Skip to main content

Discovery and History of Amino Acid Fermentation

  • Chapter
  • First Online:
Amino Acid Fermentation

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 159))

Abstract

There has been a strong demand in Japan and East Asia for l-glutamic acid as a seasoning since monosodium glutamate was found to present umami taste in 1907. The discovery of glutamate fermentation by Corynebacterium glutamicum in 1956 enabled abundant and low-cost production of the amino acid, creating a large market. The discovery also prompted researchers to develop fermentative production processes for other l-amino acids, such as lysine. Currently, the amino acid fermentation industry is so huge that more than 5 million metric tons of amino acids are manufactured annually all over the world, and this number continues to grow. Research on amino acid fermentation fostered the notion and skills of metabolic engineering which has been applied for the production of other compounds from renewable resources. The discovery of glutamate fermentation has had revolutionary impacts on both the industry and science. In this chapter, the history and development of glutamate fermentation, including the very early stage of fermentation of other amino acids, are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ajinomoto Group HP (2014) http://www.ajinomoto.com/jp/ir/pdf/FY13_Data_J.pdf

  2. Ikeda K (1908) Japanese Patent 14805

    Google Scholar 

  3. Sano C (2009) History of glutamate production. Am J Clin Nutr 90(3):728S–732S

    Article  CAS  PubMed  Google Scholar 

  4. Ajinomoto Group HP. http://www.ajinomoto.com/jp/aboutus/history/story/story07.html

  5. Greenstein JP (1954) The resolution of racemic α-amino acids. In: Anson ML et al (eds) Advances in protein chemistry. Academic Press, New York, pp 121–202

    Google Scholar 

  6. Izaki K, Takahashi H, Sakaguchi K (1955) Studies on the metabolism of D-amino acid in microorganisms. Part 1. Degradation of D-glutamic acid in genus Aerobacter. Bull Agric Chem Soc Japan 19:233–239

    CAS  Google Scholar 

  7. Michi K, Nonaka H (1954) Enzymatic resolution of racemic amino acids. Part 2. Resolution of DL-glutamic acid and DL-valine. Nippon Nogei Kagaku Kaishi 28:346–349

    Article  CAS  Google Scholar 

  8. Lockwood LB, Stodola FH (1946) Preliminary studies on the production of α-ketoglutaric acid by Pseudomonas fluorescens. J Biol Chem 164:81–83

    CAS  PubMed  Google Scholar 

  9. Koepsell H, Stodola FH, Sharpe ES (1952) Production of α-ketoglutarate in glucose oxidation by Pseudomonas fluorescens. J Am Chem Soc 74:5142–5144

    Article  CAS  Google Scholar 

  10. Nisman B, Raynaud M, Cohen GN (1947) Mecanisme de la formation des acides amines chez les bacteries a partir de lammoniaque et des acides α-cetoniques. C R Hebd Séances Acad Sci 225:700–701

    CAS  PubMed  Google Scholar 

  11. Adler E, Hellström V, Günther G, v Euler H (1938) Uber den enzymatischen Abbau und Aufbau der Glutaminsaure. Hoppe-Seylers Z Physiol Chem 225:14–26

    Article  Google Scholar 

  12. Konikova AS, Kritzman MG (1948) Formation of amino nitrogen from ammonia and α-keto-acids by suspension of Bacillus subtilis. Biokhimiya 13:39–41

    CAS  Google Scholar 

  13. Feldman LI, Gunsalus IC (1950) The occurrence of a wide variety of transaminase in bacteria. J Biol Chem 187:821–830

    CAS  PubMed  Google Scholar 

  14. Otsuka S, Yazaki H, Hasegawa H, Sakaguchi K (1957) Fermentative production of L-glutamic acid from α-ketoglutaric acid and ammonium salt. Bull Agric Chem Soc Japan 21:69–70

    CAS  Google Scholar 

  15. Housewright RD, Thorne CB (1950) Synthesis of glutamic acid and glutamyl polypeptide by Bacillus anthracis. I. Formation of glutamic acid by transamination. J Bacteriol 60:89–100

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dagley S, Dawes EA, Morrison GA (1950) Production of amino-acids in synthetic media by Escherichia coli and Aerobacter aerogenes. Nature 165:437–438

    Article  CAS  Google Scholar 

  17. Morrison GA, Hinshelwood C (1949) Nitrogen utilisation and growth of coliform bacteria. Part III. Nitrogen utilisation and lag phase. J Chem Soc 1949:380–384

    Article  Google Scholar 

  18. Thorne CB, Gomez CG, Blind GR, Housewright RD (1953) Synthesis of glutamic acid and glutamyl polypeptide by Bacillus anthracis. III. Factor affecting peptide production in synthetic liquid media. J Bacteriol 65:472–478

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Asai T, Aida K, Oishi K (1957) On L-glutamic acid fermentation. Bull Agric Chem Soc Japan 21:134–135

    Article  CAS  Google Scholar 

  20. Johnson MJ (1955) Unit process review. Ind Eng Chem 47:1872–1875

    Google Scholar 

  21. Udaka S (1960) Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. J Bacteriol 79:754–755

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kinoshita S, Udaka S, Shimono M (1957) Studies on the amino acid fermentation. Part I. By various microorganisms. J Gen Appl Microbiol 3:193–205

    Article  CAS  Google Scholar 

  23. Kinoshita S, Udaka S, Akita S (1957) Japanese Patent Sho 32-8698

    Google Scholar 

  24. Kinoshita S, Nakayama K, Udaka S (1957) The fermentative production of L-ornithine (preliminary report). J Gen Appl Microbiol 3:276–277

    Article  CAS  Google Scholar 

  25. Li Z, Chen N (2012) Study on the directional breeding of high glutamic-acid production strain GTS190 and the control on its fermentation. Environ Sci Mater Eng 2:1029–1033

    Google Scholar 

  26. Kanzaki T, Isobe K, Okazaki H, Motizuki K, Fukuda H (1967) L-Glutamic acid fermentation. Part I. Selection of an oleic acid-requiring mutant and its properties. Agric Biol Chem 31:1307–1313

    CAS  Google Scholar 

  27. Tsunoda T, Shiio I, Mitsugi K (1961) Bacterial formation of L-glutamic acid from acetic acid in the growing culture medium. I. Cultural conditions. J Gen Appl Microbiol 7:18–29

    Article  CAS  Google Scholar 

  28. Oki T, Sayama Y, Nishimura Y, Ozaki A (1968) L-Glutamic acid formation by microorganisms from ethanol. Agric Biol Chem 32:119–120

    Article  CAS  Google Scholar 

  29. Oki T, Kitai A, Kouno K, Ozaki A (1973) Production of L-glutamic acid by methanol-utilizing bacteria. J Gen Appl Microbiol 19:79–83

    Article  CAS  Google Scholar 

  30. Brautaset T, Jakobsen OM, Degnes KF, Netzer R, Naerdal I, Krog A, Dillingham R, Flickinger MC, Ellingsen TE (2010) Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase I and II and their roles for L-lysine production from methanol at 50 °C. Appl Microbiol Biotechnol 87:951–964

    Article  CAS  PubMed  Google Scholar 

  31. Imada Y, Takahashi J, Yamada K (1967) Production of L-glutamic acid from hydrocarbons: incorporation of molecular oxygen. Biotech Bioeng 9:45–54

    Article  CAS  Google Scholar 

  32. Shiio I, Uchio R (1969) Microbial production of amino acids from hydrocarbons. IV. L-glutamic acid production by Corynebacterium hydrocarboclastus R-7. J Gen Appl Microbiol 15:65–84

    Article  CAS  Google Scholar 

  33. Yamamoto M, Nishida H, Inui T, Ozaki A (1972) Microbial production of amino acids from aromatic compounds. I. Screening of aromatic compounds-assimilating bacteria. J Ferment Technol 50:868–875

    CAS  Google Scholar 

  34. Yamamoto M, Nishida H, Inui T, Ozaki A (1972) Microbial production of amino acids from aromatic compounds. II. Production of L-glutamic acid from benzoate. J Ferment Technol 50:876–883

    CAS  Google Scholar 

  35. Hirasawa T, Wachi M (2016) Glutamate fermentation-2: mechanism of l-glutamate overproduction in Corynebacterium glutamicum. Adv Biochem Eng Biotechnol. doi:10.1007/10_2016_26

    PubMed  Google Scholar 

  36. Liebl W, Ehrmann M, Ludwig W, Schleifer KH (1991) Transfer of Brevibacterium divaricatum DSM 20297T, “Brevibacterium flavum” DSM 20411, “Brevibacterium lactofermentum” DSM 20412 and DSM 1412, and Corynebacterium lilium DSM 20137T to Corynebacterium glutamicum and their distinction by rRNA gene restriction patterns. Int J Syst Bacteriol 41:255–260

    Article  CAS  PubMed  Google Scholar 

  37. NCBI Taxonomy (2014) Corynebacterium glutamicum. http://www.metalife.com/NCBI%20Taxonomy/1718

  38. Yamada K, Komagata K (1972) Taxonomic studies on coryneform bacteria. V. Classification of coryneform bacteria. J Gen Appl Microbiol 18:417–431

    Article  Google Scholar 

  39. Chao K-C, Foster JW (1959) A glutamic acid-producing Bacillus. J Bacteriol 77(6):715–725

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Roy DK, Chatterjee SP (1982) Production of glutamic acid by an Arthrobacter sp. I. Identification and nutritional requirement in relation to glutamic acid production. Acta Microbiol Pol 31:153–158

    CAS  PubMed  Google Scholar 

  41. Chatterjee S, Chatterjee SP (1982) A glutamic acid-producing Streptomyces sp. Folia Microbiol 27:116–120

    Article  CAS  Google Scholar 

  42. Moriya M, Izui Y, Ono E, Matsui K, Ito H, Hara Y (2000) Japanese Patent P2000-106869A

    Google Scholar 

  43. Tujimoto N, Kikuchi Y, Kurahashi O, Kawahara Y (1995) US Patent 5378616A

    Google Scholar 

  44. Schneider J, Niermann K, Wendish VF (2011) Production of the amino acids L-glutamate, L-lysine and L-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol 154:191–198

    Article  CAS  PubMed  Google Scholar 

  45. Ghosh BB, Banerjee AK (1986) Production of methionine and glutamic acid from n-alkanes by Serratia marcescens var. kiliensis. Folia Microbiol 31:106–112

    Article  CAS  Google Scholar 

  46. Revillas JJ, Rodelas B, Pozo C, Martinez-Toledo MV, Lopez JG (2005) Production of amino acids by Azotobacter vinelandii and Azotobacter chroococcum with phenolic compounds as solo carbon source under diazotrophic and adiazotrophic conditions. Amino Acids 28:421–425

    Article  CAS  PubMed  Google Scholar 

  47. Ju DK (1976) Studies on the production of amino acids by methanol-utilizing bacteria. Misaengmul Hakhoechi 14:8–16

    CAS  Google Scholar 

  48. Motoyama H, Anazawa H, Kastumata R, Araki K, Teshiba S (1993) Amino acid production from methanol by Methylobacillus glycogenes mutants: isolation of L-glutamic acid hyper-producing mutants from M. glycogenes strains, and derivation of L-threonine and L-lysine-producing mutants from them. Biosci Biotechnol Biochem 57:82–87

    Article  CAS  PubMed  Google Scholar 

  49. Bagchi SN, Rao NS (1997) Sustained production of amino acids by immobilized analog-resistant mutant of a cyanobacterium Anacystis nidulans BD-1. J Microbiol Biotechnol 7:341–344

    CAS  Google Scholar 

  50. Matsunaga T, Nakamura N, Tsuzaki N, Takeda H (1988) Selective production of glutamate by an immobilized marine blue-green alga, Synechococcus sp. Appl Microbiol Biotechnol 28:373–376

    Article  CAS  Google Scholar 

  51. Shiio I, Otsuka S, Takahashi M (1962) Effect of biotin on the bacterial fermentation of glutamic acid. I. Glutamate formation and cellular permeability of amino acids. J Biochem 51:56–62

    Article  CAS  PubMed  Google Scholar 

  52. Kimura K (1963) The effect of biotin on the amino acid biosynthesis by Micrococcus glutamicus. J Gen Appl Microbiol 9:205–212

    Article  CAS  Google Scholar 

  53. Otsuka S, Miyajima R, Shiio I (1965) Comparative studies on the mechanism of microbial glutamate formation. II. Effect of biotin. J Gen Appl Microbiol 11:295–301

    Article  CAS  Google Scholar 

  54. Phillips T, Somerson NL (1963) US Patent 3,080,297

    Google Scholar 

  55. Takinami K, Okada H, Tsunoda T (1964) Biochemical effect of fatty acid and its derivatives on L-glutamic acid fermentation. Part II. Effective chemical structure of fatty acid derivatives on the accumulation of L-glutamic acid in biotin sufficient medium. Agric Biol Chem 28:114–119

    CAS  Google Scholar 

  56. Takinami K, Yoshii H, Tsuri H, Okada H (1965) Biochemical effect of fatty acid and its derivatives on L-glutamic acid fermentation. Part III. Biotin-Tween 60 relationship in the accumulation of L-glutamic acid and the growth of Brevibacterium lactofermentum. Agric Biol Chem 29:351–359

    CAS  Google Scholar 

  57. Oshima K, Tanaka K, Kinoshita S (1964) Studies on L-glutamic acid fermentation. XIII. Effect of surface active agents on the conversion of citrate to L-glutamate with the resting cells of Micrococcus glutamicus. J Gen Appl Microbiol 10:333–342

    Article  Google Scholar 

  58. Shiio I, Otsuka S, Katsuya N (1963) Cellular permeability and extracellular formation of glutamic acid in Brevibacterium flavum. J Biochem 53:333–340

    Article  PubMed  Google Scholar 

  59. Shibukawa M, Ohsawa T (1966) L-Glutamic acid fermentation with molasses. Part VI. Effect of the saturated-unsaturated fatty acid ratio in the cell membrane fraction on the extracellular accumulation of L-glutamate. Agric Biol Chem 30:750–758

    CAS  Google Scholar 

  60. Shibukawa M, Kurima M, Okabe S, Ohsawa T (1968) L-Glutamic acid fermentation with molasses. Part X. On the difference in mechanisms for the bacterial extracellular accumulation of L-glutamate between fatty acid derivative and penicillin. Agric Biol Chem 32:641–645

    CAS  Google Scholar 

  61. Okazaki H, Kanzaki T, Doi M, Sumino Y, Fukuda H (1967) L-Glutamic acid fermentation. Part II. The production of L-glutamic acid by an oleic acid-requiring mutant. Agric Biol Chem 31:1314–1317

    Article  CAS  Google Scholar 

  62. Oishi K, Aida K, Asai T (1961) Studies on amino acid fermentation. Part VIII. On the mechanism of conversion of L-glutamic acid fermentation to succinic acid fermentation. J Gen Appl Microbiol 7:213–226

    Article  CAS  Google Scholar 

  63. Ertan H (1992) Some properties of glutamate dehydrogenase, glutamine synthetase and glutamate synthase from Corynebacterium callunae. Arch Microbiol 158:35–41

    Article  CAS  PubMed  Google Scholar 

  64. Ertan H (1992) The effect of various culture conditions on the levels of ammonia assimilatory enzyme of Corynebacterium callunae. Arch Microbiol 158:42–47

    Article  CAS  PubMed  Google Scholar 

  65. Kimura K (1962) The significance of glutamic dehydrogenase in glutamic acid fermentation. J Gen Appl Microbiol 8:253–260

    Article  CAS  Google Scholar 

  66. Sung H, Tachiki T, Kumagai H, Tochikura T (1984) Production and preparation of glutamate synthase from Brevibacterium flavum. J Ferment Technol 62:371–376

    CAS  Google Scholar 

  67. Sung H, Takahashi M, Tamaki H, Tachiki T, Kumagai H, Tochikura T (1985) Ammonia assimilation by glutamine synthetase/glutamate synthase system in Brevibacterium flavum. J Ferment Technol 63:1–5

    Google Scholar 

  68. Mori M, Shiio I (1985) Purification and some properties of phosphoenolpyruvate carboxylase from Brevibacterium flavum and its aspartate-overproducing mutant. J Biochem 97:1119–1128

    Article  CAS  PubMed  Google Scholar 

  69. Shiio I, Ozaki H, Ujigawa K (1977) Regulation of citrate synthase in Brevibacterium flavum, a glutamate-producing bacterium. J Biochem 82:395–405

    CAS  PubMed  Google Scholar 

  70. Delaunay D, Daran-Lapujade P, Engasser JM, Goergen JL (2004) Glutamate as an inhibitor of phosphoenolpyruvate carboxylase activity in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 31:183–188

    Article  CAS  PubMed  Google Scholar 

  71. Eikmanns BJ, Rittmann D, Sahm H (1995) Cloning, sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme. J Bacteriol 177:774–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sato H, Orishimo K, Shirai T, Hirasawa T, Nagahisa K, Shimizu H, Wachi M (2008) Distinct roles of two anaplerotic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum. J Biosci Bioeng 106:51–58

    Article  CAS  PubMed  Google Scholar 

  73. Shiio I, Ujigawa K (1978) Enzymes of the glutamate and aspartate synthetic pathways in a glutamate-producing bacterium, Brevibacterium flavum. J Biochem 84:647–657

    Article  CAS  PubMed  Google Scholar 

  74. Shiio I, Otsuka S, Takahashi M (1961) Significance of α-ketoglutaric dehydrogenase on the glutamic acid formation in Brevibacterium flavum. J Biochem 50:164–165

    Article  CAS  Google Scholar 

  75. Shiio I, Ujigawa-Takeda K (1980) Presence and regulation of α-ketoglutarate dehydrogenase complex in a glutamate-producing bacterium Brevibacterium flavum. Agric Biol Chem 44:1897–1904

    CAS  Google Scholar 

  76. Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamura T (2007) Altered metabolic flux due to deletion of odhA cases L-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Microbiol 73:1308–1319

    Article  CAS  PubMed  Google Scholar 

  77. Kawahara Y, Takahashi-Fuke K, Shimizu E, Nakamatsu T, Nakamori S (1997) Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum. Biosci Biotechnol Biochem 61:1109–1112

    Article  CAS  PubMed  Google Scholar 

  78. Kim J, Hirasawa T, Sato Y, Nagahisa K, Furusawa C, Shimizu H (2009) Effect of odhA overexpression and odhA antisense RNA expression on Tween-40-triggered glutamate production by Corynebacterium glutamicum. Appl Microbiol Biotechnol 81:1097–1106

    Article  CAS  PubMed  Google Scholar 

  79. Schultz C, Niebisch A, Gebel L, Bott M (2007) Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol 76:691–700

    Article  CAS  PubMed  Google Scholar 

  80. Kim J, Hirasawa T, Saito M, Furusawa C, Shimizu H (2011) Investigation of phosphorylation status of OdhI protein during penicillin- and Tween-40-triggered glutamate overproduction by Corynebacterium glutamicum. Appl Microbiol Biotechnol 91:143–151

    Article  CAS  PubMed  Google Scholar 

  81. Hoischen C, Kramer R (1989) Evidence for an efflux carrier involved in the secretion of glutamate by Corynebacterium glutamicum. Arch Microbiol 151:342–347

    Article  CAS  Google Scholar 

  82. Hoischen C, Kramer R (1990) Membrane alteration is necessary but not sufficient for effective glutamate secretion in Corynebacterium glutamicum. J Bacteriol 172:3406–3416

    Article  Google Scholar 

  83. Lambert C, Erdmann A, Eikmanns M, Kramer R (1995) Triggering glutamate excretion in Corynebacterium glutamicum by modulating the membrane state with local anesthetics and osmotic gradients. Appl Environ Microbiol 61:4334–4342

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hashimoto K-I, Kawasaki H, Akazawa K, Nakamura J, Asakura Y, Kudo T, Sakuradani E, Shimizu S, Nakamatsu T (2006) Change in composition and content of mycolic acids in glutamate-overproducing Corynebacterium glutamicum. Biosci Biotechnol Biochem 70:22–30

    Article  CAS  PubMed  Google Scholar 

  85. Nampoothiri K, Hoischen C, Bathe B, Moeckel B, Pfefferle W, Krumbach K, Sahm H, Eggeling L (2002) Expression of genes of lipid synthesis and altered lipid composition modulate L-glutamate efflux of Corynebacterium glutamicum. Appl Microbiol Biotechnol 58:89–96

    Article  CAS  PubMed  Google Scholar 

  86. Radmacher E, Stansen KC, Besra GS, Alderwick LJ, Maughan WN, Hollweg G, Sahm H, Wendish VF, Eggeling L (2005) Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate efflux of Corynebacterium glutamicum. Microbiology 151:1359–1368

    Article  CAS  PubMed  Google Scholar 

  87. Kimura E, Abe C, Kawahara Y, Nakamatsu T (1996) Molecular cloning of a novel gene, dtsR, which rescues the detergent sensitivity of a mutant derived from Brevibacterium lactofermentum. Biosci Biotechnol Biochem 60:1565–1570

    Article  CAS  PubMed  Google Scholar 

  88. Kimura E, Abe C, Kawahara Y, Nakamatsu T, Tokuda H (1997) A dtsR gene-disrupted mutant of Brevibacterium lactofermentum requires fatty acids for growth and efficiently produces L-glutamate in the presence of an excess of biotin. Biochem Biophys Res Commun 234:157–161

    Article  CAS  PubMed  Google Scholar 

  89. Hirasawa T, Wachi M, Nagai K (2000) A mutation in the Corynebacterium glutamicum ltsA gene causes susceptibility to lysozyme, temperature-sensitive growth, and L-glutamate production. J Bacteriol 182:2696–2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hirasawa T, Wachi M, Nagai K (2001) L-Glutamate production by lysozyme-sensitive Corynebacterium glutamicum ltsA mutant strains. BMC Biotechnol 1:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Becker M, Boerngen K, Nomura T, Battle AR, Marin K, Martinac B, Kraemer R (2013) Glutamate efflux mediated by Corynebacterium glutamicum MscCG, Escherichia coli MscS, and their derivatives. Biochim Biophys Acta 1828:1230–1240

    Article  CAS  PubMed  Google Scholar 

  92. Hashimoto K, Nakamura K, Kuroda T, Tabe I, Nakamatsu T, Kawasaki H (2010) The protein encoded by NCgl1221 in Corynebacterium glutamicum functions as a mechanosensitive channel. Biosci Biotechnol Biochem 74:2546–2549

    Article  CAS  PubMed  Google Scholar 

  93. Hashimoto K, Murata J, Konishi T, Tabe I, Nakamatsu T, Kawasaki H (2012) Glutamate is excreted across the cytoplasmic membrane through the NCgl1221 channel of Corynebacterium glutamicum by passive diffusion. Biosci Biotechnol Biochem 76:1422–1424

    Article  CAS  PubMed  Google Scholar 

  94. Nakamura J, Anazawa H, Katsumata R, Araki K, Teshiba S (2007) Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid production. Appl Environ Microbiol 73:4491–4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nakayama Y, Yoshimura K, Iida H (2012) A gain-of-function in gating of Corynebacterium glutamicum NCgl1221 causes constitutive glutamate secretion. Appl Environ Microbiol 78:5432–5434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sekine H, Shimada T, Hayashi C, Ishiguro A, Tomita F, Yokota A (2001) H+-ATPase defect in Corynebacterium glutamicum abolishes glutamic acid production with enhancement of glucose consumption rate. Appl Microbiol Biotechnol 57:534–540

    Article  CAS  PubMed  Google Scholar 

  97. Burkovski A, Weil B, Kraemer R (1996) Characterization of a secondary uptake system for L-glutamate in Corynebacterium glutamicum. FEMS Microbiol Lett 136:169–173

    CAS  Google Scholar 

  98. Trotschel C, Kandirali S, Diaz-Achirica P, Meinhardt A, Morbach S, Kraemer R, Burkovski A (2003) GltS, the sodium-coupled L-glutamate uptake system of Corynebacterium: identification of the corresponding gene and impact on L-glutamate production. Appl Microbiol Biotechnol 60:738–742

    Article  CAS  PubMed  Google Scholar 

  99. Deguchi Y, Yamato I, Anraku Y (1989) Molecular cloning of gltS and gltP, which encode glutamate carriers of Escherichia coli B. J Bacteriol 171:1314–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sato M, Akiyoshi N (2002) Japanese Patent P2002-238591A

    Google Scholar 

  101. Hara Y, Kadotani N, Izui H, Katashkina JI, Kuvaeva TM, Andreeva IG, Golubeva LI, Malko DB, Makeev VJ, Mashko SV, Kozlov YI (2012) The complete genome sequence of Pantoea ananatis AJ13355, an organism with great biotechnological potential. Appl Microbiol Biotechnol 93:331–341

    Article  PubMed  CAS  Google Scholar 

  102. Kinoshita S, Nakayama K, Kitada S (1958) L-Lysine production using microbial auxotroph (preliminary report). J Gen Appl Microbiol 4:128–129

    Article  Google Scholar 

  103. Sano K, Shiio I (1970) Microbial production of L-lysine. III. Production by mutants resistant to S-(2-aminoethyl)-L-cysteine. J Gen Appl Microbiol 16:373–391

    Article  CAS  Google Scholar 

  104. Cohen GN, Adelberg EA (1958) Kinetics of incorporation of p-fluorophenylalanine by a mutant of Escherichia coli resistant to this analogue. J Bacteriol 76:328–330

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Sugimoto S, Nakagawa M, Tsuchida T, Shiio I (1973) Regulation of aromatic amino acid biosynthesis and production of tyrosine and phenylalanine in Brevibacterium flavum. Agric Biol Chem 37:2327–2336

    CAS  Google Scholar 

  106. Adelberg EA (1958) Selection of bacterial mutants which excrete antagonists of antimetabolites. J Bacteriol 76:326

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kase H, Nakayama K (1975) L-Methionine production by methionine analog-resistant mutants of Corynebacterium glutamicum. Agric Biol Chem 39:153–160

    CAS  Google Scholar 

  108. Moyed HS, Friedman M (1959) Interference with feedback control: a mechanism of antimetabolite action. Science 129:968–969

    Article  CAS  PubMed  Google Scholar 

  109. Araki K, Nakayama K (1971) Studies on histidine fermentation. Part I. L-Histidine production by histidine analog-resistant mutants from several bacteria. Agric Biol Chem 35:2081–2088

    CAS  Google Scholar 

  110. Sugisaki Z (1959) Studies on L-valine fermentation. Part I. Production of L-valine by Aerobacter bacteria. J Gen Appl Microbiol 5:138–149

    Article  CAS  Google Scholar 

  111. Huang HT (1961) Production of L-threonine by auxotrophic mutants of Escherichia coli. Appl Microbiol 9:419–424

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Yoshinaga F, Konishi S, Okumura S, Katsuya N (1966) Studies on the fermentative production of L-proline. I. Production of L-proline by an isoleucine auxotrophic mutant of Brevibacterium flavum 2247. J Gen Appl Microbiol 12:219–228

    Article  CAS  Google Scholar 

  113. Shiio I, Sato H, Nakagawa M (1972) L-Tryptophan production by 5-methyltryptophan-resistant mutants of glutamate-producing bacteria. Agric Biol Chem 36:2315–2322

    Article  CAS  Google Scholar 

  114. Kisumi M, Komatsubara S, Sugiura M, Chibata I (1972) Isoleucine accumulation by regulatory mutants of Serratia marcescens: lack of both feedback inhibition and repression. J Bacteriol 110:761–763

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kisumi M, Komatsubara S, Chibata I (1973) Leucine accumulation by isoleucine revertants of Serratia marcescens resistant to α-aminobutyric acid: lack of both feedback inhibition and repression. J Biochem 73:107–115

    CAS  PubMed  Google Scholar 

  116. Komatsubara S, Kisumi M, Chibata I (1979) Participation of lysine-sensitive aspartokinase in threonine production by S-2-aminoethyl cysteine-resistant mutants of Serratia marcescens. Appl Environ Microbiol 38:777–782

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Katsumata R, Ikeda M (1993) Hyperproduction of tryptophan in Corynebacterium glutamicum by pathway engineering. Nat Biotechnol 11:921–925

    Article  CAS  Google Scholar 

  118. Broer S, Kraemer R (1991) Lysine excretion by Corynebacterium glutamicum. 1. Identification of a specific secretion carrier system. Eur J Biochem 202:131–135

    Article  CAS  PubMed  Google Scholar 

  119. Broer S, Kraemer R (1991) Lysine excretion by Corynebacterium glutamicum. 2. Energetics and mechanism of the transport system. Eur J Biochem 202:137–143

    Article  CAS  PubMed  Google Scholar 

  120. Vrljic M, Sahm H, Eggeling L (1996) A new type of transporter with a new type of cellular function: L-lysine export from Corynebacterium glutamicum. Mol Microbiol 22:815–826

    Article  CAS  PubMed  Google Scholar 

  121. Kennerknecht N, Sahm H, Yen M-R, Patek M, Saier MH Jr, Eggeling L (2002) Export of L-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family. J Bacteriol 184:3947–3956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Simic P, Sahm H, Eggeling L (2001) L-Threonine export: use of peptides to identify a new translocator from Corynebacterium glutamicum. J Bacteriol 183:5317–5324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dassler T, Maier T, Winterhalter C, Boeck A (2000) Identification of a major facilitator protein from Escherichia coli involved in efflux of metabolite of the cysteine pathway. Mol Microbiol 36:1101–1112

    Article  CAS  PubMed  Google Scholar 

  124. Doroshenko V, Airich L, Vitushkina M, Kolokolova A, Livshits V, Mashko S (2007) YddG from Escherichia coli promotes export of aromatic amino acids. FEMS Microbiol Lett 275:312–318

    Article  CAS  PubMed  Google Scholar 

  125. Hori H, Yoneyama H, Tobe R, Ando T, Isogai E, Katsumata R (2011) Inducible L-alanine exporter encoded by the novel gene ygaW (alaE) in Escherichia coli. Appl Environ Microbiol 77:4027–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kutukova EA, Livshits VA, Altman IP, Pitysyn LR, Zyiatdinov MH, Tomakova IL, Zakataeva NP (2005) The yaeS (leuE) gene of Escherichia coli encodes an exporter of leucine, and the Lrp protein regulates its expression. FEBS Lett 579:4629–4634

    Article  CAS  PubMed  Google Scholar 

  127. Madhusudan RN, Gowrishankar J (2004) Evidence for an arginine exporter encoded by yggA (argO) that is regulated by lysR-type transcriptional regulator ArgP in Escherichia coli. J Bacteriol 186:3539–3546

    Article  CAS  Google Scholar 

  128. Matsuoka Y, Shimzu K (2010) Current status of 13C-metabolic analysis and future perspective. Process Biochem 45:1873–1881

    Article  CAS  Google Scholar 

  129. Sahm H, Eggeling L, de Graaf AA (2000) Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biol Chem 381:899–910

    Article  CAS  PubMed  Google Scholar 

  130. Sauer U, Eikmanns BJ (2005) The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29:765–794

    Article  CAS  PubMed  Google Scholar 

  131. Ishino S, Shimomura-Nishimuta J, Yamaguchi K, Shirahata K, Araki K (1991) 13C nuclear magnetic resonance studies of glucose metabolism in L-glutamic acid and L-lysine fermentation by Corynebacterium glutamicum. J Gen Appl Microbiol 37:157–165

    Article  CAS  Google Scholar 

  132. Kabus A, Georgi T, Wendish VF, Bott M (2007) Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation. Appl Microbiol Biotechnol 75:47–53

    Article  CAS  PubMed  Google Scholar 

  133. Takeno S, Murata R, Kobayashi R, Mitsuhashi S, Ikeda M (2010) Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production. Appl Environ Microbiol 76:7154–7160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang Y, San KY, Bennett GN (2013) Cofactor engineering for advancing chemical biotechnology. Curr Opin Biotechnol 24:994–999

    Article  CAS  PubMed  Google Scholar 

  135. NCBI Database (2015) Escherichia coli str. K-12 substr. MG1655. http://www.ncbi.nlm.nih.gov/genome/167?genome_assembly_id=161521

  136. NCBI Database (2015) Corynebacterium glutamicum ATCC13032. http://www.ncbi.nlm.nih.gov/genome/469?genome_assembly_id=166859

  137. Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological progresses. Appl Microbiol Biotechnol 62:99–109

    Article  CAS  PubMed  Google Scholar 

  138. Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl Microbiol Biotechnol 58:217–223

    Article  CAS  PubMed  Google Scholar 

  139. Ohnishi J, Hayashi M, Mitsuhashi S, Ikeda M (2003) Efficient 40°C fermentation of L-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding. Appl Microbiol Biotechnol 62:69–75

    Article  CAS  PubMed  Google Scholar 

  140. Werpy TA, Petersen G (eds) (2004) Top value added chemicals from biomass. In: Results of screening for potential candidates from sugars and synthesis gas, vol 1. US Department of Energy (DOE), Golden, CO. http://www.energy.gov/eere/bioenergy/downloads/top-value-added-chemicals-biomass-volume-i-results-screening-potential

Download references

Acknowledgments

The author would like to acknowledge Ajinomoto Co., Inc. and Kyowa Hakko Bio Co. Ltd. for kind permission of reprinting historical photos. The author would like to express sincere thanks to Dr. M. Hayashi for helpful support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Hashimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hashimoto, Si. (2016). Discovery and History of Amino Acid Fermentation. In: Yokota, A., Ikeda, M. (eds) Amino Acid Fermentation. Advances in Biochemical Engineering/Biotechnology, vol 159. Springer, Tokyo. https://doi.org/10.1007/10_2016_24

Download citation

Publish with us

Policies and ethics