492
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Pathania A, Sardesai AA (2015) Distinct paths for basic amino acid export in Escherichia coli: YbjE (LysO) mediates export of L-lysine. J Bacteriol 197:2036–2047
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ueda T, Nakai Y, Gunji Y, Takikawa R, Joe Y (2005) L-amino acid-producing microorganism and method for producing L-amino acid. International Patent WO 2005/073390 A2
Google Scholar
Nakai Y, Nakanishi K, Kawahara Y, Ito H, Kurahashi O (2002) Method for producing substance utilizing microorganism. US Patent 2002/0160461 A1
Google Scholar
Imaizumi A, Takikawa R, Koseki C, Usuda Y, Yasueda H, Kojima H, Matsui K, Sugimoto S (2005) Improved production of L-lysine by disruption of stationary phase-specific rmf gene in Escherichia coli. J Biotechnol 117:111–118
CAS
PubMed
CrossRef
Google Scholar
Imaizumi A, Kojima H, Matsui K (2006) The effect of intracellular ppGpp levels on glutamate and lysine overproduction in Escherichia coli. J Biotechnol 125:328–337
CAS
PubMed
CrossRef
Google Scholar
Fudou R, Jojima Y, Seto A, Yamada K, Kimura E, Nakamatsu T, Hiraishi A, Yamanaka S (2002) Corynebacterium efficiens sp. nov., a glutamic-acid-producing species from soil and vegetables. Int J Syst Evol Microbiol 52:1127–1131
CAS
PubMed
Google Scholar
Murakami Y, Miwa H, Nakamori S (1993) Method for the production of L-lysine employing thermophilic Corynebacterium thermoaminogenes. US Patent 5250423
Google Scholar
Nishio Y, Nakamura Y, Kawarabayasi Y, Usuda Y, Kimura E, Sugimoto S, Matsui K, Yamagishi A, Kikuchi H, Ikeo K, Gojobori T (2003) Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res 13:1572–1579
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lee GH, Hur W, Bremmon CE, Flickinger MC (1996) Lysine production from methanol at 50 degrees C using Bacillus methanolicus: modeling volume control, lysine concentration, and productivity using a three-phase continuous simulation. Biotechnol Bioeng 49:639–653
CAS
PubMed
CrossRef
Google Scholar
Sano K, Shiio I (1970) Microbial production of L-lysine. III. Production by mutants resistant to S-(2-aminoethyl)-L-cysteine. J Gen Appl Microbiol 16:373–391
CAS
CrossRef
Google Scholar
Nakano T, Azuma T, Kuratsu Y (1994) Process for producing L-lysine by iodothyronine resistant strains of Corynebacterium glutamicum. US Patent 5302521 A
Google Scholar
Sassi AH, Deschamps AM, Lebeault JM (1996) Process analysis of L-lysine fermentation with Corynebacterium glutamicum under different oxygen and carbon dioxide supplies and redox potentials. Process Biochem 31:493–497
CAS
CrossRef
Google Scholar
Eggeling L, Oberle S, Sahm H (1998) Improved L-lysine yield with Corynebacterium glutamicum: use of dapA resulting in increased flux combined with growth limitation. Appl Microbiol Biotechnol 49:24–30
CAS
PubMed
CrossRef
Google Scholar
Yokomori M, Totsuka K, Kawahara Y, Miwa H, Ohsumi T (1994) Process for producing L-lysine by fermentation employing a microorganism resistant to acyl-lysine or methylated acyl-lysine. US Patent 5304476 A
Google Scholar
Shiratsuchi M, Kuronuma H, Kawahara Y, Yoshihara Y, Miwa H, Nakamori S (1995) Simultaneous and high fermentative production of L-lysine and L-glutamic acid using a strain of Brevibacterium lactofermentum. Biosci Biotechnol Biochem 59:83–86
CAS
CrossRef
Google Scholar
Sugimoto M, Otsuna S, Nagase K, Tsuchiya M, Matsui H, Yoshihara Y, Nakamatsu T (1996) Sucrase gene derived from coryneform bacteria. EU Patent 0724017 A2
Google Scholar
Hayakawa A, Sugimoto M, Yoshihara Y, Nakamatsu T (1998) Method for producing L-lysine. US Patent 6221636 B1
Google Scholar
Araki M, Sugimoto M, Yoshihara Y, Nakamatsu T (1999) Method for producing L-lysine. US Patent 6004773 A
Google Scholar
Kojima H, Totsuka K (2002) Method for production of substances using microorganisms with an increased productivity for NADPH. CA Patent 2175042 C
Google Scholar
Ikeda M, Takeno S (2013) Amino acid production by Corynebacterium glutamicum. In: Yukawa H, Inui M (eds) Corynebacterium glutamicum, vol 23, Microbiology monographs. Springer, Berlin Heidelberg, pp 107–147
CrossRef
Google Scholar
Becker J, Zelder O, Häfner S, Schröder H, Wittmann C (2011) From zero to hero: design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng 13:159–168
CAS
PubMed
CrossRef
Google Scholar
Xu J, Han M, Zhang J, Guo Y, Zhang W (2014) Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway. Amino Acids 46:2165–2175
CAS
PubMed
CrossRef
Google Scholar
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Möckel B, Sahm H, Eikmanns BJ (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3:295–300
CAS
PubMed
Google Scholar
Chen Z, Bommareddy RR, Frank D, Rappert S, Zeng AP (2014) Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum. Appl Environ Microbiol 80:1388–1393
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Blombach B, Schreiner ME, Moch M, Oldiges M, Eikmanns BJ (2007) Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum. Appl Microbiol Biotechnol 76:615–623
CAS
PubMed
CrossRef
Google Scholar
Radmacher E, Eggeling L (2007) The three tricarboxylate synthase activities of Corynebacterium glutamicum and increase of L-lysine synthesis. Appl Microbiol Biotechnol 76:587–595
CAS
PubMed
CrossRef
Google Scholar
van Ooyen J, Noack S, Bott M, Reth A, Eggeling L (2012) Improved L-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity. Biotechnol Bioeng 109:2070–2081
PubMed
CrossRef
CAS
Google Scholar
Mitsuhashi S, Hayashi M, Ohnishi J, Ikeda M (2006) Disruption of malate:quinone oxidoreductase increases L-lysine production by Corynebacterium glutamicum. Biosci Biotechnol Biochem 70:2803–2806
CAS
PubMed
CrossRef
Google Scholar
Marx A, Hans S, Mockel B, Bathe B, de Graaf AA (2003) Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. J Biotechnol 104:185–197
CAS
PubMed
CrossRef
Google Scholar
Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C (2005) Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 71:8587–8596
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C (2007) Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum – over expression and modification of G6P dehydrogenase. J Biotechnol 132:99–109
CAS
PubMed
CrossRef
Google Scholar
Ohnishi J, Katahira R, Mitsuhashi S, Kakita S, Ikeda M (2005) A novel gnd mutation leading to increased L-lysine production in Corynebacterium glutamicum. FEMS Microbiol Lett 242:265–274
CAS
PubMed
CrossRef
Google Scholar
Takeno S, Hori K, Ohtani S, Mimura A, Mitsuhashi S, Ikeda M (2016) L-Lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene. Metab Eng 37:1–10
CAS
PubMed
CrossRef
Google Scholar
Takeno S, Murata R, Kobayashi R, Mitsuhashi S, Ikeda M (2010) Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production. Appl Environ Microbiol 76:7154–7160
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Komati Reddy G, Lindner SN, Wendisch VF (2015) Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase. Appl Environ Microbiol 81:1996–2005
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Bommareddy RR, Chen Z, Rappert S, Zeng AP (2014) A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab Eng 25:30–37
CAS
PubMed
CrossRef
Google Scholar
Kabus A, Georgi T, Wendisch VF, Bott M (2007) Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation. Appl Microbiol Biotechnol 75:47–53
CAS
PubMed
CrossRef
Google Scholar
Burkovski A, Krämer R (2002) Bacterial amino acid transport proteins: occurrence, functions, and significance for biotechnological applications. Appl Microbiol Biotechnol 58:265–274
CAS
PubMed
CrossRef
Google Scholar
Vrljić M, Sahm H, Eggeling L (1996) A new type of transporter with a new type of cellular function: L-lysine export from Corynebacterium glutamicum. Mol Microbiol 22:815–826
PubMed
CrossRef
Google Scholar
Gunji Y, Yasueda H (2006) Enhancement of L-lysine production in methylotroph Methylophilus methylotrophus by introducing a mutant LysE exporter. J Biotechnol 127:1–13
CAS
PubMed
CrossRef
Google Scholar
Ikeda M (2012) Sugar transport systems in Corynebacterium glutamicum: features and applications to strain development. Appl Microbiol Biotechnol 96:1191–1200
CAS
PubMed
CrossRef
Google Scholar
Ikeda M, Mizuno Y, Awane S, Hayashi M, Mitsuhashi S, Takeno S (2011) Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum. Appl Microbiol Biotechnol 90:1443–1451
CAS
PubMed
CrossRef
Google Scholar
Ikeda M, Takeno S, Mizuno Y, Mitsuhashi S (2013) Process for producing useful substance. US Patent 8530203
Google Scholar
Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF (2011) Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Appl Environ Microbiol 77:3571–3581
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lindner SN, Seibold GM, Krämer R, Wendisch VF (2011) Impact of a new glucose utilization pathway in amino acid-producing Corynebacterium glutamicum. Bioeng Bugs 2:291–295
PubMed
CrossRef
Google Scholar
Krings E, Krumbach K, Bathe B, Kelle R, Wendisch VF, Sahm H, Eggeling L (2006) Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation. J Bacteriol 188:8054–8061
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ikeda M, Noguchi N, Ohshita M, Senoo A, Mitsuhashi S, Takeno S (2015) A third glucose uptake bypass in Corynebacterium glutamicum ATCC 31833. Appl Microbiol Biotechnol 99:2741–2750
CAS
PubMed
CrossRef
Google Scholar
Bott M, Niebisch A (2003) The respiratory chain of Corynebacterium glutamicum. J Biotechnol 104:129–153
CAS
PubMed
CrossRef
Google Scholar
Kabus A, Niebisch A, Bott M (2007) Role of cytochrome bd oxidase from Corynebacterium glutamicum in growth and lysine production. Appl Environ Microbiol 73:861–868
CAS
PubMed
CrossRef
Google Scholar
Nishimura T, Vertès AA, Shinoda Y, Inui M, Yukawa H (2007) Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Microbiol Biotechnol 75:889–897
CAS
PubMed
CrossRef
Google Scholar
Takeno S, Ohnishi J, Komatsu T, Masaki T, Sen K, Ikeda M (2007) Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum. Appl Microbiol Biotechnol 75:1173–1182
CAS
PubMed
CrossRef
Google Scholar
Brockmann-Gretza O, Kalinowski J (2006) Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p)ppGpp synthase. BMC Genomics 7:230
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Krömer JO, Bolten CJ, Heinzle E, Schröder H, Wittmann C (2008) Physiological response of Corynebacterium glutamicum to oxidative stress induced by deletion of the transcriptional repressor McbR. Microbiology 154:3917–3930
PubMed
CrossRef
CAS
Google Scholar
Hayashi M, Ohnishi J, Mitsuhashi S, Yonetani Y, Hashimoto S, Ikeda M (2006) Transcriptome analysis reveals global expression changes in an industrial L-lysine producer of Corynebacterium glutamicum. Biosci Biotechnol Biochem 70:546–550
CAS
PubMed
CrossRef
Google Scholar
Barrett E, Stanton C, Zelder O, Fitzgerald G, Ross RP (2004) Heterologous expression of lactose- and galactose-utilizing pathways from lactic acid bacteria in Corynebacterium glutamicum for production of lysine in whey. Appl Environ Microbiol 70:2861–2866
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ (2006) Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production. J Biotechnol 124:381–391
CAS
PubMed
CrossRef
Google Scholar
Tateno T, Fukuda H, Kondo A (2007) Production of L-lysine from starch by Corynebacterium glutamicum displaying α-amylase on its cell surface. Appl Microbiol Biotechnol 74:1213–1220
CAS
PubMed
CrossRef
Google Scholar
Rittmann D, Lindner SN, Wendisch VF (2008) Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol 74:6216–6222
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kawaguchi H, Vertès AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72:3418–3428
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H (2008) Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 77:1053–1062
CAS
PubMed
CrossRef
Google Scholar
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF (2013) Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol 6:131–140
PubMed
CrossRef
CAS
Google Scholar
Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological process. Appl Microbiol Biotechnol 62:99–109
CAS
PubMed
CrossRef
Google Scholar
Ikeda M, Ohnishi J, Mitsuhashi S (2005) Genome breeding of an amino acid-producing Corynebacterium glutamicum mutant. In: Barredo JLS (ed) Microbial processes and products. Humana Press, Totowa, pp 179–189
CrossRef
Google Scholar
Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl Microbiol Biotechnol 58:217–223
CAS
PubMed
CrossRef
Google Scholar
Wu Y, Li P, Zheng P, Zhou W, Chen N, Sun J (2015) Complete genome sequence of Corynebacterium glutamicum B253, a Chinese lysine-producing strain. J Biotechnol 207:10–11
CAS
PubMed
CrossRef
Google Scholar
Ohnishi J, Mizoguchi H, Takeno S, Ikeda M (2008) Characterization of mutations induced by N-methyl-N′-nitro-N-nitrosoguanidine in an industrial Corynebacterium glutamicum strain. Mutat Res 649:239–244
CAS
PubMed
CrossRef
Google Scholar
Hayashi M, Mizoguchi H, Shiraishi N, Obayashi M, Nakagawa S, Imai J, Watanabe S, Ota T, Ikeda M (2002) Transcriptome analysis of acetate metabolism in Corynebacterium glutamicum using a newly developed metabolic array. Biosci Biotechnol Biochem 66:1337–1344
CAS
PubMed
CrossRef
Google Scholar
Liebl W, Ehrmann M, Ludwig W, Schleifer KH (1991) Transfer of Brevibacterium divaricatum DSM 20297T, “Brevibacterium flavum” DSM 20411, “Brevibacterium lactofermentum” DSM 20412 and DSM 1412, and Corynebacterium glutamicum and their distinction by rRNA gene restriction patterns. Int J Syst Bacteriol 41:225–260
CrossRef
Google Scholar
Kinoshita S (1999) Taxonomic position of glutamic acid producing bacteria. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation. Wiley, New York, pp 1330–1336
Google Scholar
Ohnishi J, Ikeda M (2006) Comparisons of potentials for L-lysine production among different Corynebacterium glutamicum strains. Biosci Biotechnol Biochem 70:1017–1020
CAS
PubMed
CrossRef
Google Scholar
Ohnishi J, Hayashi M, Mitsuhashi S, Ikeda M (2003) Efficient 40°C fermentation of L-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding. Appl Microbiol Biotechnol 62:69–75
CAS
PubMed
CrossRef
Google Scholar
Ikeda M, Mitsuhashi S, Tanaka K, Hayashi M (2009) Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer. Appl Environ Microbiol 75:1635–1641
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Becker J, Wittmann C (2015) Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem Int Ed Engl 54:3328–3350
CAS
PubMed
CrossRef
Google Scholar